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Abstract 

 

An unstructured mathematical model is proposed to describe the fermentation kinetics of growth, 

lactic acid production, pH and sugar consumption by Lactobacillus plantarum as a function of 

the buffering capacity and initial glucose concentration of the culture media. Initially the 

experimental data of L. plantarum fermentations in synthetic media with different buffering 

capacity and glucose were fitted to a set of primary models.  Later the parameters obtained from 

these models were used to establish mathematical relationships with the independent variables 

tested.  The models were validated with 6 fermentations of L. plantarum in different cereal-based 

media.  In most cases the propose models adequately describe the biochemical changes taking 

place during fermentation. These proposed equations and studied effects are promising approach 

for the optimization and formulation of cereal-based functional foods. 

 

 

Keywords Lactobacillus plantarum; probiotic; mathematical models; cereal-based media; 

buffering capacity; sugar concentration. 
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Introduction  

The mathematical models that are used to simulate a bioprocess can generally be classified as 

unstructured or structured. In unstructured models the biomass is considered as one entity 

described only by its concentration. These models do not take into account any changes that 

could take place in the inner cells.  In structured models the biomass is defined and includes 

intracellular components, such as the RNA content, enzymes, reactants and products [1]. 

Although the structured models provide a better understanding of the modelled system, 

unstructured models are mainly used to describe bacterial kinetics in complex natural substrates. 

This is mainly due to the complexity of the substrates and to the difficulties in obtaining large 

sets of experimental data for the intracellular components [2]. 

 

In food microbiology, mathematical modelling has been mainly applied to predict growth or 

inactivation of spoilage of bacteria and foodborne pathogens [3-6]. A number of models have 

been used to describe the sigmoidal curves of bacterial growth, such as the model of Gompertz 

[7], Richards [8], Stannard et al. [9], Schnute [10], the logistic model and others.  These 

equations can fit cell growth over time and take into account growth inhibition in the stationary 

phase of growth. 

 

In the last ten years, there has been an increasing interest in modelling the kinetics of beneficial 

microorganisms in food systems.  For lactic acid bacteria (LAB) the models used to describe cell 

growth are the unstructured and structured equations mentioned earlier.  Growth or non-growth 

related models are also applied to describe the changes of other biochemical compounds and 

physical properties in these food systems.  These changes include primary or secondary 
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metabolites concentrations, volatile production as well as rheological and textural properties [11-

14].  The aim of these models is to mathematically relate the biochemical properties (response 

variables) to environmental factors (controlling factors), such as temperature, pH, water activity 

and substrate composition.  This contributes to a better understanding and control of the 

fermentation process and helps to clarify how and to what extent the environment will interfere 

with the behaviour of the strains [11].  

 

In general modelling is performed in two stages. In the first stage the primary models are applied 

to the experimental data describing the change of a response variable over time. In the second 

stage secondary models are developed expressing the bio-kinetic parameters derived from the 

primary models as a function of a single environmental factor. It must be noted that both primary 

and secondary models are built using data from experiments in synthetic media under carefully 

controlled conditions. The predictability of the models is then assessed in the complex food 

systems.  LAB research has focused so far in modelling the dependence of the growth rate on 

temperature and pH at pH-controlled conditions [15-17].  Very little research has been done in 

the secondary modelling of growth when pH is not controlled, or taking into account other bio-

kinetic parameters, such lactic acid and bacteriocins production [18-22]. 

 

On the other hand, cereals are one of the most suitable components for the production of foods 

contains a probiotic microorganism (in most cases lactic acid bacteria or bifidobacteria) and a 

prebiotic substrate. Traditionally, probiotic microorganisms have been included in dairy products, 

meat and fruit juices. The definition and development of new functional foods cereal-based 

combine the beneficial effects of cereals and health promoting bacteria is a challenging issue 

[23,24]. In this sense, the major biochemical properties affecting the functionality and quality of a 
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probiotic-containing food product are the cell population, lactic acid concentration and pH.  The 

cell concentration in the end product is an indicator of probiotic functionality, the lactic acid 

influences the organoleptic properties and also acts as a preservative agent, while the pH is the 

main factor determining the stability and safety of the product during storage [25,26].  Since 

sugar is the main carbon source used by the cells, knowledge of the sugar kinetics contributes to a 

better understanding of cell growth and product formation. Moreover, the amount of sugar 

present in the carrier medium influences the survival of L. plantarum in acidified model solutions 

imitating stomach conditions.  

 

The aim of this study was to develop a model that would be able to simulate the kinetics of cell 

growth, lactic acid production, pH drop and sugar consumption in cereal-based fermentations 

with L. plantarum.  The kinetic parameters of the primary models for these dependent variables 

were expressed as a function of the initial sugar concentration of the media and their buffering 

capacity.  The models were built using data from fermentations in synthetic media with various 

levels of glucose and different buffering abilities.  Finally, the predictability of the models was 

evaluated using a variety of cereal-based fermentations of different concentrations. Thus, the 

numerical parameters obtained allowed the characterisation of these cultures and could be a 

preliminary step in the formulation of novel potentially probiotic foods. 

 

Materials and methods 

Microorganism and inoculum 

The strain L. plantarum NCIMB 8826 isolated from human saliva was used. It was maintained at 

4ºC and sub-cultured monthly on MRS agar slopes (Oxoid). Isolated colonies from MRS agar 
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plates were pre-cultured twice in MRS broth (Oxoid) for approximately 24 h at 37ºC. The cells 

were collected by centrifugation (5000 g, 10 min, 4ºC), washed twice with sterile quarter-strength 

Ringer’s solution and re-suspended in the same solution. The bacterial suspensions used as 

inocula for the fermentation studies (1% v/v) were obtained from 12 h pre-cultured cells.  

 

Culture media and microbiological methods 

The synthetic media used for the studies of the buffering capacity and the effect of sugars on L. 

plantarum growth are summarized in Table 1. The pH of all media was adjusted to about 5.8 with 

1N HCI or 1N NaOH and the media sterilised for 10 min at 121ºC.  Six cereal media were used 

for model validation: 20% wheat extract, 30% barley extract, 40% barley extract, 30% barley 

extract supplemented with 2.2 g l-1 citric acid, and 5% and 20% malt extract. All cereal-based 

media were prepared as described in Charalampopoulos et al. [27]. In all cases the pH was 

initially adjusted to about 6.0 with 1N HCI or 1N NaOH and the media sterilised for 30 min at 

121ºC.  

 

Shake-flask fermentations were performed in triplicate using 500 mL screw-capped glass bottles 

without oxygen control. Bottles were inoculated with a 1% v/v of lactic acid bacteria and 

incubated at 150 rpm and 37°C for 30 or 42 h.  The viable cell counting method was used for cell 

enumeration [28].  Cell growth was monitored by measuring the optical density of the media at 

600 nm. The optical density values were transformed to cell counts (log10 cfu ml-1) using a pre-

established calibration curve. In the fermentation samples pH, reducing sugar (as glucose) and 

lactic acid content were analysed. 

 

Buffering capacity 
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The buffering agent used was a 0.2 M acetate buffer stock solution, from which 8 media of 

different buffering capacity were prepared by dilution (from 1/1 to 1/15). The buffering capacity 

of the media was measured after addition of the nutrient substrate using the method of Pai et al. 

[29]. 100 ml of each medium were titrated with 1N HCl. The values were expressed as the 

amount of HCl (mmoles) required to drop one pH unit per unit volume (1 litre). 

 

Analytical methods 

The dinitrosalicylic acid (DNS) assay was used to measure the reducing sugar concentration in 

the supernatants of the fermented cereal extracts according to Miller [30]. A standard curve was 

made using glucose at various concentrations.  Lactic acid was measured using an enzymatic kit 

for D- and L- lactic acid (Boehringer Mannheim). 

 

Numerical and statistical methods 

Fitting procedures and parametric estimations calculated from the results were carried out by 

minimisation of the sum of quadratic differences between observed and model-predicted values, 

using the non linear least-squares (quasi-Newton) method provided by the macro ‘Solver’ of the 

Microsoft Excel XP spreadsheet.  Statistica 6.0 (StatSoft, Inc. 2001) and Mathematica 6 

(Wolfram Research, Inc.) programs were used to evaluate the significance of the parameters 

estimated by fitting of the experimental values to the proposed mathematical models, and the 

consistency of these equations. 

 

Results and Discussion 

A set of four non-linear algebraic equations comprising the primary models was used to describe 
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cell growth (N), lactic acid production (P), pH and sugar concentration (S) with time. The model 

parameters were estimated from the 17 batch data of N, P, pH and S vs. time. The parameters of 

the primary models were then fitted to the controlling factors (secondary models) by using linear 

or non-linear regression analysis. The definition and units of the model parameters and variables 

are shown in Table 2. 

 

Growth models 

A common model to describe cell population growth is the differential equation proposed by 

Velhurst in 1844, which includes an inhibition factor of growth.  By assuming that inhibition of a 

population N is proportional to N2, the growth rate is given by the following equation 

 

 µ − =  
 

m
dN K NN
dt K

 (1) 

 

Integrating between N0→N and 0→t gives the biomass concentration as a function of time 

[31,32] 

 

 
( )1 exp µ

=
+ − m

KN
c t

 ,  with  
0

ln 1
 

= − 
 

Kc
X

 (2) 

 

In order to give biological meaning to the parameters when log10N are used, equation 2 was 

reparameterised according to Zwietering et al. [33] 
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( )0

log
41 exp 2 µ λ

 
= =     + + −  

m

N AX
N t

A

 (3) 

 

The data of the 17 batch cultures were fitted using equation 3.  The optimum parameters with the 

95% confidence intervals and consistence of the equation (Fisher’s F test, α=0.05) are presented 

in Table 3.  In all cases, the fit of results was statistically satisfactory.  The mathematical 

equations were consistent (Fisher’s F test) and the parametric estimations were significant 

(Student’s t test).  The values predicted by equation 3 are highly correlated with the experimental 

data with a regression coefficient r > 0.97. 

 

These results indicate that the logistic model could be used to describe L. plantarum growth in 

various environmental conditions. This means that the inhibitory effect of the accumulated cell 

concentration on µm (as assumed by equation 1) can explain various types of growth limitations 

such as low sugar availability.  It could also explain the inhibitory effect of pH, which illustrated 

by the fact that µm decreases with buffering capacity.  Lejeune et al. [34] justify this by pointing 

out that the cell concentration depends on the amount of nutrients consumed and the lactic acid 

produced (and consequently the pH). For these reasons the logistic model, or similar forms of it, 

have been widely used to model the growth of LAB [35-36]. 

 

Since the aim of this study was to create a link between cell growth and the properties of the 

starting media, the bio-kinetic parameters µm, A and λ were expressed as a function of buffering 

capacity and glucose. All the functions were of the form p(f) = popt × γ(f), which indicates that an 

optimum value of the parameter (popt) is obtained when the controlling factor (f) is also optimum. 
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The function γ(f) describes the response of the growth to changes in the factor f, with values of f 

between 0 (no response) and 1 (optimum response).  By assuming that the influence of a factor is 

independent of other factors, the model describing the combined effects of the factors f1, f2, 

f3,….,fn would then be p(f1, f2, f3,….,fn) = popt × γ(f1, f2, f3,….,fn).  This concept is generally called 

the γ-concept and has been extensively used to relate the bio-kinetic parameters describing cell 

growth (and in fewer cases primary or secondary metabolic activities) to the environmental 

conditions (usually pH or temperature) [11,16,37-40]. 

 

Secondary modelling of µm 

Figure 1 (up) shows the effect of glucose (S) on µm. The data show that µm increases with the 

glucose concentration from 0 to 6 g l-1, while between 6 and 20 g l-1 µm remains approximately 

constant.  The hyperbolic shape of the trend was described using the Monod model [41]: 

 

 µ µ=
+m optS

s

S
K S

 (4) 

 

The fit of equation 4 to the µm values (obtained from Table 3) was performed by the non-linear 

least squares method.  The fit was satisfactory and the derived parameters were 0.70 h-1 for µoptS 

and 1.5 g l-1 for Ks (see Table 4 for statistical validation)  

 

The small Ks value suggests that the sugar requirement of this strain is relatively low, and the 

strain could be used to ferment media of low sugar content.  Venkatesh et al. [42] in pH-

controlled media monitored growth of L. bulgaricus and showed that Ks is pH dependent.  In the 
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present study the buffering capacities of the 8 batches were the same (1.09 mmoles HCI pH-1 l-1). 

The pH effect on Ks was probably not significant. Burgos-Rubio et al. [43] reported a Ks value of 

3.36 g l-1 for L. bulgaricus, while Martens et al. [38] did not observe any dependence of L. 

plantarum µoptS on the initial sugar concentration of the medium. For this reason they considered 

a Ks value of 0.072 g l-1, which is the general value for E. coli on glucose [44]. It must be pointed 

out that little information is available in the literature regarding the kinetics of LAB growth in a 

fermented food product.  Most published works study the kinetics of the fermentation process for 

the optimization of the production of lactic acid in industrial applications.  In these cases 

fermentations are carried out under pH-control using media with very high sugar concentrations 

(60 to 300 g l-1).  This is the reason why Ks is considered to be very small and usually is 

neglected.  

 

It can be also observed from the data presented in Table 3 that µm increases with the buffering 

capacity of the medium.  This can be attributed to the fact that in media with low buffering 

capacity the pH drop was greater.  The inhibitory effect of pH takes place earlier in the 

fermentation process, resulting in lower µm values. A linear relationship was observed between 

µm and the buffering capacity, and the µm value corresponding to the higher buffering capacity 

(1.09 mmoles HCl pH-1 l-1) was considered to be the optimum value (µoptB = 0.61 h-1) for these 

working conditions.  The relative µm values (µm / µoptB) were then plotted against the buffering 

capacity (B) in order to obtain an equation of the form µm = µoptB × γ (Figure 1, down).  As B can 

not be zero the data were centered on the mean values of B (Bcent = B - Baverage; Baverage = 0.57 

mmoles pH-1 l-1) [31]. The following linear equation was then used to fit the data 

 



 

 12 

 ( )1 1 0.57µ α β
µ

= + −m

optB

B  (5) 

 

The fit was satisfactory (r = 0.98, F-value= 623.04, Table 4), which suggests that equation 5 can 

appropriately describe the dependency of µm with the buffering capacity. 

 

By assuming that the influences of sugar and buffering capacity on µm are independent, equations 

4 and 5 could be combined 

 

 ( )1 1 0.57µ µ α β
 

= + −    + 
m opt

s

S B
K S

 (6) 

 

where µopt (h-1) is the µm value at the conditions where both controlling factors are at their 

optimum, which occurs when B is 1.09 mmoles HCl pH-1 l-1 and S is much greater than Ks.  It 

must be noted that according to equation 6, when S = 20 g l-1 and B = 1.09 mmoles HCl pH-1 l-1 

the value of µopt would be 0.64 h-1, which is slightly higher than the µoptB value of 0.61 h-1 

calculated experimentally.  Of the three possible µopt values (µopt obtained from equation 6, µoptS 

and µoptB), the one with the smaller coefficient of variation is µoptS, and this value was the one 

considered in the equation describing the joint effect (equation 6) 

 

 ( )0.70 0.54 0.75 0.57
1.40

µ  = + −    + 
m

S B
S

 (7) 

 

Secondary modelling of A 
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Figure 2 (up) illustrates the dependence of the maximum relative cell concentration (A) with the 

glucose concentration (S).  It can be observed that the A values increase with the initial sugar 

concentration of the medium until a stationary value is reached. This behaviour was similar to µm 

and therefore a Monod type equation was used to describe the dependence of A with the sugar 

concentration (replacing µoptS by AoptS and KS by '
SK ). 

 

The fit of the experimental data to this equation was satisfactory although the estimation of '
SK  

has a considerable error (see statistical parameters in Table 4). This could explain the observed 

difference between '
SK  and KS (2.52 and 1.40 g l-1 respectively), although it is also possible that 

in the media containing small amounts of glucose, the efficiency of glucose consumption for cell 

conversion decreases. A similar behaviour has been reported by Schepers et al. [40] in L. 

helveticus.  

 

In the batches where the buffering capacity was the controlling factor, the A values ranged from 

2.12 to 3.11 [log10(N/N0)max], suggesting that the effect of buffering capacity was less significant 

than that of glucose. This means that even in media where the pH drops fast, the final cell 

concentration would reach a relatively high level providing that there is sufficient carbon source. 

Since A continuously increases with increasing buffering capacity, although in a non-linear 

manner, the value of A corresponding to the highest buffering capacity (1.09 mmoles HCl pH-1 l-

1) was considered to be the optimum value (AoptB = 3.11). The relative A values (A/AoptB) were 

then plotted (figure 2, down) vs. the buffering capacity (B).  The data were also centered on the 

mean value of the B. The following 2nd order polynomial equation was then used to fit the data 
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 ( ) ( )23.89 0.95 0.39 0.57 0.64 0.57
2.52

   = + − − −   + 
SA B B

S
 (8) 

 

Secondary modelling of λ 

In order to describe the dependency of the lag time (λ) on environmental factors, such as 

temperature and pH, other researchers have modelled λ in the same way as the inverse of µm 

[15,16,38], and this strategy was also used in this work.  As shown in figure 3, a strong linear 

correlation existed between µm λ and µm (r = 0.99, F-value = 1768.4), which could be described 

by the relationship 

 

 3 3µ λ α β µ= +m m  (9) 

 

The values of the regression parameters are α3 = -0.26 ± 0.14 and β3 = (4.17 ± 0.32) h.  These 

parameters were obtained from the whole set of batches and are very similar to the ones that 

would be obtained from the batches with a constant substrate concentration and buffering 

capacity separately.  Equation 9 can then be used to predict the lag phase of L. plantarum by 

introducing the value of µm obtained from equation 7. 

 

Lactic acid production models 

Homofermentative LAB meet their energy requirements for growth and maintenance by 

producing lactic acid.  Maintenance is the energy required for survival or for preservation of cell 

viability, which is not directly coupled with the synthesis of new cells [45].  The uncoupled lactic 

acid production by L. plantarum was clearly observed in these batches when lactic acid 
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production continued after growth had ceased (data not shown).  Based on this, a kinetic 

representation for lactic acid production could the classical Luedeking-Piret model [46]. This 

model suggests that the product (P) formation rate depends on the growth rate (dN/dt) and the 

cell concentration (N).  We have expressed the cell concentration in terms of the relative cell 

population (X) 

 

 α β= +p p
dP dX X
dt dt

 (10) 

 

Integration of equation 10 between P0→P, 0→X and 0→t gives 

 

 
( )

2

0

4 4exp 2 exp
ln

4 441 exp 2 1 exp 2

µ λ µ
α β

µ µ λµλ

    + +        = + + ⋅
    + + − + +        

m m

p p

m mm

t
A A A AP P

t
A A

 (11)  

 

In Table 5 the parameters of this equation with their confidence intervals (α  = 0.05), the F-value 

and correlation coefficients are summarized. 

 

Secondary modelling of parameter αp 

The values for the growth associated constant αp varies between 0.64 and 0.84 g lactic acid (log10 

(N/N0))-1 l-1 in the batches where buffering capacity was the controlling factor (Table 5).  When 

αp was plotted against the buffering capacity no clear tendency was observed and the straight line 

fitting the data was more or less horizontal.  For this reason αp was assumed to be constant in our 

range of buffering capacity.  The values of αp in the batches where sugar was the controlling 
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factor varied between 0.42 and 0.82 g lactic acid (log10 (N/N0))-1 l-1 (Table 5).  In this case αp 

increases with the sugar concentration.  Fitting αp vs. S data with a 2nd order polynomial equation 

was not appropriate (r = 0.75) but the fit considerably improved by including 3rd or 4th order 

terms.  However, this type of model would be unrealistic and difficult to interpret [47] and for 

that reason the mean αp value in all batches was used to describe the growth associated lactic acid 

production (αpmean = 0.71±0.04 g lactic acid (log10 (N/N0))-1 l-1). 

 

Secondary modelling of parameter βp 

In the batches where the buffering capacity was the controlling factor, when βp was plotted 

against B not a clear trend was observed and βp was considered to be independent of the buffering 

capacity.  The values of βp when sugar was the controlling factor ranged from 0 to 0.021 g lactic 

acid (log10 (N/N0))-1 l-1 h-1 (Table 5).  In one of the batches (when 4 g l-1 of sugar concentration 

was used) βp was negative and statistically not significant.  The significant values of βp were then 

plotted as a function of sugar (S).  A lineal equation provide a satisfactory fit of these data (r = 

0.964, F-value = 114.1) with parametric estimations α4 = 0.0007 (not significant) and β4 = 

0.0011±0.0003.  The equation that describes βp as a function of the sugar concentration will then 

be 

 

 0.0011β =p S  (12) 

 

pH model 

Several authors have proposed different approaches to know the dependence between pH and 

fermentation parameters such as enzyme reaction rates [48], specific growth rates and specific 
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activities [49] or by means of re-alkalized fed-batch cultures [50]. In order to model the evolution 

of pH during fermentation we assumed that the pH drop during growth of L. plantarum was 

exclusively due to lactic acid production.  Thus, with the purpose to establish a relationship 

between pH and lactic acid production (P) the pH evolution in media with different buffering 

capacity was studied.  In the initial stages of the exponential phase of growth the pH decreased 

faster in the media with lower buffering capacity, and the final pH value was always lower in 

media with lower buffering capacity.  A mechanistic model [31] was then used assuming that the 

pH drop with respect to the lactic acid production is directly proportional to the pH minus the 

final pH (pHmin) 

 

 ( )min
dpH k pH pH
dP

= −  (13) 

 

integration of equation 13 with initial conditions P0 and pH0 yields 

 

 ( ) ( )0
min 0 min

− −= + − k P PpH pH pH pH e  (14) 

 

The values of these parameters were estimated by fitting equation 14 to the experimental data for 

lactic acid and pH (in the batches with different buffering capacities) using the non-linear least 

squares method. The pHmin values did not show any obvious dependency on the buffering 

capacity (B), and the mean value 3.21±0.06 was used to express the pHmin in all cases.  The k 

values decrease with increasing buffering capacity, which is illustrated in figure 4.  This trend is 

adequately described by a 2nd order polynomial equation (r = 0.997, F-value = 865.1) and k can 

be expressed by 
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 25.81 9.95 4.53= − +k B B  (15) 

 

Finally, a full model of pH can be obtained by introducing equation 14 in equation 11. 

 

( )
( )

( )

( )

4 422

min 0 min 4 42 2

e eexp ln
4

1 e 1 e

µ µ
λ

µ µ
λ λ

α β
µ

   + −      

   + − + −      

   
  + = + − − + ⋅   
   + +   

m m

m m

tt
A A

p p

t tmA A

A A
pH pH pH pH k (16) 

 

Sugar consumption model 

The rate of sugar consumption is mainly a function of three factors: the growth rate, lactic acid 

production and the rate of substrate uptake for cell maintenance.  These three factors can be put 

together using yields and maintenance coefficients according to the following equation [51] 

 

 
/ /

1 1
= − − − s

p s x s

dS dP dX m X
dt Y dt Y dt

 (17) 

 

Introducing the logistic growth model 3 and the lactic acid production model 11 into equation 17 

and integrating, a model describing the change of sugar concentration with time could be 

obtained.  This equation was used to fit the experimental data using the non-linear least squares 

in order to estimate the parameters Yp/s, Yx/s and ms.  Though the iterative process converged to a 

final solution, the parameters obtained were not realistic (and not significant) and depended on 

the initial values of the estimated parameter.  Similar problems in the estimation of yields and 

maintenance coefficients have been reported before [35,52].  Esener et al. [53] also suggested that 
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the estimation of the maintenance coefficients from batch fermentation data has a considerable 

error.  

 

Based on this it was assumed that the amount of sugar used for cell growth and maintenance was 

considerably smaller than the one used for lactic acid formation, and could therefore be neglected 

in the model.  Though strictly speaking this is not true, this assumption is often made in lactic 

acid fermentations and complex bioprocesses [36,45,54].  A new model can then be obtained to 

describe the consumption of substrate as a function of lactic acid production.  Excluding the 

growth and maintenance terms from equation 17 and integrating with initial conditions S0 and P0 

gives 

 

 ( )0 0
/

1
− = −

p s

S S P P
Y

 (18) 

 

In order to estimate Yp/s (g of lactic acid produced per g of glucose consumed) the glucose and 

lactic acid concentrations were determined at regular time intervals for a number of batch 

cultures.  The results are shown in Figure 5 and indicate that the glucose uptake and lactic acid 

formation are linearly correlated (r = 0.99, F-value = 794.2).  The estimated Yp/s value was 

0.51±0.02 g g-1, which is considerably lower than other reported values for LAB at optimum 

conditions with pH control and nutrition rich media [43,45,55].  Our fermentation media contain 

high amounts of sugars, which mean that the low Yp/s obtained is probably due to the lack of pH 

control.  Low Yp/s values in environments without pH control have been previously reported [42]. 
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Introducing the model for lactic acid production (11) into equation 18 a full model for sugar 

consumption can be obtained 
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Simulations of cereal fermentations 

In order to evaluate the ability of the model to describe the biochemical changes taking place 

during fermentation of L. plantarum, 6 batch cultures in different cereal extracts were monitored.   

The buffering capacity and the reducing sugar content of the media were initially measured.  

Values of relative cell population, sugar concentration, lactic acid concentration and pH were 

used to calculate the primary and secondary parameters at a given time.  The experimental data 

and the values predicted by the models are depicted in Figure 6.  The continuous lines represent 

the predicted values and the points the experimental results.  It is interesting to note that the 

buffering capacity of a particular cereal medium increases with the percentage of cereal extract, 

which is probably associated with an increase in its protein and ash content [56]. 

 

In wheat media (Figure 6A) both the buffering capacity and the initial sugar content were low (S 

= 4.05 g l-1, B = 0.23 mmoles HCl pH-1 l-1), and the predicted cell populations were 15% lower 

than the experimental ones at the end of fermentation.  This is probably due to variables not taken 

into account in the models, e.g. specific nutrient requirements for L. plantarum like peptides or 

aminoacids.  The rest of the variables were appropriately described by the models. 
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In the medium with 5% malt (Figure 6B) the initial sugar concentration and buffering capacity 

were 4.92 g l-1 and 0.23 mmoles HCl pH-1 l-1, respectively.  In this case all variables are properly 

modelled with the exception of lactic acid for which the predicted values are underestimated.  

This could be due to the presence of various fermentable sugars at high levels. 

 

In the fermentations using 30% barley extract (Figure 6C; S = 5.15 g l-1, B = 0.48 mmoles HCl 

pH-1 l-1), 40% barley (Figure 6D; S = 6.30 g l-1, B = 0.55 mmoles HCl pH-1 l-1) and 20% malt 

extract (Figure 6E; S = 18.85 g l-1, B = 0.56 mmoles HCl pH-1 l-1) the predicted relative cell 

populations, lactic acid, sugar concentrations and pH are in accordance with the experimental 

data.  The model slightly underestimated the lactic acid production in the 20% malt medium 

(Figure 6E). 

 

When citric acid was added (Figure 6F; 30% barley with 2.2 g l-1 of citric acid) L. plantarum 

growth increased as well as the lactic acid production (when compared to Figure 6C, 30% barley 

only).  This could be attributed to the increased buffering capacity of the medium (0.48 to 0.97 

mmoles HCl pH-1 l-1), which was also the reason for the higher final pH value (approximately 1 

unit higher than in Figure 6C).  In this case sugar concentration and pH are well described by the 

models but relative cell populations and lactic acid are slightly underestimated. 

 

Conclusions 

In this study a model was developed to predict the kinetics of cell growth, lactic acid production, 

pH drop and sugar consumption in non pH-controlled cultures of L. plantarum as a function of 

the initial sugar concentration and the buffering capacity.  The model included four differential 
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equations with parameters that were estimated using non-linear regression analysis. Secondary 

modelling of the derived parameters showed that the maximum specific growth rate (µm) and the 

relative maximum cell concentration (A) depends on buffering capacity and sugar concentration. 

The effect of the sugar could be described assuming Monod kinetics, while for the effect of the 

buffering capacity a linear relationship was used. The lag phase (λ) was modelled as the inverse 

of the maximum specific growth rate. The growth associated lactic acid production parameter αp 

was constant, while the non-growth associated production parameter βp was a linear function of 

buffering capacity.  Parameter k, expressing the constant of lactic acid dissociation to hydrogen 

ions, depends on the buffering capacity while the minimum pH parameter (pHmin) was constant. 

The yield of lactic acid on sugar (Yp/s) did not depend on sugar or buffering capacity. 

 

The results from the validation studies indicate that the model could adequately describe the 

biochemical changes during L. plantarum growth in these cereal media with a relatively high 

buffering capacity, though in some cases the lactic acid and the relative cell populations were 

slightly underestimated. From an industrial point of view, this study is a first step for the 

production of new cereal-based functional foods using media with high concentrations of malt, 

barley and wheat extracts. Our work established a set of equations useful in the optimization of 

the cultures defined with the purpose of a large-scale production of potentially probiotic 

beverages. However, more studies are needed in order to determine if the proposed fermentation 

media exerts some protective effects in the human gut. 
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FIGURE CAPTIONS 

 

Figure 1: Maximum specific growth rate (µm) as a function of the initial glucose concentration of 

the medium (up) and as a function of the buffering capacity (down). The data points for µm are 

obtained from Table 3.  

 

Figure 2: Maximum relative cell concentration (A) as a function of the initial glucose 

concentration of the medium (up) and as a function of the buffering capacity (down). The data 

points for µm are obtained from Table 3.  

 

Figure 3: µmλ as a function of µm. The data points are obtained from Table 3.  

 

Figure 4: Parameter k as a function of buffering capacity.  

 

Figure 5: S0-S as a function of P-P0. The data points are obtained from 5 batch cultures. 

 

Figure 6: Experimental data (symbols) and model predictions (lines) for L. plantarum in: (A) 

20% wheat extract; (B) 5% malt extract; (C) 30% barley extract; (D) 40% barley extract; (E) 20% 

malt extract; and (F) 30% barley extract with 2.2 g l-1 citric acid. X (), relative cell 

concentration; L (), lactic acid concentration; pH () and S (), sugar concentration. 
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TABLE CAPTIONS 

 

Table 1: Composition of the synthetic media used for the development of the model. 

 

Table 2: Notation used with units. 

 

Table 3: Optimum parameter values for the logistic model 3 describing L. plantarum growth in 

synthetic media of different buffering capacity and glucose concentration. The values are the 

means with the corresponding confidence intervals (α = 0.05). F-values are the results of the F-

Fisher test (α = 0.05) for 3 model degrees freedom and 21-30 error degrees freedom. r = 

correlation coefficient between observed and predicted data. 

 

Table 4: Parameters for the secondary models expressing µm and A as a function of sugar 

concentration and buffering capacity. CI = confidence intervals (α = 0.05). F-values are the 

results of the F-Fisher test (α = 0.05) for 2 model degrees freedom and 6-8 error degrees 

freedom. r = correlation coefficient between observed and predicted data. 

 

Table 5: Optimum parameters for equation 14 describing lactic acid production during L. 

plantarum growth in synthetic media of different buffering capacity and sugar concentration. The 

values are the means with the corresponding confidence intervals (α = 0.05). F-values are the 

results of the F-Fisher test (α = 0.05) for 2 model degrees freedom and 6-12 error degrees 

freedom. r = correlation coefficient between observed and predicted data. NS = not significant. 
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FIGURES 
 
 
Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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TABLES 
 
 
Table 1 
 
     
Controlling factor Nutrients concentrations a     
Buffering capacity (mmoles HCl pH-1 l-1): 0.22, 0.26, 0.39, 0.44, 

0.53, 0.70, 0.92, 1.09 

FAN: 150 mg l-1 

Glucose: 20 g l-1 

Glucose concentrations (g l-1): 0, 1.2, 3, 4, 6, 8, 10, 15, 20 FAN: 150 mg l-1 

Buffering capacity: 1.09 mmoles HCl pH-1 l-1     
a All the media contained 5 g l-1 of yeast extract, 2 g l-1 Lab Lemco, 0.03 g l-1 MnSO4.4H2O, 0.1 g l-1 MgSO4.7H2O 

and 1 ml l-1 Tween 80.   
 
 



 

 39 

 
Table 2 
 
 
     

X : Biomass as relative cell population, dimensionless (log10(N/N0)) 
t : Time, h 
N : Cell concentration, cfu ml-1 
N0 : Initial cell concentration, cfu ml-1 
µm : Maximum specific growth rate, h-1 
λ  : Growth lag phase, h 
A : Maximum relative cell population, log10(N/N0)max 
µoptS : Maximum specific growth rate at the optimum sugar concentration, h-1 
KS : Half-saturation constant, g l-1 
S : Sugar concentration, g l-1 
S0 : Initial sugar concentration, g l-1 
B : Buffer capacity, mmoles HCI pH-1 l-1 
α1 : Regresion parameter, dimensionless 
β1 : Regresion parameter, pH l mmoles-1 HCI 
µopt : Maximum specific growth rate at the conditions where S and B are at their optimum, h-1 
AoptS : Maximum A value at the optimal glucose concentration, dimensionless 
K´S : Half-saturation constant, g l-1 
AoptB : Maximum A value at the optimal buffer capacity, dimensionless 
α2 : Regresion parameter, dimensionless 
β2 : Regresion parameter, pH l mmoles-1 HCI 
c2 : Regresion parameter, pH2 l2 mmoles-2 HCI 
Aopt : Maximum A value at the conditions where S and B are at their optimum, dimensionless 
α3 : Regresion parameter, dimensionless 
β3 : Regresion parameter, h 
P : Lactic acid concentration, g l-1 
P0 : Initial lactic acid concentration, g l-1 
αp : Growth associated constant, g lactic acid (log10(N/N0))-1 l-1 
β3 : Non-growth associated constant, g lactic acid (log10(N/N0))-1 l-1 h-1 
k : Constant, g l-1 
Yp/s : Yield of lactic acid production on substrate, g (lactic acid) g-1 (sugar) 
Yx/s : Relative cell population yield on substrate, log10(N/N0) g-1 (sugar) l 
ms : Relative cell maintenance coefficient, g (sugar) l-1 [log10(N/N0)] -1 h-1   
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Table 3 
 
               
Buffering capacity µm A λ Data points F-value r               

0.22 0.182±0.026 2.125±0.102 3.008±0.840 33 1101.2 0.988 

0.26 0.210±0.035 2.420±0.122 3.293±0.955 24 955.4 0.991 

0.39 0.242±0.052 2.784±0.181 3.346±1.231 24 570.3 0.984 

0.44 0.269±0.038 2.845±0.129 3.274±0.805 33 1155.6 0.989 

0.53 0.291±0.044 2.928±0.144 3.121±0.837 33 1025.1 0.987 

0.70 0.375±0.067 2.958±0.164 3.367±0.830 33 829.2 0.983 

0.92 0.450±0.044 3.031±0.083 3.550±0.382 33 3664.9 0.996 

1.09 0.612±0.087 3.109±0.084 3.943±0.418 33 2921.0 0.995               
Sugar µm A λ Data points F-value r               

0 0.061±0.023 0.367±0.031 2.063±1.258 10 392.6 0.991 

1 0.211±0.077 0.925±0.051 2.520±0.895 30 615.2 0.970 

2 0.399±0.088 1.403±0.045 2.891±0.394 25 1766.9 0.992 

3 0.456±0.062 2.232±0.049 3.033±0.363 33 3915.9 0.995 

4 0.589±0.141 2.394±0.088 3.564±0.504 29 1395.2 0.990 

6 0.641±0.047 3.067±0.044 3.845±0.193 29 10040.5 0.999 

8 0.597±0.063 3.214±0.074 3.772±0.331 29 3995.3 0.997 

10 0.625±0.043 3.208±0.046 3.845±0.203 27 9785.6 0.999 

15 0.586±0.054 3.259±0.067 3.829±0.309 42 4908.3 0.996 

20 0.612±0.087 3.109±0.084 3.943±0.418 33 2921.0 0.995        
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Table 4 
 
             
Controlling factor Equation Parameter Value ± CI F-value r             
Glucose 4 µoptS (h-1) 0.703±0.099 405.0 0.965 

  Ks (g l-1) 1.482±0.963               
Buffering capacity 5 µoptB (h-1), from table 2 0.612±0.087 623.04 0.983 

  α1  0.540±0.041   

  β1 (pH l mmoles-1 HCl) 0.745±0.138               
Glucose Similar to 4 AoptS 3.893±0.632 429.9 0.973 

  K´s (g l-1) 2.519±1.420               
Buffering capacity 8 AoptB , from table 2 3.109±0.084 1378.2 0.951 

  α2  0.949±0.056   

  β2 (pH l mmoles-1 HCl) 0.391±0.147   

  c2 (pH2 l2 mmoles-2 

HCl) 

-0.661±0.508   
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Table 5 
 
 
             

Buffering capacity αp βp Data points F-value r             
0.22 0.781±0.081 0.022±0.005 14 1623.7 0.994 

0.26 0.691±0.062 0.021±0.004 14 2757.3 0.997 

0.39 0.747±0.086 0.014±0.005 12 1257.0 0.996 

0.44 0.643±0.074 0.023±0.005 14 2220.4 0.997 

0.53 0.841±0.078 0.006±0.005 13 1340.6 0.994 

0.70 0.722±0.075 0.016±0.005 13 1638.0 0.997 

0.92 0.713±0.074 0.023±0.005 13 1736.4 0.996 

1.09 0.752±0.032 0.021±0.002 13 8316.2 0.999             
Sugar αp βp Data points F-value r             

1 0.420±0.092 0.000 (NS) 8 119.6 0.963 

2 0.702±0.060 0.000 (NS) 10 1049.4 0.991 

3 0.707±0.019 0.003±0.001 10 9817.6 0.999 

4 0.667±0.170 -0.001 (NS) 10 114.0 0.981 

6 0.720±0.049 0.007±0.003 11 2236.2 0.997 

8 0.745±0.145 0.013±0.008 11 341.5 0.985 

10 0.822±0.103 0.012±0.006 11 705.1 0.993 

15 0.715±0.123 0.015±0.007 10 489.7 0.990 

20 0.752±0.032 0.021±0.002 13 8316.2 0.999       
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