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Abstract

A large  n u m ber  of  flexible  polymer  solar  m o d ules  com prising  16  serially connected  

individual  cells  were  p repared  at  t he  experimental  workshop  a t  Risø  DTU.  The  

p ho toactive  layer  was  p repared  fro m  several  varieties  of  P3HT  (Merck,  Plextronics,  

BASF and  Rieke) an d  two varieties  of  ZnO (nanopar ticulate, t hin  film) were  e m ployed  

as  electron  t rans por t  layers.  The  devices  were  all  tes ted  a t  Risø  DTU  and  the  

functional  devices  were  subjected  to  an  inter - laboratory  s t u dy  involving  the  

perfor mance  and  the  s tability  of  t he  m o d ules  over  time  in  t he  dark,  u n der  light  

soaking  an d  ou tdoor  conditions.  24  laboratories  fro m  10  coun t ries  and  across  4  

differen t  continents  were  involved  in  t he  s tu dies.  The  repor ted  resul ts  allowed  

analyzing the  variability of  different  groups  in perfor ming lifetime s tu dies  as  well as  

perfor ming  a  com parison  of  different  tes ting  p rocedures.  These  s tu dies  cons titu te  

t he  firs t  s teps  towards  es tablishing  s tandard  p rocedures  for  OPV  lifetime  

characteriza tion.  

Keywords: round  robin,  inter  laboratory  study,  poly mer  solar  cells,  flexible  m odules,  

outdoor testing, R2R m a n ufactured OPV.

2

mailto:frkr@risoe.dtu.dk


1.1 Introduction

Round  robins  (RR) an d  inter - laboratory  s tu dies  (ILS) are  u seful  me thods  to  reach  a  

consensus  on  solar  cell  perfor mance.  This  has  been  em ployed  recen tly  for  polymer  

solar  cells  [1] and  in  t he  pas t  for  inorganic solar  cells  [2 - 9]. Further more, RR and  ILS 

can  help  in  es tablishing  s tan dard  p rocedures  for  accura te  quan tification  of  device  

perfor mance. In t he  case  of  polymer  solar  cells  t ha t  p resen t  a  dyna mic res ponse  an d  

often  p ronou nced  degrada tive  behavior  [10]  it  is  of  impor tance  to  evaluate  t he  

s tability  of  t hese  devices  an d  gain  consens us  on  what  s tability  m eans,  how  it  is  

observed  an d  how  it  is  quan tified.  The  organic p ho tovoltaics  (OPV) com m u nity  does  

m ake  u se  of  calibra tion  laboratories,  such  as  NREL  (US)  an d  Fraunhofer  ISE 

(Germany), for  s tandardized  efficiency meas ure men ts  bu t  t here is an  u rgent  need  for  

interna tionally  accepted  ageing  an d  tes t  p rocedures  and  it  is  desirable  to  develop  

an d  m aintain  so me  s tan dard  p rocedures  for  m eas uring and  repor ting the  s tability of  

OPV devices.  Further more,  flexible  roll - to - roll  (R2R) p rocessed  solar  cells  represent  

t he  m os t  feasible  scale - u p  rou te  for  t he  polymer  solar  technology  an d  it  is  t hus  of  

interes t  to  investigate  t he  s tability of  such  devices  u n der  a  variety of  conditions  an d  

ou t door  climates.  The  two  International  Sum mits  on  Organic  Photovoltaic  Stability  

(ISOS -1  and  ISOS -2) have  a t te m p te d  on  es tablishing  s tan dard  p ro tocols  for  lifetime  

tes t s  [11]  and  ISOS -3  is  u n derway.  An  inter - laboratory  s tability  s t u dy  p rovides  a  

powerful  rou te  to  simultaneously  gain  insight  into  t he  variance  between  s tability  

meas ure ment s  u n der  a  se t  of  conditions  in  various  laboratories  an d  can  explore  t he  

effect  of a  wide range of tes ting conditions  and  m a terials. 
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In t his  repor t  we de tail t he  results  of  s uch  an  inter - laboratory  s t u dy  of  flexible  R2R  

p rocessed  polymer  solar  cells  with  various  layer  s t r uctu res  t ha t  were  p repared  in  

one  location  an d  dis t ributed  to  a  m ul titude  of  laboratories  where  shelf  life  an d  light  

soak  s tability  tes t s  were  carried  ou t  u n der  p re - de ter mined  conditions.  In  ad dition,  

ou t door  exposure  tes ting  was  also  included  to  p rovide  additional  insight  into  t he  

realistic  s tability  of  t he  cells.  Based  on  the  da ta  tha t  were  collected  we  evalua te  t he  

curren t  s ta tus  of  s tandardiza tion  between  differen t  laboratories  involved  with  

polymer  solar  cell  research  an d  correlate  da ta  fro m  tes ting  u n der  simulated  an d  

s tability tes ting an d  s tability in actual ou t door  conditions. 

1.2 Experimental procedure and methodology

1.2.1 Manufacture of poly mer solar cells

The  m a n ufactu red  devices  ha d  the  following  s t ructu re:  PET/ITO /Elect ron  

Trans por ting Layer  (ETL)/Active Layer /PEDOT:PSS/Ag pas te. The types  of  ETL as  well  

as  t he  types  of  polymers  u sed  in  a  bulk  mixture  with  PCBM for  ac tive  layers  are  

p resented  in  Table  1.  Four  different  device  variations  were  p ro duced,  as  listed  in  

Table 1.

Table 1. Active polymer  an d  electron  t rans por t  layer for  various  m o d ule types.

Module Type Active Material Electron  Trans por t  Layer
RN Risø DTU P3HT Nanopar ticulate ZnO
ST Sepiolid  P3HT Thin film ZnO
PN Plextronics P3HT Nanopar ticulate ZnO
MN Merck P3HT Nanopar ticulate ZnO
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PET /ITO: The  flexible  subs t ra te  com prised  ITO covered  poly(ethylene  tereph thalate)  

(PET) (130  µ m)  in  rolls  having  a  roll  width  of  305  m m  and  a  length  of  100  m.  The  

no minal  sheet  resistance  was  60   Ω square - 1. The  desired  s t riped  pa t tern  of  t he  ITO 

was p repared  by p rin ting a UV-curable etch  resis t  in t he  areas  of t he  ITO pa t tern  in a  

full R2R process. The ITO was  s ubsequen tly etched  u sing  a  full R2R etching m achine  

com prising  etching  baths  (CuCl2),  s t ripping  baths  (NaOH),  washing  baths  

(demineralised  water) an d  d rying sections  (hot  air). The  thickness  of  t he  ITO was  80  

n m. The p rocess  has  been  described  earlier  [12].

ZnO :  Zinc  oxide  nano par ticles  (ZnO  n p)  were  p repared  in  acetone  solu tion  an d  

s tabilized  with  me thoxyethoxyacetic  acid  (MEA). The  p repara tion  of  t hin  film  ZnO  

was  included  in t his  effor t  as  it p resen t  devices withou t  an  inflection  poin t  in t he  IV-

curve  [14]. The  ZnO  layer  was  ap plied  u sing  a  m o dified  slot - die  coating  p rocedure  

[13]. The films  were coated  with  a  wet  layer t hickness  of ~ 5  micron  a t  a  s peed  of 2  m  

min - 1. The d rying te m pera tu re  was 140 oC (~30  second  d rying time).

Active  Layer : Four  polymers  p resented  in  t he  table  1  were  em ployed:  Sepiolid  P200  

P3HT p urchased  fro m  BASF; Plextronics  P3HT p rovided  by  Plextronics; Merck  P3HT  

p rovided  by Merck. The Risø DTU P3HT was  ho me  m a de. Polymers  were  dissolved  in  

chloroben zene  followed  by  addition  of  PCBM. A final  concentra tion  of  22  mg  mL - 1  

P3HT an d  20  mg  mL - 1 PCBM was  e m ployed.  The  films  were  coated  with  a  wet  layer  

t hickness  of  ~ 8  micron  a t  a  s peed  of 2  m  min - 1. The d rying te m pera tu re  was  140  oC 

(~30  second  d rying time).
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PEDOT:PSS: PEDOT:PSS was p u rchased  as  a  screen  p rin ting pas te  fro m  Agfa (Orgacon  

EL-P 5010). It was  diluted  with  isopropanol (1000 g PEDOT:PSS was mixed  with  500 g  

isopropanol)  an d  s haken  vigorously  for  1  h.  The  viscosity  was  aroun d  200  mPa  s.  

Wetting  of  t he  su rface  of  t he  active  layer  p rior  to  PEDOT:PSS coating  improves  the  

wet ting  an d  coating.  PEDOT:PSS  was  d ried  a t  te m pera tu res  u p  to  140  oC  with  a  

residence time in t he  oven of aroun d  5  min. 

Printed  silver  electrode :  The  silver  elect rode  was  a  UV-curing  type  [15]  t hat  was  

screen  p rin ted  on  a  flat  bed  screen  p rin ter  with  a  120  mes h  screen  having  the  

desired  pa t tern  that  with  a  s mall  ou tline  an d  16  serially  connected  cells  described  

earlier  [16].

Encapsulation,  contacting  and  cutting  of  the  m odules :  The  encaps ula tion  was  

achieved  by  cold  lamina tion  of  a  bar rier  foil  carrying  an  adhesive  on  both  sides  of  

t he  com pleted  solar  cell. The  barrier  on  the  back  side  was  m a de  s uch  tha t  a  par t  of  

t he  p rin ted  silver  elect rode  was  exposed.  This  served  two  p u r poses.  Firstly,  it  

enables  reliable  contacting  and  secondly  it  will  allow  for  t he  cells  to  exhibit  so me  

degrada tion  over  t he  course  of  t his  experiment. The m o d ules  were  cut  m a n ually into  

individual  devices  and  bu t ton  con tact s  were  ap plied  using  an  au to mated  m achine.  

All s teps  an d  m achinery has  been  de tailed  earlier [15].

Module  Geo metry :  The  geometric  sizes  of  each  m o d ule  were  12  cm  x  8,5  cm.  The  

active area was com prised  of 16  serially connected  s t ripes  with  to tal area of 35.5 cm 2 

to  be illuminated. Figure 1  s hows the  sketch  of t he  m o d ule.
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Figure  1.  The  sketch  of  t he  m o d ule  fron t  side.  The  dimensions  of  t he  m o d ule  are  

s hown as  well.

1.2.2 Inflection point

It  has  been  p reviously  observed  that  R2R cells  p roduced  u sing  the  nanopar ticula te  

ZnO  ink  exhibit  significant  s tability  issues  d ue  to  an  “inflection  poin t”  in  t he  I -V 

curve,  which  is  developed  af ter  dark  s torage  (s - sha pe d  curves).  The  inflection  is  

so metimes  observed  im mediately  af ter  p ro duction,  an d  so metimes  ap pears  only  

af ter  several  days / weeks  of  dark  s torage  [14]. It  was  discovered  that  t his  inflection  

poin t  can  be  re moved  via a  p ho to - annealing p rocess  in which  the  cells  are  left  un der  

illumination  for  15 - 60  minu tes.  Although  this  p heno menon  is  no t  en tirely  

u n ders tood,  t he  role  of  ZnO p ho tocon ductivity  is  known  to  be  critical,  and  thus  by  

u sing  light  sources  with  higher  UV (<390n m)  conten ts  t he  p ho to - annealing  occurs  

fas ter.  Figure  2a  shows  the  recovery  of  IV curves  d u ring  the  p ho to - annealing  of  the  

cell  and  Figure  2b  s hows  the  p ho tovoltaic  para meters’ dyna mic  behavior  along  the  
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time  d uring  the  p ho to - annealing.  The  inflection  poin t  was  s tu died  in  detail  and  

repor ted  by Lilliedal et  al. [14]. 

The  groups  that  would  u n der take  the  fur ther  degrada tion  s tu dies  of  t he  cells  were  

advised  to  p ho to - anneal  t he  m o d ules  af ter  receiving  the m  in  order  to  res tore  t heir  

op timal  perfor mance.  The  dyna mics  of  t he  recovery  is  highly  sensi tive  to  t he  UV 

con ten t  below 390n m, an d  thus  if t he  illumination  source is filtered  in t his  range the  

observations  m ay  vary  significantly.  Thus,  t he  m o d ules  perfor ma nce  can  vary  

no ticeably based  on  the  UV conten t  of  t he  light  u sed.  The  grou ps  were  also  advised  

to  record  an d  repor t  t he  s pectral dis tributions  of t heir  light  sources.
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Figure  2.  (a) Evolution  of  IV-curves  d uring  p ho to - annealing  of  t he  device a t  1000  W 
m - 2 , 85  ±  5  oC. Red is taken  a t  t 0, blue af ter  10  min., green  after  40  min. Dyna mics of  
pv  para meters  d u ring  p ho to - annealing. Colors  in  (a) corres pon d  to  times  m arked  in  
(b) (reprin ted  with  per mission  fro m  Elsevier).

1.2.3 Module selection and  package distribution a mong  groups

The  perfor mance  of  all m o d ules  was  firs t  recorded  u sing  a  R2R m eas ure ment  se tu p  

[15].  The  se tup  is  known  to  deviate  slightly  fro m  m eas ure ment s  out doors  d ue  to  

s pect ral  mis ma tch  and  inaccuracies  in calibra tion  of  intensity, and  considerable time  
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passed  between  R2R  characteriza tion  and  fur ther  calibra ted  measure ments.  

However, t he  se tup  allows  for  rapid  characteriza tion  of  a  large  n u m ber  of  cells, an d  

its  resul ts  are  s till  com paratively  u seful.  The  da ta  was  u sed  to  select  functional  

m o d ules,  and  es timate  t ha t  all  m o d ules  should  be  in  a  cer tain  power  conversion  

efficiency range of ±  0.3 %. 

Ideally  t he  perfor mance  of  all  m o d ules  would  have  been  recorded  un der  carefully  

calibra ted  conditions;  however,  t he  a moun t  of  time  needed  to  do  this  was  dee med  

impractical for  such  a  large  s tu dy, and  thus  only one  cell pe r  package  (to  be  sen t  to  

each of t he  par ticipating laboratories) was carefully measured  u n der  both  indoor  and  

ou t door  tes t  conditions.  Secure  contacts  were  a t tached  by  placing  a  bu t ton  con tact  

on  the  elect rodes  of  each  device. Previous  s t u dies  a t  Risø  DTU have  shown  tha t  t his  

is  u sually s ufficient  to  ensure  contact  t h roughout  t he  lifetime  of  t he  cell. A to tal  of  

340  m o d ules  were  dis t ributed  to  a  to tal  of  24  groups.  The  m o d ules  were  

p re packaged  into  9  sa m ples  for  s tandard  an d  18  sa m ples  for  extended  packages,  

placed  in bubble  wrap  envelopes  and  shipped  to  t he  groups  u sing  ordinary UPS m ail  

service. The packages  also included  the  necessary ins t ructions  for tes ting p rocedures  

an d  a  laser  cut  black  cardboard  m a sk  for  m asking  the  calibra ted  m o d ule  p rior  to  

meas ure ment.  The  sa m ples  were  s hipped  on  the  19 th  of  May 2010  an d  received  on  

the  24 th  of  May 2010.  An  email  with  a  descrip tion  of  t he  ILS s tability  s tu dies  an d  a  

reques t  of  par ticipation  was  sent  to  t he  lis t  of  par ticipan ts  of  t he  ISOS-3  conference.  

The  laboratories  t ha t  confirmed  the  par ticipation  in  t he  s t u dies  received  a  package  
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of  m o d ules  for  tes ting.  The  s ta r ting  da te  of  t he  experiment s  was  se t  to  t he  28 t h of 

May 2010 and  the  s tu dies  were scheduled  to  be com pleted  on  the  15 t h of  July 2010.   

1.2.4  Test procedures

Several  s tan dardized  tes ting  p rocedures  developed  based  on  the  p roceedings  of  

ISOS -1 /ISOS - 2  were  dis t ributed  along  with  the  cells  [17]. It  was  also  sugges ted  tha t  

t he  par ticipating  laboratories  perfor med  and  repor ted  any  additional  tes t s  which  

they considered  interes ting. The s tan dards  were  sim plified  in so me  cases  in order  to  

meet  t he  capabilities of a  wider  range of OPV research  groups. The shor t  s u m m ary of  

differen t  p rocedures  of  tes ting  is  su m m arized  in  t he  table 2  in  t his  pa ragraph, while  

m ore  de tailed  discussions  follow  in  the  fur ther  sections.  Three  basic  types  of  

meas ure ment s  were  chosen,  which  involve  s helf  life  s tu dies  T1,  light  soaking  in  

indoor  conditions  T2  and  ou t door  s tu dies  u n der  real  s un  T3.  T1  and  T3  were  

additionally s plit  to  A an d  B categories m aking it to tal of five tes ting p rocedures.   

Table 2. Shor t  Sum mary of five s tability tes ting p rocedures.

Test  ID T1 T1 T2 T3 T3
Descrip tion Shelf Life A Shelf Life B Light  Soak Outdoor  A Outdoor  B
Light None None 0,6 to  1  s un    Stored  a mbient, 

measured  
Outdoor

Stored  a mbient, 
measured  
Indoor

Temperature Ambient Cont rolled, 30  
– 50  oC

Controlled, 
30  – 50  oC

Ambient Ambient

Hu midity Ambient (Controlled) (Controlled) Ambient Ambient
Environ ment Drawer Cha mber /Dry 

Oven
(Light  
soaking 
cham ber)

Ambient Ambient

Logging 
Interval

1  day to  1  
week

1 day to  1  
week

1 min  – 15  
min

15 min  – 1  day 1 day to  1  week

Load None None None None None
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1.2.4.1 Calibrated Module Testing

As  p reviously  m e ntioned  each  package  contained  one  m o d ule,  which  was  carefully  

meas ured  u n der  bo th  indoor  and  ou t door  conditions  a t  Risø  DTU p rior  to  s hipping.  

Only the  ST type  m o d ules  (see  table 1) were  chosen  for  calibra tion  s t u dies. The  cells  

were  m asked  u sing  laser cut m ask  with  an  apertu re  of  7.4 x 7.9  cm‐ 2 in  order  to  limit  

illumination  to  t he  active  area.  The  no minal  active  area  of  t he  cells  was  35.5  cm 2. 

Cells  were  tes ted  u n der  indoor  conditions  u sing  a  KHS solar  cons tan t  575  solar  

sim ulator  which  was  calibra ted  to  an  intensi ty  of  1000  W m - 2 u sing  a  pyrano meter  

m o u nte d  on  the  tes t  platfor m.  The  te m peratu re  was  m o nitored  d uring  tes ting  u sing  

a t her mocouple. No active cooling was u sed. A p ho tograph  of t he  tes t  setu p  is shown  

in  Figure  3.  Cells  were  placed  u n der  t he  sun  for  ap proximately  5  minu tes  while  t he  

te m peratu re  s tabilized.  The  device  te m perature  varied  between  ~ 8 0  ±  5  oC and  was  

recorde d  a t  t he  beginning of each  scan. Scans  were  taken  fro m  - 1  to  10  V a t  a  sweep  

ra te  of  100  mV / s  an d  a  s tep  s peed  of  100  m s  (scan  time  of  11  s),  and  repeated  5  

times  to  ensure  t ha t  t he  perfor ma nce  was  s table.  After  t he  final  scan  the  cell  was  

covered  and  a dark  scan  was taken. 
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Figure  3. Measure ment  se tup  u sed  for  indoor  tes ting  including  pyrano meter  (dome  
in back) and  ther mocouple (white wire).

The  5  files  were  com piled  an d  su m marized  to  include  s tandard  er ror  for  each  

para meter,  te m peratu re,  and  curren t.  Outdoor  tes ting  was  cond ucted  by  m o u n ting  

the  m asked  cells  on  a  black  piece  of  cardboard  backing which  was  placed  on  a  solar  

t racker. The intensity of solar  illumination  was m easured  u sing a  bolometer  a t tached  

to  t he  solar  t racker, and  te m pera ture  was  m o ni tored  by a t taching a  t her mocou ple to  

t he  back  of  a  reference  cell. The te m pera tu re  varied  between  22 - 28  oC de pen ding on  

wind  s peed,  orienta tion  an d  illumina tion.  IV scans  were  recorded  u n der  t he  sa me  

conditions  as  d u ring  indoor  tes ting,  bu t  were  only  repeated  once  d ue  to  lack  of  

cons tan t  solar  flux.  The  m eas ure ment s  were  taken  on  a  cloudy  day,  an d  thus  the  

intensity  is  a t  times  slightly  over  960  W m - 2 d ue  to   reflections  fro m  clouds  in  t he  

u p per  half  s pace  viewed  by  the  solar  cell. This  also  contribu ted  to  so me  u ncer tain ty  

in  t he  solar  flux,  as  it  of ten  changed  to  so me  exten t  (±  20  W  m - 2)  d uring 

meas ure ment s. The characteriza tions  of t he  m o d ules  u n der  both  indoor  an d  ou t door  

conditions  were  perfor med  fro m  12  to  17  of  May  2010  an d  the  packages  were  

13



s hipped  to  t he  recipient  labs  on  the  19 t h of  May 2010. The groups  were  ins t ructed  to  

meas ure  the  calibra ted  m o d ules  with  a  m a sk  u n der  a  calibra ted  light  source  p rior  to  

degrada tion  s t u dies an d  repor t  t he  p ho tovoltaic para meters.  

1.2.4.2 Shelf - life Testing Procedures T1A&B

Shelf - life tes ts  were  perfor me d  by leaving the  m o d ules  in  t he  dark  in  either  a mbient  

conditions  (T1A)  or  in  con trolled  te m perature / h u midity  cha mbers  (T1B).  The  

p rocedures  recom men de d  to  t he  grou ps  for  T1 A&B are p resented  in table3.

Table 3. Testing p ro tocol for  T1A and  T1B s helf life s tu dies.
T1A T1B

• Store  in  da rk,  a mbient  conditions  
between tes ting (drawer will suffice)*

• Tem peratu re  of  s torage ambient
• RH of s torage am bient
• Devices Open  circuited
• PV  Characteriza tion  u n der  AM1.5  Solar  

simulator  with  1  su n  intensity
• Place  the  solar  cell  u n der  t he  sim ulator  

for  1  min  with  open  circuit  p rior  to  
measure men ts.

• Record  the  tem pera tu re  d u ring  the  
measure men t

• Record  the  I - V curves fro m  - 2  V to  + 1 0  V 
in  s teps  of  100  mV  at  a  s peed  of  10  m s  
per  s tep  if  possible  (The  I -V  curve  
measure men t  could  be  repeated  to  
es tablish  if t he  readings are consis ten t)

• Measuring  interval  1  time / d ay  for  firs t  5  
days,  an d  every  100  hr  or  weekly 
thereaf ter

• While  m easuring  m ake  s ure  t hat  devices  
are  illumina ted  u nifor mly  or  repor t  any  
non - u nifor m  illumination

• (Measuring IPCE)

• Store  in  da rk,  in  cha mber  with  cont rolled  
conditions  between  tes ting.  Conditions  
defined  by the  experimenter

• Recom men ded  Tem peratu res  of  s torage  40  
–  50  oC  (approximate  cell  te m p  d uring  
illu mination)

• Controlled  RH of s torage within 30  – 60  %
• Device open  circuited
• PV  Characteriza tion  u n der  AM1.5  Solar  

simulator  with  1  su n  intensity
• Record  the  I - V curves  fro m  - 2  V to  + 1 0  V 

in s teps  of 100  mV at  a  speed  of  10  m s  per  
s tep  if  possible  (The  I -V  curve  
measure men t  could  be  repeated  to  
es tablish  if t he  readings are consis ten t)

•  Measuring  interval  1  time / d ay  for  firs t  5  
days,  an d  every  100  hr  or  weekly 
thereaf ter. Adap t  to  specific experimen ts  if  
necessary. 

• While  m easuring  m ake  s ure  t hat  devices  
are  illu minated  u nifor mly  or  repor t  any  
non - u nifor m  illumination

• (Measuring IPCE)
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* Ambient  conditions  are assu me d  to  be indoor  con di tions  (20 - 25  oC, 30 - 40% RH)

1.2.4.3 Light soak Testing Procedures

Light  soaking was perfor me d  by placing the  m o d ules  u n der  simulated  sunlight  u n der  

indoor  conditions.  The  m o d ules  were  either  s tored  u n der  t he  illuminated  conditions  

an d  meas ured  con tinuously  or  were  taken  ou t  and  m easured  u n der  calibrated  su n  

sim ulators.  The  p rocedures  reco m men ded  to  t he  grou ps  for  carrying  out  T2  s tu dies  

are p resented  in table 4.

Table 4. Testing p ro tocol for  T2 light  soaking s t u dies.

T2
• Store u n der  illu mina tion  a t  an  intensity close to  t hat  of 1  su n.
• Tem peratu re  range 40  – 50  oC
• RH within 30  – 60  %
• Device open  circuited  while not  measured
• Record  the  I - V curves  fro m  - 2  V to  + 1 0  V in  s teps  of  100  mV at  a  speed  of  10  m s  per  s tep  if  

possible  (The  I -V  curve  meas ure men t  could  be  repeated  to  es tablish  if  t he  readings  are  
consis ten t)

• Measuring interval 1  min  to  15  min  or  t he  shor tes t  interval possible
• While m easuring m ake  s ure  t hat  t he  device is illu minated  u nifor mly or  repor t  any no n u nifor m  

illu mination
• (Measuring IPCE)

1.2.4.4 Outdoor Testing Procedures (T3A&B)

Outdoor  exposure  tes ting  was  cond ucted  by  s toring  the  m o d ules  ou t door.  Ideally  

t his  could  be  done  by placing the  m o d ules  on  a  solar  t racker  such  that  t hey received  

a  m axim u m  solar  irradiance;  however,  simple  m o u n ting  of  t he  m o d ules  on  a  
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rooftops  or  s tan d  s till  pla tfor m s  tilted  ap proximately  to  t he  lati tude  could  also  

s uffice.  The  m o d ules  were  tes ted  either  by  directly  u sing  the  ou t door  illumination  

along with  an  ou t door  contacting  se tu p  (T1A), or  by bringing the  cells  indoors  (daily  

or  weekly)  and  tes ting  the m  u n der  calibra ted  light  source  (T1B).   The  geographic  

location  is  considered  to  be  of  impor tance  for  t hese  m eas ure ments  as  it  will  

de ter mine the  general climate. The following p rotocols were  sugges ted  to  t he  grou ps  

for  t he  tes t:

Table 5. Testing p ro tocols for  T3A an d  T3B ou t door  s tudies

T1A T1B
• Store devices  out doors  a t  all times
• Tem peratu re  range am bient
• RH range a mbient
• Device open  circuited  while not  measured
• PV  characteriza tion  in  out doors  u n der  

good  illu mination.  Illumination  intensity  
has  to  be  measured  while  t he  cells  are  
characterized

• Record  the  I - V curves  fro m  - 2  V to  + 1 0  V 
in  s teps  of  100  mV  at  a  s peed  of  10  m s  
per  s tep  if  possible  (The  I -V  curve  
measure men t  could  be  repeated  to  
es tablish  if t he  readings are consis ten t)

• Measuring  interval  15  min  to  1  day  or  t he  
shor tes t  interval possible

• While  measuring  m ake  su re  t hat  t he  
device  is  illumina ted  u nifor mly  or  repor t  
any non u nifor m  illu mination

• (Measuring IPCE)

• Store  devices  out doors  a t  all  times  no t  
measured

• Tem peratu re  range am bient
• RH range a mbient
• Device open  circuited  while not  measured
• PV  Characteriza tion  u n der  AM1.5  Solar  

simulator  with  1  su n  intensity
• Record  the  I - V curves  fro m  - 2  V to  + 1 0  V 

in  s teps  of  100  mV  at  a  s peed  of  10  m s  
per  s tep  if  possible  (The  I -V  curve  
measure men t  could  be  repeated  to  
es tablish  if t he  readings are consis ten t)

• Measuring  interval  1  time / d ay  for  firs t  5  
days,  an d  every  100  hr  or  weekly 
thereaf ter. Shor ter  intervals are p referable

• While  measuring  m ake  su re  t hat  t he  
device  is  illumina ted  u nifor mly  or  repor t  
any non u nifor m  illu mination

• (Measuring IPCE)
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1.3 Results  and Discus sion

1.3.1 Participating Laboratories

The s t u dy com prised  of five types  of s tability tes t s  plus  an  accura te quan tification  of  

t he  perfor mance  of  t he  calibra ted  m o d ule  and  the  groups  ha d  to  choose  which  an d  

how  m a ny  of  t he  experiment s  t hey  wished  to  perfor m.  As  me ntioned  earlier,  t he  

m o d ules  were  s hippe d  to  a  to tal  of  24  labora tories.  2  labora tories  ou t  of  24  

perfor med  differen t  kinds  of  experiments  no t  discussed  here. Table 6  s hows  the  lis t  

of 22  groups  together  with  t he  geographic locations  of t he  laboratories  and  the  types  

of  experiments  perfor med.  The  repor ted  da ta  were  analyzed  according  to  t he  

ca tegory of t he  experiment  and  p resen ted  in t he  next  sections.

Table  6.  The  list  of  t he  par ticipating  laboratories  with  t he  m a p  showing  their  

locations. 
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7-13

21

21

3

19

22

1

2

4

5
6

14-15

16

17

18

20

Nu mbe
r

Contact  Person  Laboratory Name (Count ry) Latitude, Longitu de Types  of Test s

1 Riede, M. Stanford  University (USA) 37°25’  N,  122°10’ T3A
2 Wonders,  J.  & Atlas  Weathering  Services  33 o53’ N, 112 o 9’ W T3B*
3 Rivera,  J.  & Atlas  South  Florida  Test  25 o33’ N, 80 o 27’ W T3B*
4 Xiao, M. Plextronics  Inc., (USA) 40°32’ N, 79°49’ W T1A, T1B, T2
5 Shrotriya, V. Solar mer  (USA) 34°4’ N, 118°3’ W T1A, T1B, T3B
6 Lloyd, M. NREL (USA) 39°44’  N,  105°10’ T1A, T1B, T2
7 Hauch, J. Konarka  (Ger many) 49 o26’ N, 11 o4’ E T1A, T1B, T2
8 Her menau, M. IAPP (Germany) 51 o1’ N, 13 o 43’ E T1A, T1B, T2
9 Schwart z, G. Heliatek GmbH (Ger many) 51 o4’ N, 13 o 41’ E T1A,  T1B,  T2, 
10 Hoppe, H. TU Ilmenau  (Germany) 50 o41’ N, 10 o 55’ E T1A,  T2,  T3A, 
11 Elschner, A. H.C. Starck (Germany) 51 o4’ N, 7 o 0’ E T1A,  T2,  T3A, 
12 Swonke,  T  & ZAE Bayern  (Germany) 49 o32’ N, 11 o1’ E T1A, T1B, T3B
13 Zim mer man n, B. Fraun hofer  ISE (Ger many) 48 o0’ N, 7 o50’ E T1A, T2, T3B
14 Veens tra, S.C. ECN Solar  Energy (Hollan d) 52 o46’ N, 4 o 4’ E T1A,  T1B,  T2, 
15 Galagan, Y.O. Holst  Center  (Holland) 51 o24’ N, 5 o 27’ E T1A, T3B
16 Vorosha zi, E. IMEC (Belgiu m) 50 o51’ N, 4 o 40’ E T1A, T1B
17 Lira - Cantu, M. CIN2, CSIC, (Spain) 41 o30’ N, 2 o 5’ E T1B, T3B
18 Rath, T. TU Graz, (Austria) 47 o4’ N, 15 o 27’ E T1A,  T1B,  T2, 
19 Kim, K. KIST (Korea) 37 o36’ N, 127 o 2’ E T1A, T2, T3B
20 Katz.  E  & Manor, BGU (Israel) 37 o51’ N, 34 o 46’ E T3A
21 Watkins, S. CSIRO (Newcastle, Australia) 32°53’ S, 151° 44’ E T1A,  T1B,  T2, 
21 Watkins, S. CSIRO(Melbourne, Aus t ralia) 37°54’ S, 145°8’ E T1A,  T2,  T3A, 
22 Krebs,  F.C. Risø DTU (Den mark) 55 o41’ N, 12 o6’ E T1A,  T1B,  T2, 

* ASTM s tandar d  tes t s:  EMMAQUA, Deser t  Weathering,  Inland  Weathering. The  perfor mance  of  t he  m o d ules  was  
only measu red  at  Risø DTU before an d  af ter  s torage at  ATLAS
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1.3.2 Encapsulation and  perfor m a nce variability of the calibrated m odules

As  m en tioned  in  t he  experimental  section  each  package  contained  a  calibra ted  

device,  which  was  carefully  meas ured  a t  Risø  DTU u n der  both  indoor  an d  out door  

conditions  p rior  to  s hipping and  the  recipient  groups  were asked  to  carry ou t  similar  

perfor mance  measure ment.  The  p ur pose  of  t his  s tu dy  was  firs tly,  to  quan tify  t he  

ability  of  t he  grou ps  to  perform  accurate  perfor mance  m eas ure ment  and  secon dly,  

to  com pare  the  result s  with  p reviously  repor ted  ILS s tu dies  of  R2R m a n ufactu red  

OPV m o d ules  [1]. While t he  solar  cells  em ployed  in t his  s t u dy were  encapsulated  the  

encapsulation  was  no t  com plete  to  allow for  so me  degradation  to  be  observed  over  

t he  1000  hours  t hat  t he  experiment s  were  intended  to  end ure.  A fully  edge  sealed  

version  of  t hese  solar  cell  m o d ules  is  expected  to  p resent  significantly  bet ter  

s tability.

Measure ments at Risø DTU: A correlation  between  ou t door  and  indoor  meas ure men ts  

of  t he  calibra ted  m o d ules  a t  Risø  DTU revealed  that  cell perfor mance  inside  is  ~ 3 / 4  

of  t he  perfor mance  ou tside  as  shown  in  Figure  4.  This  was  at t ribu ted  to  a  high  

sensi tivity  of  perfor mance  to  UV conten t  d ue  to  t he  p ho tocon ductivity  of  t he  ZnO  

layer.  The  ou t door  s pectru m  is  known  to  be  richer  in  t he  high  energy  UV-region  

(190 - 290  n m)  than  tha t  of  t he  KHS 575,  and  this  was  cited  as  t he  reason  for  t he  

perfor mance  increase  ou t doors.  Further more,  t he  lower  te m peratu re  m ay  affect  t he  

perfor mance  [1]. It  is  wor th  no ting  tha t  t here  is  so me  s pread  aroun d  the  fit ted  line  

plo t ted  in  Figure  4;  t his  is  a t t ribu ted  to  inaccuracies  in  t he  es timation  of  t he  solar  
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intensity  ou t doors  d ue  to  cloud  cover  an d  differences  in  te m perature  fluctua tions.  

The  s p read  would  likely  be  decreased  by  perfor ming  repeated  measure ments  

ou t doors  to  obtain  good  s ta tis tics,  bu t  t his  was  no t  p ractical  d ue  to  a  lack  of  

consis ten t  s unlight  in Den mark d u ring the  time the  s tu dy was p repared.  

Figure  4.  Correlations  between  ou t door  an d  indoor  (red  t riangles) characteriza tions  

a t  Risø DTU.

Calibrated  Testing  Across  Labs :  19  groups  repor ted  resul ts  of  meas ure men ts  of  

calibra ted  devices.  Table  7  shows  the  lis t  of  t he  groups  together  with  t he  da te  of  

meas ure ment  and  the  m easured  PV  para meters.  Various  light  sources  u sed  for  

meas ure ment s  have been  repor ted  by the  recipient  laboratories  including real s un  in  

so me  cases  (listed  in  t he  table 7). Each grou p  perfor med  m eas ure ment s  u n der  either  

indoor  or  out door  conditions.  Figure  5  p resent s  t he  PV para meters,  plot ted  as  Risø  

DTU Indoor /O u tdoor  versus  Recipient  Laboratory. 

Table  7. The  lis t  of  laboratories,  t he  da te  of  m easure ment  and  the  m easured  
p ho tovoltaic para meters  for  calibrated  m o d ules.
Packa

ge 
Numb

er

Laboratory Meas
. 

Date

Light  
Source

Light  
Intensi
ty (W 
m - 2)

Samp
le 

Tem
p.

Risø DTU 
indoor  
(Isc/V oc/  
FF/PCE)

Risø DTU 
Out door

Recipient

1 Riede, M. 
(Stanfor d)

18 / 0
6

Outdoor  
(Sun)

942 20 9.6 / 8.1 / 5 0
/ 1.1

11.4 / 8.6 / 5
9 / 1.6

11.2 / 8.7 / 55
/ 1.5

2 Katz, E. 
(BGU)

08 / 0
6

Outdoor  
(Sun)

- 41 9.8 / 8.4 / 5 1
/ 1.2

11.3 / 8.7 / 5
3 / 1.5

10.5 / 8.6 / 53
/ 1.4

4 Voroshazi, 
E. (IMEC)

25 / 0
5

Abet  3000  
Class  AAA 

1000 75 10.4 / 8.2 / 4
9 / 1.2

11.9 / 8.7 / 5
2 / 1.5

10.3 / 8.1 / 58
/ 1.5
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Simulator
5 Galagan, 

Y.O. (Holst  
Center)

- AM1.5 
Simulator

1000 25 9.6 / 8.5 / 4 9
/ 1.1

11.5 / 8.8 / 5
2 / 1.5

7.9 / 6.9 / 4 1 /
0.6

6 Shrotriya, 
V. 

(Solarmer)

01 / 0
6

Oriel Solar  
Simulator  

Model 
91190

1000 55 8.3 / 7.6 / 5 3
/ 1

11.5 / 8.7 / 5
4 / 1.5

9.5 / 8.4 / 5 4 /
1.2

7 Lira - Cantu, 
M. (CIN2, 

CSIC)

29 / 0
5

- 1000 46 9.8 / 8.1 / 4 4
/ 1

11.2 / 8.3 / 4
7 / 1.2

9.8 / 8.1 / 3 3 /
0.7

9 Her menau, 
M.  (IAPP)

28 / 0
5

- 1000 50 9.8 / 7.6 / 4 4
/ 0.9

11.8 / 8.2 / 4
8 / 1.3

14.5 / 7.8 / 50
/ 1.6

10 Hoppe, H. 
(TU 

Ilmenau)

28 / 0
5

class  B 
solar  

sim ulator

- - 9.8 / 8.3 / 5 0
/ 1.1

11.4 / 8.7 / 4
9 / 1.4

8 / 8.3 / 54 / 1

11 Lloyd, M. 
(NREL)

11 / 0
6

AM1.5 
Simulator

1000 - 10 / 8.7 / 47 /
1.2

11.8 / 9.2 / 5
2 / 1.6

9.5 / 8.7 / 4 6 /
1.1

12 Xiao, M. 
(Plextronics

)

28 / 0
5

Newport  
Oriel 

91194 -
1000

1000 - 10.4 / 6.8 / 4
3 / 0.9

12 / 7.9 / 4 8 /
1.3

10.1 / 6.6 / 30
/ 0.6

14 Rath, T. 
(TU Graz)

31 / 0
5

- - 55 9.2 / 8.6 / 5 3
/ 1.2

11.1 / 9.2 / 5
5 / 1.6

10 / 8.8 / 52 / 1
.3

16 Watkins, S. 
(CSIRO, 

Melbourne)

28 / 0
5

Newpor t -
Oriel solar  
sim ulator  

(AM1.5 
filters)

1000 - 10 / 8.3 / 53 /
1.2

11.9 / 8.7 / 5
5 / 1.6

11.3 / 8.6 / 42
/ 1.2

16 Watkins, S. 
(CSIRO, 

Newcas tle)

02 / 0
6

Newpor t -
Oriel solar  
sim ulator  

(AM1.5 
filters)

1000 58 10 / 8.3 / 53 /
1.2

11.9 / 8.7 / 5
5 / 1.6

10.6 / 8.5 / 46
/ 1.2

18 Kim, K. 
(KIST)

30 / 0
5

- - 34 9.6 / 8.1 / 4 8
/ 1

11.5 / 8.5 / 4
8 / 1.3

11.1 / 8.8 / 40
/ 1.1

19 Swonke, T 
(ZAE)

- Newport  
94061A 
Sol1A 
(ABA)

1000 68 9.8 / 8.5 / 5 0
/ 1.2

11.3 / 8.9 / 4
9 / 1.4

12.6 / 8.6 / 53
/ 1.6

21 Schwart z,  
G. 

(Heliatek)

- Steuernagel 
SC1200

1000 34 9.8 / 8.2 / 4 8
/ 1.1

11.4 / 8.6 / 5
2 / 1.4

11.7 / 4.1 / 32
/ 0.4

22 Elschner, 
A. (H.C. 
Starck)

- Atlas Solar  
Cell tes t  

575

1000 75 10.2 / 8.2 / 4
9 / 1.2

11.8 / 8.6 / 5
4 / 1.5

10.3 / 8.2 / 49
/ 1.2

23 Veens tra, 
S.C. (ECN)

03 / 0
6

- 1000 65 9.7 / 7.8 / 4 3
/ 0.9

11.9 / 8.7 / 4
6 / 1.3

8.7 / 8.2 / 4 3 /
0.9

25 Hauch, J. 
(Konarka)

- - - 65 9.6 / 8.2 / 5 1
/ 1.1

11.2 / 8.6 / 5
4 / 1.5

10.9 / 8.8 / 50
/ 1.3

All /
indoor

Risø DTU 14 / 0
5

Steuernagel 
SC 575

1000 75 (±  
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Figure  5.  The  s p read  of  Isc,  Voc,  FF an d  PCE for  calibra ted  m o d ules.  Red  rectangles  
correspon d  to  ou t door  an d  blue  rho mbs  to  indoor  m eas ure ment s  perfor me d  a t  Risø  
DTU. 

Table 8  s hows  the  average values  an d  in paren theses  t he  s tan dard  deviations  (SD) as  

a  percentage  of  t he  average value. While t he  SDs of  da ta  meas ured  a t  Risø DTU were  

essen tially  within  10  % the  s p read  between  recipient  labs  was  u p  to  15  %for  I sc an d  

Voc, 18  % for  FF an d  31  % for  PCE. If t he  obvious  outliers  observed  in  t he  plo ts  of  V oc, 

FF and  PCE are  excluded  then  the  SDs of  recipient  lab  decrease  for  Voc to  3.6 %, FF to  

11.4 % an d  PCE to  22.8 %.

Table  8.  List  of  average  values  with  SDs  as  a  percen t  of  average  values  in  

paren theses. 

Parameter Risø Outdoor Risø Indoor Recipient  Laboratory

Isc (mA) 11.6 (±  2.4 %) 9.7 (± 4.6 %) 10.5 (± 14.6%)

Voc (V) 8.6 (±  3.3 %) 8.1 (± 5.3 %) 8 (± 14.1 %)*

FF (%) 51.6 (±  6.7 %) 48 (± 6.8 %) 46 (±  18  %)*

PCE (%) 1.45 (±  8.3 %) 1.1 (±  10  %) 1.12 (±  31  %)*

*Without  outliers  t he  s tan dard  deviations  would  be  Voc – 3,6 %, FF – 11.4 % an d  PCE – 22.8 %

One  can  also  observe  tha t  t he  average  values  of  m eas ure ment s  a t  recipient  labs  is  

ra ther  close  to  Risø  DTU un der  indoor  conditions,  while  t he  ou t door  m eas ure ment s  

a t  Risø  DTU  yield  slightly  higher  values  (due  to  earlier  discussed  reasons).  Two  

groups  (in  Sede  Boqer,  Israel  an d  Stanford,  US) out  of  t he  19  m eas ured  the  cells  

u sing real s un  an d  the  average of two measure ments  (Isc =  10.9 mA; Voc =  8.6 V; FF =  

54  %; PCE =  1.45  %) are  ra ther  close  to  ou t door  resul ts  a t  Risø  DTU. Although, t here  
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is  no t  enough  out door  da ta  for  m aking  firm  conclusions,  t his  could,  to  so me  exten t,  

s uggest  t ha t  m os t  of  t he  indoor  measure ments  are  carried  ou t  u n der  ar tificial  light  

sources  with  lower  UV con tent  com pared  to  real  AM1.5G,  which  results  in  poorer  

m o d ule  perfor mance  d ue  to  high  sensitivity  of  t hese  par ticular  devices  towards  UV 

light  conten t.  This  can  p robably be  generalized  to  m a ny  other  types  of  OPV devices,  

which  are  sensi tive  to  s pect ral  dis t ribution.  This  could  m ean  tha t  t he  perfor ma nce  

for  s uch  a class  of OPV devices is u n deres timated.

Such  a  mis match  can  be  overcome  by  simply  u sing  simulators  with  s pect ral  

dis tribu tion  very  close  to  real  su n  irradiation  s pect ru m  no t  only  a t  visible  

wavelength  range,  bu t  also  for  IR  an d  UV.  Another  solu tion  can  be,  if  accura te  

meas ure ment s  are perfor med  using both  an  indoor  light  source and  ou t door  real s un  

irradiation  a t  t he  sa me time.  

Co m parison  to  Previous  ILS:  Table  9  com pares  t he  values  of  SDs  (in  percen t  of  

average values) of  t he  curren t  result s  with  p revious  ILS s t u dies  [1]. Clearly, t here  is a  

significant  improve ment  in  reproducibility  of  t he  perfor mance  of  differen t  m o d ules  

in t his  se t  of sa m ples  com pared  to  t he  sa m ples  p repared  in t he  p revious  ILS s tu dy. A  

n u m ber  of  issues  concluded  fro m  the  p revious  ILS s t u dies  have  been  add ressed  

d u ring  the  p rod uction  of  t hese  m o d ules,  which  obviously  improved  the  

reproducibility. In pa r ticular: 

• A m ore  com pact  geo metry  was  chosen  in  t his  case  with  a  m o d ule  size  of  12  

cm  x  8.5  cm  an d  required  illumination  area  of  7.4  cm  x  7.9  cm,  which  eased  
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t he  u nifor m  illumination  of  t he  sa m ples  in  t he  differen t  laboratories  (previous  

m o d ule dimensions  were 25  cm x 10,7 cm).

• Male and  fe male  bu t tons  were  introd uced  for  con tacting  the  electrodes,  which  

p roved  to  be  a  ra ther  s table  contacting  technique  which  reduced  any  

fluctuations  caused  by elect rical contact  p roblems.

• A  laser - cut  m ask  was  u sed  for  m asking  the  m o d ules,  which  improved  the  

accuracy of t he  measure ments.

• Detailed  ins t ructions  of  meas ure men t  p rocedure  an d  the  dyna mic  behavior  of  

t he  sa m ple perfor mance were p rovided  in the  p rotocol together  with  t he  cells. 

Although  the  s p read  of  Voc, FF and  PCE for  t he  recipient  labora tories  are  larger  in t he  

new  s tu dies  t he  extrac ting  of  t he  obvious  outliers  significantly improves  the  pictu re  

an d  only  the  s p read  in  FF  slightly  exceeds  the  s p read  of  p revious  da ta  (values  

withou t  outliers  are  shown  in  paren theses  in  Table  9).  The  ou tliers  and  the  ra ther  

large  s p read  of  FF  value  a t  recipient  labs  are  a t t ribu ted  m ainly  to  t he  earlier  

discussed  inflection  poin t  [14].

Table  9.  Comparison  of  SD  values  as  a  percen t  of  average  values  for  t his  and  

p revious  ILS.

Para meter Risø DTU 
(Previous  ILS)

Risø DTU 
(New ILS)

Recipient
(Previous  ILS)

Recipient
(New ILS)

Isc 8.6 % 4.6 % 28 % 14.6 %

Voc 8.9 % 5.3 % 9.2 % 14.1 % (3.6 %)*

FF 10.1 % 6.8 % 9.7 % 18 % (11.4 %)*

PCE 22 % 10 % 26.8 % 31 % (22.8 %)*

*The values  in t he  parentheses  are t he  s tan dar d  deviations  for  Recipient  (New RR) withou t  t he  ou tliers  
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Conclusions of  Calibrated  Studies: The  s tu died  m o d ules  p roved  to  be  ra ther  sensitive  

to  t he  s pect ral dis t ribution  an d  especially to  t he  UV quan ti ty of t he  light  u sed  for  t he  

meas ure ment s.  This  resul ted  in  variation  of  p ho tovoltaic  res ponse  of  t he  devices  

meas ured  in  indoor  and  ou t door  conditions.  In  all  cases  t he  ou t door  measure ments  

s howed  nearly 25  % bet ter  perfor mance, which  is  d ue  to  t he  fact  t ha t  t he  m os t  light  

sources  used  a mong  laboratories  have  lower  UV  con ten t  com pared  to  real  s un.  

Therefore,  when  a  careful  quan tification  of  OPV device  of  s uch  a  type  is  required,  

one  has  to  take  s pecial care of t he  s pect ral dis t ribu tion  of t he  light  source to  be u sed  

for  t he  s t u dies. Ideally, characteriza tion  of t he  device u n der  both  indoor  an d  out door  

conditions  can  solve the  p roble m. 

1.3.3 Shelf Life Studies (T1A) 

The p ur pose of T1A was to  es tablish  if it is possible to  com pare shelf life of m o d ules  

across  groups  within  reasonable da ta  deviations. In t his  case, t he  sa m ples  are u s ually  

s tored  in  a  dark  in  an  a mbient  roo m  environ men t,  such  as  for  exa m ple  d rawer  an d  

the  variability  of  t he  environ mental  conditions  across  differen t  laboratories  is  

minimal  com pared  to  o ther  s tability  s tu dies.  Thus,  t he  T1  tes t  can  give  a  good  

insight  into  how m uch  the  han dling of  t he  sa m ples  an d  the  s pecific ways of  periodic  

meas ure ment s  a t  differen t  laboratories  can  cont ribute  in t he  s p read  of da ta. 

Variations  Across  Labs: 18  groups  s hown  in  Table  10  repor ted  on  shelf  life  s tu dies  

for  to tal  of  32  ST type  m o d ules  an d  15  of  3  o ther  types  (see  table  1). The  received  

da ta  were  m os tly  text  or  excel  files  with  raw  IV-curve  da ta  and  s heets  of  time  vs.  
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p hotovoltaic  para meters  ext rac ted  fro m  IV curves.  Measure ments  periodicity  varied  

a mong the  groups. 

Table  10. The  lis t  of  laboratories  for  T1A  s tu dies.  The  s ta r ting  da te  of  t he  
experiment, te m peratu re and  RH ranges  are lis ted  as  well. 

Package Laboratory Star ting Sample Storage Storage R.H. 
4 Voroshazi, E. (IMEC) 01 / 06 2 20 30 – 40
5 Galagan, Y.O. (Holst  - 2 25 -
6 Shrotriya, V. (Solarmer) 01 / 06 5 23 – 29 36 – 48
9 Her menau, M.  (IAPP) 31 / 05 6 - -

10 Hoppe, H. (TU Ilmenau) 28 / 05 1 - -
11 Lloyd, M. (NREL) 11 / 06 1 - -
12 Xiao, M. (Plextronics) 28 / 05 2 - -
14 Rath, T. (TU Graz) 31 / 05 6 - -
16 Watkins, S. (CSIRO, 01 / 06 3 - -
16 Watkins, S. (CSIRO, 01 / 06 1 12 – 27 34 – 88
17 Zim mer man, B. (ISE) 31 / 05 2 - -
18 Kim, K. (KIST) 30 / 05 4 24 42
19 Swonke, T (ZAE) 31 / 05 1 27 44
21 Schwart z, G. (Heliatek) - 1 27 35
22 Elschner, A. (H.C. Starck) 28 / 05 5 22 -
23 Veenst ra, S.C. (ECN) - 1 - -
25 Hauch, J. (Konarka) - 3 - -
26 Risø DTU 31 / 05 1 18 – 26  45≤

The  firs t  a t te m p ts  of  defining  quan ti ties,  such  as  burn  in  range,  initial  s tabilized  

efficiency  PCE0
s and  T80  (time  when  device  degrades  to  80  % of  op timu m  

perfor mance),  as  suggested  in  t he  p ro tocol  of  ISOS -2  [17]  led  to  no  s uccess.  The  

dyna mic na tu re  of t he  p ho tovoltaic response  for  t his  type  of cell was too  diverse  and  

in  m os t  cases  t he  frequency  of  m eas ured  da ta  was  in  t he  sa me  range  with  the  time  

resolu tion  of  t he  dyna mic changes, which  m a de  it  ra ther  difficult  to  deter mine  these  

quan ti ties. As a  consequence the  da ta  were  chosen  to  be  p rocessed  an d  p resen ted  as  

follows.  We discuss  here  t he  case  of  PCE, bu t  t he  sa me  app roach  was  ap plied  to  all  

p ho tovoltaic  para meters  (Isc, Voc, FF an d  PCE). Decay curves  of  PCE versus  time  were  

plo t ted  an d  nor malized  to  t he  m aximu m  values  (PCEmax). The  nor malized  values  a t  5  
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differen t  time  point s  (t0, t 200, t 400, t 700 and  t 1000) were  extracted  fro m  each  curve  and  

s u m marized  in  t he  general  plo t.  Average  values  an d  SDs  were  calculated  for  each  

time  point.  Figure  6  p resen ts  t he  calcula ted  values  together  with  t he  average  values  

intersected  by a  das hed  line  for  guiding the  eye and  the  error  bar s  showing the  SDs.  

Red t riangles  s how the  ou tliers  (not  included  in calculation  of average and  SD), which  

are  a t t ributed  to  catas t rop hic failure of t he  device p robably induced  by the  han dling.  

Most  of  t he  sa m ples  s uffered  fro m  the  p resence  of  an  initial  inflection  poin t  an d  

therefore,  PCE ha d  low  values  a t  t 0. Thus,  all  t he  original  curves  were  chosen  to  be  

nor malized  to  PCEmax a t  t max and  an  average  of  t max across  t he  laboratories  was  

calculated  an d  se t  as  an  additional  time  point  for  t he  average  curve.  t max was  in  t he  

range  of  t he  firs t  40  hours  (different  for  t he  differen t  p ho tovoltaic  para meters).  

However,  t max can  be  u n deres timated,  since  changes  in  t he  curves  could  easily  

ha p pen  within  an  interval  between  two  meas ure ment s  an d  thus  could  no t  be  

recorde d. The u ncer tain ty of t max can  significantly cont ribu te  to  t he  s p read  of general  

da ta, since all t he  degradation  curves  are nor malized  to  t he  corres pon ding PCEmax for  

each  laboratory.  We chose  however,  to  com pare  the  PCE(t) values  (perfor mance  a t  a  

given  time  point)  ra ther  t han  the  lifetime  values,  such  as  T80,  because  the  T80  

para meter  is  m uch  m ore  s t rongly affected  by  the  u ncer tain ty  of  t max t han  the  values  

of PCE(t).  
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Figure  6.  Variation  of  PV parameter s  across  t he  time  measured  on  29  m o d ules  (orange  rectangles).  
The  para meters  are  nor malized  to  m aximal  values.  Horizon tal  axes  rep resen t  t he  time  (hrs).  The  
das hed  line inter sects  t he  average values  an d  the  error  bars  represen t  t he  SDs. Red t riangles  s how the  
outliers  connected  with  das hed  lines  for  guiding  the  eye  (outliers  were  excluded  in  calculations  of  
average). 

The  plo ts  in  figure  6  only  show  results  for  ST type  m o d ules,  as  t he  inflection  poin t  

effect  was  less  p ronounced  in  t his  type  of  cells.  The  o ther  3  types  can  be  foun d  in  

t he  su p por ting  infor mation.  The  repor ted  da ta  for  3  m o d ules  ou t  of  32  were  

ca tegorized  as  “unreadable” (discussed  in  section  3.9) and  were  no t  included  in  t he  
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calculations.  The  range  of  te m perature  an d  relative  h u midity  (RH),  if  m eas ured  

d u ring  tes ting,  are  shown  in  t he  t able  in  figure  6  together  with  t he  range  of  the  

s tar ting da tes. The average T80 for  PCE is shown  as  well, which  is abou t  615  hours  if  

calculated  fro m  t 0. If t max is  taken  as  t he  s tar ting  poin t  t hen  T80  is  abou t  580  hours.  

For t he  m os t  s table m o d ules  T80 can  reach m ore  than  1000 h r s.

Table  11  s hows  the  average  values  of  each  para meter  along  the  decay together  with  

t he  SDs.  The  SDs  are  increasing  along  the  degrada tion  of  t he  devices  p robably  

because  of differen t  decay kinetics  in differen t  m o d ules, bu t  s till re maining below 10  

% for  Isc,  Voc an d  FF an d  reaching  to  13  % for  PCE at  t 1000.  There  is  a  difference  

between  nor malized  values  of  PCE an d  the  values  calculated  fro m  nor malized  values  

of  Isc, Voc an d  FF, which  arises  fro m  the  fact  t ha t  different  m aximal values  are  chosen  

for  nor maliza tion  of da ta  in both  cases.

Table  11.  The  average  of  pv  para meters  a t  differen t  times  an d  the  corres pon ding  

SDs.

Time (hrs) Isc (Normalized) Voc (Nor malized) FF (Nor malized) PCE (Nor malized)
Average SD Average SD Average SD Average SD

t m ax 100 - 100 - 100 - 100 -
200 95 4.6 97 2.6 95 3.5 95 4.9
400 91 4.6 98 2.1 91 4.3 89 6.4
700 86 6 97 3.3 85 7.1 76 9.3

1000 79 9.7 97 5.1 80 9.8 67 13.2

Intra - laboratory  vs. Inter - laboratory : Some laboratories  measured  2  or  3  m o d ules  in  

t he  sa me  conditions,  which  allowed  a  com parison  of  intra - laboratory  and  inter -

laboratory  deviations.  SDs  were  calculated  (in  case  of  2  m o d ules  simple  deviations  

fro m  the  average  value  were  taken) within  the  sa me  laboratory  and  averaged  over  9  
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labora tories  and  com pared  to  SDs  across  t he  sa me  9  laboratories  (total  of  22  

m o d ules)  for  4  time  point s.  Table  12  shows  the  intra - laboratory  and  inter -

laboratory  SD(averaged  over  4  time  point s)  for  9  labs  an d  the  ra tio  between  these  

two  in  percen t.  The  resul ts  show  tha t  a  large  por tion  of  da ta - s p read  within  the  

laboratories  is  a  resul t  of  deviations  within  the  m o d ules.  The  n u m bers  are  different  

for  differen t  time point s  an d  th us  the  averages  over  4  time points  are s hown here.  It  

is  wor th  me n tioning  that  in  so me  cases  variations  within  da ta  fro m  the  par ticular  

laboratory  were  exceeding  the  variations  across  all  labora tories  (probably  d ue  to  

han dling / m echanical s t resses, which can  be de t rimental for  device perfor ma nce).

Table  12.  Intra - lab  and  Inter - lab  SD values  averaged  for  4  time  point s  an d  their  

ra tio in percent.

SD Isc Voc FF PCE
Inter - Laboratory 5.5 3.6 5.9 8.4
Intra - Laboratory 2.4 1.9 3.6 4.4

Ratio 48 % 55 % 61 % 51 %

Conclusions : Overall, t he  conclusions  for  t his  experiment  are t he  following:

• The  dyna mic  changes  of  p ho tovoltaic  response  for  t he  tes ted  devices  were  in  

t he  sa me  range  with  the  frequency  of  t he  meas ure men ts,  which  int roduced  

large  u ncer tain ties  in  de ter mination  of  device  lifetimes.  Quan tities  s uch  as  

efficiency a t  a  given time PCE(t) were m ore  useful in t his  case.

• The  s tan dard  deviations  of  p ho tovoltaics  para meters  meas ured  on  similar  

m o d ules  across  18  laboratories  were  reaching 13  % after  1000  h r s  of  shelf life,  

which  can  be  tolerated  ass u ming  the  inherent  sources  of  error  in  t his  

experiment. Additionally, a  significant  contribu tion  to  t he  s p read  of  da ta  came  
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fro m  the  p ho tosensi tivity  of  ZnO  in  the  device.  As  discussed  earlier,  t he  

p ho to - do ping  of  t he  m o d ules  can  d ras tically  improve  the  perfor mance  an d  

this  p heno menon  is  reprod ucible.  Thus,  if  a  light  source  with  lower  UV 

quan ti ty  was  u sed  d u ring  the  m easure ments  or  if  t he  devices  were  no t  kep t  

u n der  t he  light  source  long  enough  to  re move  the  inflection  poin t,  it  could  

lead  to  deficient  p ho to - annealing  of  ZnO  and  thus  appear  as  degrada tion  of  

t he  m o d ule.

• Up  to  61  % of  deviation  value  across  t he  laboratories  could  be  ascribed  to  

intrinsic  differences  in  t he  degrada tion  kinetics  of  m o d ules  t he mselves.  In  

par ticular  cases  however,  deviations  between  m o d ules  meas ured  in  t he  sa me  

laboratory un der  sa me  conditions  could  exceed  the  deviation  values  a mong  all  

t he  labora tories. The reason  is ascribed  m ostly to  t he  sensitivity of  t he  devices  

to  t he  han dling / mechanical s t resses.

1.3.4 Effect of Storage Te m perature and  Relative Hu midity (T1B)

It is well es tablished  tha t  t he  environ mental factors  s uch  as  te m pera tu re  and  level of  

relative  h u midity  (RH) have  m ajor  effects  on  device  degrada tion  kinetics  [18 - 20].  

Thus,  it  is  impor tan t  to  choose  a  n u m ber  of  Tem p. /RH combinations,  which  can  be  

op timal  for  s tan dard  tes ting  of  OPV m o d ules  and  can  be  accepted  an d  s teadily u sed  

a mong  the  groups  in  t he  OPV com m u nity.  The  p ur pose  of  T1B was  to  es tablish  the  

capabilities  of  various  grou ps  in  perfor ming  Tem p. /RH controlled  tes t s  an d  perhaps  

get ting  an  insight  into  which  conditions  are  t he  m os t  op timal  in  ter m s  of  
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reproducibility a mong grou ps. 13  grou ps  carried  ou t  T1B type experiments  with  to tal  

of  38  ST type  an d  9  of  3  o ther  types  of  m o d ules.  Table  13  s hows  the  list  of  t he  

groups  perfor ming  T1B tes t  together  with  t he  values  of  te m peratu re  an d  RH varying  

in t he  ranges  of 25  – 85  oC an d  0  – 85  % correspon dingly. The list  s hows the  diversity  

of  t he  conditions  u sed  by the  groups.  In so me  cases  RH was  no t  recorded / re por ted,  

which p u t  so me cons t rains  on  com parison  of da ta.  

Table  13. The  lis t  of  laboratories  for  T1B  experiment.  The  s tar ting  da te  of  
experiment, s torage setu p  an d  the  ranges  of te m perature and  RH are lis ted  as  well.
Package 
n u m ber

Laboratory Star ting 
Date

Sample 
quan ti ty

Storage Setup Storage 
Temp.

Storage R.H. 
(%)

4 Voroshazi, E. 
(IMEC)

01 / 06 1
1
1
4

Glove - Box
Oven

Drawer  
(desiccant)

Env. Chamber

25
45
25
45

0
0

<  5
60

6 Shrotriya, V. 
(Solarmer)

01 / 06 2 Tenney  T6S 
te m p.  an d  
h u midity  tes t  
cham ber

50 50

7 Lira - Cantu,  M. 
(CIN2, CSIC)

29 / 05 6 Oven 40 – 43 15 – 24

9 Her menau, M. 
(IAPP)

31 / 05 1
1

Oven
Oven

65
85

-
-

11 Lloyd, M. (NREL) 11 / 06 1
1

Env. Chamber
Env. Chamber

45
85

85
85

12 Xiao, M. 
(Plextronics)

28 / 05 2 Ther motron 65 85

14 Rath, T. (TU Graz) 31 / 05 3 Oven 50 -
16 Watkins, S. 

(CSIRO, 
Newcastle)

01 / 06 1 Oven 45 8 – 16

19 Swonke, T (ZAE) 31 / 05 2 Oven 45 50

21 Schwart z, G. 
(Heliatek)

- 1
1
1

-
-
-

50
85
85

<  10
<  10

85
23 Veens tra, S.C. 

(ECN)
- 5

2
2

Oven 45
60
85

-
-
-

25 Hauch, J. 
(Konarka)

- 2
3
2

Weather  
Chamber

Oven

65
65
85

85
-
-

26 Risø DTU 31 / 05 1 Oven 50 25
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The  way  the  da ta  was  chosen  to  be  p rocessed  and  p resen ted  here  was  as  follows.  

Degrada tion  of  p ho tovoltaic  para meters  were  calculated  a t  5  time  point  u sing  

app roach  similar  to  t he  p revious  section  and  su m m arized  in  two  plot s: decay versus  

time  a t  differen t  RH,  while  t he  te m pera tu re  was  kep t  in  a  s mall  range  an d  decay  

versus  time  for  differen t  te m peratu res,  while  RH was  kep t  in  a  s mall  range. Only ST  

type devices  were chosen  to  be  p resen ted. 

Effect  or  RH: Figure  7  s hows  the  decay  of  p ho tovoltaic  para meters  versus  time  for  

differen t  RH  values.  The  meas ure ment  poin t s  are  connected  by  dashed  lines  for  

guiding the  eye. Only da ta  within  the  te m pera ture  range of 42  – 50  oC were chosen  to  

limit  t he  effect  of  te m pera tu re  on  the  cells.  Some  of  t he  curves  are  a  result  of  one  

m o d ule  meas ure ment  an d  so me  are  averages  over  2  or  3  curves  (with  t he  sa me  or  

slightly  different  te m peratures).  From  the  scarcity  an d  diversity  of  da ta  it  was  

difficult  to  d raw  any  conclusion  a mong  the  repor t s  fro m  the  different  grou ps.  The  

dependence  of  degrada tion  on  RH was  nearly  rando m.  However,  one  poin t  t ha t  t he  

groups  seemed  to  agree  on  was  that  hu midity levels  ap proaching 85% or  higher  lead  

to  fas t  degrada tion  of  t he  m o d ule.  Such  a  large  variation  in  da ta  poin t s  to  t he  fact  

t ha t  t he  m o d ules  are  too  vulnerable towards  RH changes  and  therefore, RH needs  to  

be  carefully  controlled  in  order  to  obtain  reprod ucible  da ta  for  t hese  types  of  

devices.  Such  a  s t rong  sensi tivity  of  t he  devices  towards  RH  was  also  ascribed  to  

incom plete encapsulation  discussed  in earlier  sections.
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Figure  7. Nor malized  values  of  pv  para meters  vs  time  (hrs) a t  different  RH levels  in  
t he  range of 0  - 85  %. The te m pera tu re  range was 42  - 50  oC. The measure ment  poin t s  
are connected  by das he d  lines for  guiding the  eye.

Effect of Te m perature : The sa me ap proach  was applied  for  perfor mance decay versus  

time  a t  differen t  te m pera tures  s hown  in  figure  8.  The  da ta  were  chosen  in  t he  RH 

range  of  20  – 45  %. In t his  case  again  85  oC lead  to  a  fas t  degradation  of  t he  devices  

(even  in  t he  case  of  RH being  as  low as  5  %), while  te m peratu res  below 65  oC ha d  a  

relatively  minor  effect  on  the  device  degrada tion.  The  resul ts  sugges t  t ha t  t he  
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m o d ules  are  less  affected  by  te m pera tu re  changes  (unless  ext re me  te m peratu res  are  

applied) com pared  to  RH. 
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Figure 8.  Normalized  values  of  pv  para meters  vs  time  (hrs) a t  differen t  Temp. in  t he  
range  of  25  - 85  oC.  The  RH  range  was  20  - 25  %. The  m eas ure ment  poin t s  are  
connected  by dashed  lines for guiding the  eye.

Conclusions for T1B: The following can  be concluded  fro m  the  experiments:

• For these  par ticular  devices  t he  te m peratu re  variations  see med  to  have a  s mall  

affect, while RH variations  resul ted  in a  large s p read  of da ta. Therefore, careful  
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con trol  of  RH  levels  d uring  tes ting  of  such  m o d ules  can  lead  to  a  m ore  

accura te s tability tes ting an d  reprod ucible da ta.

• The grou ps  perfor m  s tability s tu dies u sing a ra ther  large diversi ty of te m p. /RH  

combinations, which  m akes  it impractical to  com pare  the  m o d ule perfor ma nce  

across  labora tories. Thus, cer tain  s tan dards  have to  be  defined, such  that  2  or  

3  combinations  of  Tem p. /RH than  can  be  agreed  u pon  and  followed  by all t he  

groups  in  OPV com m u nity. The  te m perature  an d  especially RH level will need  

to  be carefully con trolled  to  obtain accura te da ta.

1.3.5 Light Soaking Test (T2)

The p u r pose  of T2 tes t  was  to  es tablish  the  capability of different  grou ps  of  carrying  

ou t  light  soaking tes ts  an d  to  check the  reprod ucibility of t he  resul ts  across  different  

laboratories. 

Results: Table  14  shows  the  lis t  of  14  laboratories  t ha t  car ried  ou t  t he  T2  tes t  on  a  

to tal  of  21  ST  type  m o d ules  and  22  of  t he  3  o ther  types  of  m o d ules.  The  table  

includes  also  the  light  sources  t ha t  have  been  u sed  d uring  the  tes t s.  Due  to  ra ther  

scarce  da ta  and  large  deviations  a mong  different  repor t s  t he  app roach  u sed  for  

p rocessing  T1A  da ta  would  no t  be  very  infor mative  in  t his  case.  The  s tan dard  

deviations  for  m os t  of  the  pa ra meters  a t  all time  point s  were  above 20  %. Therefore,  

we  chose  to  show  the  original  da ta  ins tead.  Figure  9  s hows  all  t he  curves  for  14  ST  

m o d ules  (data  for  7  m o d ules  were  u n readable) with  colors  defining  the  types  of  t he  

lam ps  u sed  for  light  soaking.  3  types  of  light  sources  were  u sed,  categorized  as  
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Halogen  Lamps  (2  m o d ules),  Metal  Halide  Lamps  (5  m o d ules)  an d  Sulfur  Plas ma  

Lamps  (7 m o d ules). Most  of  t he  tes t s  were  carried  out  a t  light  intensities  close  to  1  

s un  and  for  t he  exa m ples  t ha t  significantly deviated  fro m  1  su n,  t he  time  axes  were  

adjus ted  in  t he  plo ts,  so  t ha t  a t  a  given  time  all t he  m o d ules  received  app roximately  

the  sa me  dose  of  energy.  Although  this  correlation  is  not  entirely  fair  d ue  to  

differences  in  te m peratu res  and  o ther  environ mental para meters, it a t  leas t  excludes  

the  light  intensity  variations.  For  com parison  the  black  solid  line  s hows  the  average  

of  m o d ules  tes ted  u n der  real  sun  u n der  ou t door  conditions  (the  time  is  adjus ted  to  

have  a  similar  energy  dose).  It  is  easy  to  see  how  large  the  diversity  of  t he  

degrada tion  kinetics  for  t he  m o d ules  is  when  meas ured  in  different  laboratories.  In  

m os t  cases  t he  te m peratu re  an d  RH were  no t  recorded / re por ted  and  in  t he  cases  

where  the  RH was  repor ted  the  values  were  u sed  to  check  if t here  was  a  correlation  

between  the  da ta  s p read  and  te m peratu re /RH variations.  No such  correla tions  were  

foun d.  The  m o d ules  behaved  en tirely rando m  with  res pect  to  both  te m peratu re  and  

RH. 

Table  14.  The  list  of  t he  laboratories  for  T2  experiment.  The  s ta r ting  da te  of  
experiment, t he  types  of  light  sources  and  intensi ties  and  the  ranges  of  te m peratu re  
an d  RH are s hown as  well. 
Package 
n u m ber

Laboratory Star ting 
Date

Sampl
e 

q uan ti
ty

Light  Source Intensit
y 

(W/ m 2)

Storage 
Tem p.

Storage 
R.H. (%)

9 Her menau, M. 
(IAPP)

31 / 0 5 1 Halogen Lamp  
(Without  UV)

1000 40 -

10 Hoppe, H. (TU 
Ilmenau)

28 / 0 5 1 Metal Halide Lamp 1000 - -

*11 Lloyd, M. 
(NREL)

11 / 0 6 2 UV soak  (300 - 400  
n m)

114 60 60

**12 Xiao, M. 
(Plextronics)

28 / 0 5 5 Q - Sun ~  500 60 70

14 Rath, T. (TU 31 / 0 5 5 LG PSH0731WA 500 - -

38



Graz) sulfur  plas ma  lam p
16 Watkins, S. 

(CSIRO, 
Melbourne)

01 / 0 6 1 Newport - Oriel Solar  
Simulator

1000 38 28

16 Watkins, S. 
(CSIRO, 

Newcas tle)

01 / 0 6 1 Metal Halide Lamp 460 40 15 – 30

17 Zim mer man, B. 
(ISE)

31 / 0 5 5 Sulfur  Plas ma  Lamp 1000 50 -

18 Kim, K. (KIST) 30 / 0 5 4 Metal Halide Lamp 
(Xe Arc Lamp)

900 35 -

21 Schwart z, G. 
(Heliatek)

- 2 Sulfur  Plas ma  Lamp 1064 50 <  10

**22 Elschner, A. 
(H.C. Starck)

28 / 0 5 5 Atlas  XLS+ 600 22 -

23 Veenst ra, S.C. 
(ECN)

- 5 Sulfur  Lamp 1000 45 – 47 -

***25 Hauch, J. 
(Konarka)

- 2 - 1000 - -

26 Risø DTU 31 / 0 5 4 Steuernagel Solar  
Cons tan t  1200

1000 65 15

*2 - 3  measure men ts  were perfor med  d u ring the  decay
**Illumination  of sa m ples  was not  continuous, bu t  periodic
***Measure men ts  were carried  out  u n til ~  250  h rs

One  com mo n  featu re  t ha t  can  be  seen  in  t he  plo ts  is  t ha t  m o d ules  tes ted  u sing  

s ulfur  plas ma  lam ps  (red  circles)  see med  to  be  m ore  s table.  It  pe rhaps  can  be  

explained  by the  fact  t ha t  t he  UV conten t  in  t hese  lam ps  is u s ually less  com pared  to  

me tal  halide  lamps.  Although  the  sa m ples  need  so me  initial  UV p ho to - do ping  to  

recover  fro m  inflection  poin t,  t he  long  ter m  UV irradiation  can  be  disadvan tageous  

for  s tability.
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Figure  9.  Decay  of  pv  para meters  for  14  m o d ules  measured  in  different  labs.  Red  
circles  correspon d  to  sulfur  plas ma  lam ps, green  t riangles  to  m e tal halide  lam ps  and  
blue  rho mbs  to  halogen  lam ps.  The  m eas ured  point s  are  connected  by  das he d  lines  
for  guiding the  eye. 

3  groups  ha d  2  m o d ules  tes ted  un der  t he  sa me  conditions.  Table  15  shows  the  

calculated  averages  of  t he  intra - laboratory  and  inter - laboratory  average  deviations  

for  3  grou ps, which show that  u p  to  60  % of deviations  can  easily be  at t ribu ted  to  t he  

intrinsic differences  of  decay kinetics  between  the  m o d ules. The  p rocessing  of  t hree  

o ther  types  of  m o d ules  (MN, PN and  RN) led  to  similar  resul ts  as  for  ST. The  plot s  

can  be foun d  in t he  su p por ting infor mation. 
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Table  15.  Intra - lab  and  Inter - lab  SD values  averaged  for  4  time  point s  an d  their  

ra tio in percent.

SD Isc Voc FF PCE
Inter - Laboratory 12.4 4.3 12 17
Intra - Laboratory 4.4 2.3 6 9

Ratio 47 % 53 % 50 % 57 %

Conclusions : The  resul ts  of  t he  T2 experiment s  s uggest  t ha t  t he  conditions  u sed  for  

light  soaking  s tu dies  significan tly  vary  across  t he  laboratories.  In  par ticular,  t he  

s pect ru m  of  t he  light  sources,  light  intensi ties,  device  te m peratures  an d  RH levels  

are  different  in  differen t  laboratories,  which  resul t  in  a  large  s p read  of  degrada tion  

da ta  when  com pared  a mong  labora tories.  Based  on  these  s tu dies,  a  n u m ber  of  

conditions  are  p roposed  here  for  carrying ou t  light  soaking tes t s, which  can  possibly  

lead  to  m ore  accura te  meas ure men ts  an d  perhaps  improve  the  com patibility  of  t he  

repor t s  a mong grou ps:

• A  certain  type  of  light  source  or  light  filters  need  to  be  defined  and  used  

a mong  grou ps  tha t  will assure  a  similar  s pect ral  dis t ribution  of  t he  light  t ha t  

t he  devices  are  being  exposed  to.  It will t hus  exclude  the  variations  caused  by  

s pect ral differences

• The  light  intensity  needs  to  be  kept  at  a roun d  1000  W m - 2 (±  5  %). In t his  way 

the  m o d ules  will receive an  equal a mou nt  of energy dose  at  a  given time.

• Similar  to  t he  p revious  section  a  cer tain  combination  of  te m peratu re /RH have  

to  be  defined  and  the  m o d ules  have to  be  kep t  u n der  t hese  conditions  (±  5) to  

avoid any fur ther  sca t tering d ue  to  t hese  environ mental factors
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1.3.6 Outdoor Testing (T3A&B)

Two  types  of  out door  experiments  were  explored.  In  one  the  m o d ules  were  being  

s tored  ou t doors  a t  all times  an d  measured  in t he  sa me  posi tion  u n der  real sun  (T3A)  

an d  in  t he  other  one  the  cells  were  being  s tored  ou t doors  an d  taken  inside  

periodically  (daily  or  weekly)  an d  m eas ured  un der  calibra ted  s un  sim ulator  (T3B).  

There  were  two  reasons  to  s plit  ou tdoor  tes t  to  A an d  B: firs tly,  in  order  to  m eet  

capabilities  of  wider  range  of  laboratories  and  secondly,  it  would  allow  for  a  

com parison  of  t he  two  ap proaches  an d  es tablishing the  weak  s pot s  for  each  one. Six  

groups  repor ted  s tu died  devices  according  to  t he  T3A  type  with  a  to tal  of  25  

m o d ules  (16 of  t he  ST type  an d  9  of  t he  other  types) an d  15  chose  to  follow the  T3B  

app roach  with  a  to tal  of  29  m o d ules  (23  of  t he  ST type  and  6  of  t he  o ther  types).  

Table  16  and  17  show  the  lists  of  t he  grou ps  tha t  correspon dingly  chose  T3A and  

T3B. The tables  include  the  type  of  t he  ou t door  pla tfor m  used  for  s tu dies. A n u m ber  

of  p ho tographs  are  p resen ted  in  figure  10,  which  show  the  variability  of  the  

conditions  tha t  t he  m o d ules  were  exposed  to.  In  par ticular,  figure  10  (7) shows  the  

resul t  of  a  s tor m  in  Aust ralia  d u ring  s tu dies.  The  p ho to  is  t aken  100  me ters  away  

fro m  the  tes ting pla tfor m. 

Table  16.  The  list  of  t he  laboratories  for  T1A  experiment.  The  s tar ting  da te  of  
experiment, t he  ou t door  platfor m  and  the  angle of exposure  are lis ted  as  well.
Package 
n u m ber

Laboratory Star ting 
Date

Sample 
q uan ti ty

Out door  Platfor m Exposur
e Angle 

1 Riede, M. (Stanford) 18 / 06 8 Stand  Still 0 o

2 Katz, E. (BGU) 07 / 06 8 Stand  Still Facing 
South

30 o

10 Hoppe, H. (TU Ilmenau) 28 / 05 2 Stand  Still Facing 
South

45 o
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16 Watkins, S. (CSIRO, 
Melbourne)

02 / 06 1 Stand  Still Facing 
North

37 o

16 Watkins, S. (CSIRO, 
Newcastle)

01 / 06 4 Stand  Still Facing 
North

32 o

22 Elschner, A. (H.C. Starck) 07 / 06 2 Stand  Still Facing 
South

10 o

1

2

3

4

5

6

9

8

7
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Figure  10.  (1) HC Starck,  rooftop  pla tfor m:  m o d ules  facing  sou t h  a t  10 o (Germany); 
Risø  DTU, m o d ule  m o u n ted  on  the  solar  t racker  (Denmark); (3) Stand  s till pla tfor m:  
m o d ules  facing  sou th  at  30 o (BGU, Israel);  (4)  Horizon tally  oriented  table  platfor m  
(Stanford, USA); (5) CSIRO, rooftop  platfor m: m o d ules  facing nor th  a t  32 o (Newcastle, 
Australia); (6) TU Graz, rooftop  pla tform  (Austria) (7) Results  of a  s tor m: p ho to  taken  
100  me ter s  away  fro m  the  tes ting  pla tfor m  (Melbourne,  Australia);  (8)  Stand  s till  
pla te:  m o d ules  facing  sou t h  a t  ~  10 o (Barcelona,  Spain)  (9) Rooftop  tes ting  s ta tion:  
m o d ules  facing sou th  at  28 o (Solarmer, USA).

Table  17. The  lis t  of  t he  laboratories  for  T1B  experiment.  The  s tar ting  da te  of  
experiment, t he  ou t door  platfor m  and  the  angle of exposure  are lis ted  as  well.

Package 
n u m ber

Laboratory Star ting 
Date

Sample 
q uan ti ty

Out door  Platfor m Exposure  
Angle

5 Galagan, Y.O. (Holst  
Center)

- 1 - -

6 Shrotriya, V. 
(Solarmer)

01 / 0 6 2 Stand  Still Facing 
South

28 o

7 Lira - Cantu,  M.  (CIN2, 
CSIC)

29 / 0 5 3 Stand  Still Facing 
South

8 o – 12 o 

10 Hop pe, H. (TU 
Ilmenau)

28 / 0 5 4 Stand  Still Facing 
South

45 o

*13, 24 Haillant, O. (ATLAS) - 26 - -
14 Rath, T. (TU Graz) 31 / 0 5 3 Stand  Still 0 o

16 Watkins, S. (CSIRO, 
Melbourne)

01 / 0 6 1 Stand  Still Facing 
North

37 o

16 Watkins, S. (CSIRO, 
Newcastle)

01 / 0 6 1 Stand  Still Facing 
North

32 o

17 Zim mer man, B. (ISE) 31 / 0 5 5 - -
18 Kim, K. (KIST) 30 / 0 5 1 - -
19 Swonke, T (ZAE) 31 / 0 5 2 Stand  Still 45 o

21 Schwart z, G. (Heliatek) - 1 - -

22 Elschner, A. (H.C. 
Starck)

01 / 0 6 2 Stand  Still Facing 
South

10 o

23 Veenst ra, S.C. (ECN) - 2 Stand  Still Facing 
South

30 o

26 Risø DTU 31 / 0 5 1 Solar  t racker -

*Details of s tu dies  a t  ATLAS are described  in section  3.6.3

1.3.6.1 T3A  

Outdoor  Fluctuations :  In  T3A  experiment  t he  devices  were  left  ou t side  d u ring  the  

en tire  s tu dy  (day  and  night)  an d  periodically  meas ured  u n der  real  su n.  The  groups  
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m ainly u sed  s ta tionary pla tfor ms  at  cer tain  angles  m os tly adjus ted  to  t he  lati tude  of  

t he  location  an d  only  a t  Risø  DTU a  solar  t racker  was  em ployed.  The  a moun ts  of  

energy  doses  significantly  varied  across  t he  laboratories  d ue  to  various  angles  u sed  

an d  d ue  to  different  weather  conditions.  The  resul ts  were  no t  nor malized  with  

respect  to  t he  energy doses  d ue  to  unavailable da ta  in m os t  cases, which  con tribu ted  

to  t he  s p read  of  da ta. Normally, t he  s un  intensity was  recorded  u sing a  pyrano meter  

placed  next  to  t he  cells  an d  the  intensi ty  was  recorded  d u ring  the  IV-curve  

meas ure ment  of  t he  m o d ule. The  meas ured  Isc was  nor malized  to  1000  W m - 2 u sing 

the  linear  fit.  Only  values  within  the  range  of  800  to  1100  W m - 2 were  considered. 

However,  of ten  there  was  a  delay  between  the  recording  of  s un  intensi ty  and  the  I sc 

as  s hown  in  figure  11(a),  which  caused  so me  miscalculations  of  t he  curren t  (the  

delay was no t  cons tan t  along the  degradation  p rocess). 
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Figure  11.  (a) delay  between  recording  of  light  intensity  and  Isc and  (b) fluctuations  
of Isc po ssibly caused  by s hadowing, winds  an d  week con tact s.

In  ad di tion,  so me  fluctuations  of  t he  recorded  curren t  were  observed  even  after  

nor malizing  the  values  to  1000  W m - 2,  s uch  as  for  exam ple  s hown  in  Figure  11(b). 
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The  reason  is  ascribed  to  t he  s u d den  shadowing  of  t he  radiation  by  clouds  d u ring  

the  measure ments,  which  were  no t  recorded  by  pyrano meter.  Strong  winds  could  

cause  flipping  of  t he  cells,  or  loosening  of  t he  contact,  which  was  a  source  of  

additional fluctuations. In so me cases, s hadowing of t he  su nlight  by the  s ur roun ding  

t rees  in  early m ornings  or  late  af ternoons  have been  repor ted  as  well. If for  exam ple  

the  pyrano meter  was  placed  a t  a  cer tain  dis tance  fro m  the  cells,  it  is  possible  t ha t  

t he  sha dowing  of  t he  cell  by  the  t rees  would  no t  be  recorded  by  the  pyrano meter,  

which  could  resul t  in  a  wrong  es timation  of  Isc.  Bird  d rop pings  an d  d us t  are  

additional  factors  con tribu ting  to  perfor mance  variations.  All  t he  afore mentioned  

factors  can  greatly con tribute to  da ta  s p read.

Results  of  Measure ments : The  da ta  were  p rocessed  an d  p resented  in  similar  m a n ner  

as  for  T1A s tu dies. Figure  12  shows  the  res ul ts  of  T3A m eas ure ment s  on  16  ST type  

m o d ules  by  to tal  of  6  groups. Table 18  s hows  the  average values  and  SDs calculated  

for  5  time  point s.  Deviations  in  t his  case  are  so mewhat  larger  (up  to  nearly  15%) 

com pared  to  s helf  life  s tu dies,  bu t  t he  difference  is  no t  significant  considering  all  

t he  afore mentioned  fluctua tions.  It  can  be  explained  by  two  reasons:  1.  The  

frequency  of  measure ments  in  t his  s tu dy  was  quite  high  (in  t he  range  of  15  min  to  

few hrs) an d  therefore, t he  de ter mination  of  m aximu m  values  was  ra ther  accura te; 2.  

The m o d ules  re mained  on  the  pla tfor m s  a t  all times  and  the  mechanical s t resses  d ue  

to  han dling were th us  minimal. 
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Figure  12.  Variation  of  pv  para meters  across  t he  time  meas ured  on  16  m o d ules  
(orange  rectangles).  The  para meters  are  nor malized  to  m aximal  values.  Horizon tal  
axes  represent  t he  time  (hrs). The  das hed  line  intersects  t he  average  values  and  the  
error  bars  represen t  t he  SDs. 

Table  18.  The  average  of  pv  para meters  a t  different  times  and  the  correspon ding  

SDs.

Time (hrs) Isc (Normalized) Voc (Nor malized) FF (Nor malized) PCE(Nor malized)
Average SD Average SD Average SD Average SD

t m ax 100 - 100 - 100 - 100 -
200 84 11.6 97 2 95 3.9 83 9
400 72 12.7 96 3.4 86 7.4 63 14.6
700 66 11.4 92 6.5 73 9.7 50 14.3

1000 62 12.7 90 10.8 68 9.9 42 14.5
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In tra - laboratory  and  Inter - laboratory  studies : In ad dition, Table 19  shows  the  values  

an d  the  ra tio  of  intra - laboratory  an d  inter - laboratory  SDs  for  13  m o d ules.  The  

intra - laboratory  variations  are  below  60  % of  t he  inter - laboratory  variations  for  all 

t he  para meters.

Table 19. Intra - laboratory an d  Inter - laboratory SD values  averaged  for  4  time  point s  

an d  their  ra tio in percent.

SD Isc Voc FF PCE
Inter - Laboratory 10.6 5.6 6.9 11.6
Intra - Laboratory 4.4 3 3.7 4.7

Ratio 42 % 56 % 58 % 42 %

Conclusions for T3A  and  Suggestions for Improve me nts : 

• Overall,  t he  deviations  of  t he  da ta  across  labs  are  well  below  15  %, which  is  

ra ther  low  considering  the  large  variations  of  t he  conditions  a mong  the  

laboratories. Such  low n u m bers  are  a t t ribu ted  to  t he  facts  t ha t  t he  ha n dling of  

devices  in  t his  experiment  is  minimal  and  the  frequencies  of  t he  

meas ure ment s  are high  allowing accurate deter mination  of t he  lifetimes.

• One of  t he  m ajor  factors  cont ributing  to  t he  s p read  of  da ta  in  t his  experiment  

is  t he  difficulty  of  calcula ting  the  correct  cur ren t  d ue  to  u ncer tain ty  in  t he  

light  intensi ty  de ter mination.  Differen t  energy  doses  across  t he  laboratories  

are ano ther  factor  of variability.

A n u m ber  of s teps  can  improve the  accuracy of t hese  m eas ure ment s, such  as: 
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• The m o d ules  have to  be placed away fro m  any possible sha dows

• The  light  intensity  s hould  be  measured  as  frequen tly as  possible and  repor ted  

in  order  to  accura tely  quan tify  t he  accu m ulative  energy  dose  received  by  the  

m o d ule at  any given time

• The  measure men ts  of  light  intensi ty  an d  IV  curves  should  be  accura tely  

correla ted  

• The measure men ts  p refor med  while t he  intensi ty fluctuates  by m ore  than  10 % 

within a  period  of 10   minu tes  s hould  no t  be t aken  into  accoun t

1.3.6.2 T3B  

The  difference  of  T3B  fro m  T3A  was  tha t  t he  cells  were  s tored  out side,  bu t  t he  

meas ure ment s  were  carried  ou t  inside  u n der  a  calibra ted  light  sources.  It  excluded  

the  factor  of  fluctua tions  an d  miscalculations  of  s un  irradiation  intensi ty.  Yet,  it  

adde d  the  factor  of  periodic  ha n dling  (periodic  dis moun ting  fro m  an d  m o u n ting  on  

the  ou t door  pla tfor m  af ter  indoor  characteriza tion)  of  t he  m o d ules  an d  thus  

increased  the  m echanical  s t resses  on  the  m o d ules.  Further more,  t he  measure ments  

were  obviously  less  frequen t  in  t his  case  (1 / day  to  1 /week). T3B also  requires  m ore  

workload  for  t he  experimenter  to  carry ou t  t hese  m easure ment s  com pared  to  T3A. 

Results of  Measure ments : 15  Laboratories  carried  ou t  T3B type  experiments  on  23  ST 

type m o d ules  and  6  of 3  o ther  type  m o d ules. Figure 13  s hows the  raw da ta  for  I sc for  

23  ST type  m o d ules.  5  curves  ou t  of  23  m arked  with  red  circles  in  t he  figure  have  a  
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catas t rop hic  failure,  which  is  a t t ribu ted  to  t he  han dling  of  t he  devices.  If  t hese  5  

curves  are excluded  then  the  general resul ts  for  T3B will ap pear  as  in Figure 14.
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Figure  13.  Raw  da ta  of  Isc for  23  m o d ules.  The  values  are  nor malized  to  t he  
m aximu m.  Horizon tal  axis  is  t he  time  (hrs).  Red  circles  s how  the  curves  with  
ca tas t rop hic failures. 

Table  20  s hows  the  average  an d  SD  values  for  T3B  withou t  t he  ou tliers.  The  

deviations  are  within  ap proximately  16  %. If  all  t he  failed  curves  are  added  to  t he  

calculations  then  the  s p read  of da ta  will increase significantly reaching u p  to  26  %. 
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Figure  14.  Variation  of  PV para meters  across  t he  time  measured  on  18  m o d ules  
(orange  rectangles).  The  para meters  are  nor malized  to  m aximal  values.  Horizon tal  
axes  represent  t he  time  (hrs). The  das hed  line  intersects  t he  average  values  and  the  
error  bars  represen t  t he  SDs. 

Table  21  s hows  the  inter - laboratory  and  the  intra - laboratory  deviations.  The 

n u m bers  are  again  calculated  excluding  the  failed  curves.  Except  for  Voc,  all  o ther  

ra tios  between  intra - laboratory  and  inter - laboratory  SDs  are  below  40%. The  fact  

t ha t  both  nor mal and  failed  curves  have been  recorded  for  m o d ules  meas ured  in  t he  

sa me  laboratory  u n der  sa me  conditions  fur ther  p roves  the  hypo thesis  t ha t  t he  

ca tas t rop hic  failure  of  t he  curves  is  caused  by  han dling  an d  no t  by  the  s torage  

conditions.  The  ad ditional  s p read  of  da ta  in  t his  experiment  comes  from  the  fact  

t ha t  t he  meas ure ments  are  less  frequen t  and  therefore  t he  es timation  of  t max is  very 

app roximate,  which,  as  was  m en tioned  earlier,  can  significantly  cont ribute  to  t he  

s p read  of SD values.  

Table  20.  The  average  of  pv  para meters  a t  different  times  and  the  correspon ding  

SDs.
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Time (hrs) Isc (Nor malized) Voc (Normalized) FF (Nor malized) PCE (Nor malized)
Average SD Average SD Average SD Average SD

t m ax 100 - 100 - 100 - 100 -
200 93 4.2 99 1.2 97 3.7 93 5.9
400 89 4 98 1.7 91 6.6 83 8.9
700 80 5.5 98 2.2 83 10.2 68 12.4

1000 74 10 96 3.5 79 12.6 57 16.2

Table  21.  Intra - lab  and  Inter - lab  SD values  averaged  for  4  time  point s  an d  their  

ra tio in percent.

SD Isc Voc FF PCE
Inter - Laboratory 6.6 1.7 8.7 10.3
Intra - Laboratory 2.7 1.1 3.1 4.1

Ratio 37 % 62 % 37 % 39 %

Conclusions to T3B: To conclude T3B, a  n u m ber  of  curves  (22 % of to tal curves) ha d  a  

ca tas t rop hic  failure  at  so me  point,  which  was  ascribed  to  t he  mechanical  s t resses  

cause  by  periodic  han dling  of  t he  cells.  If  t he  failed  curves  are  excluded  then  the  

s tan dard  deviations  for  t he  p ho tovoltaic para meters  are within  16  %, which  is m os tly  

ascribed  to  t he  u ncer tain ty of  t max d ue  to  scarce da ta  an d  therefore, t he  inaccuracy in  

nor maliza tion  of p ho tovoltaic da ta. 

1.3.6.3 Standard Outdoor Testing at  ATLAS

ATLAS  Material  Testing  Technology  LLC  carried  ou t  3  types  of  ou t door  tes ting  

according  to  ASTM interna tional  s tandards,  such  as  Emmaqua,  Deser t  Weathering  

an d  Inland  Weathering.  The  Table  in  figure  15  s hows  the  types  and  the  de tails  of  

each  experiment  and  the  p ho tos  illus t ra te  t he  ou t door  platfor ms  u sed  for  tes ting.  

Unfor tuna tely, a  p ho to  for  inland  weathering is not  available.
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1 2

Test  Type Emmaqua Deser t  Weathering Inland  Weathering
Test  Location New River, Arizona New River, Arizona Miami, Florida
Nu mber  of  Modules 9 9 9
Standar ds ASTM G147 -  2009 ASTM G24 -  2005

ASTM G7 -  2005
ASTM G147 -  2009
ASTM G7 -  2005

Exposure  Type Exposure tes ting is 
perfor med  in  
accordance with  ASTM 
G90,
SPRAY CYCLE 1  
(EMMAQUA, day sp ray 
with  night  time  
wet ting). 
Specimens  are exposed  
on  a Tem perature  
Cont rolled  EMMAQUA 
with  a tem peratu re no t  
to  exceed  80° C

Exposure  tes ting is  
perfor med  in 
accor dance with  
Governing
Standar ds  a t  a  tilt  
angle(s) of 5° fro m  the  
horizon tal facing 
sout h. 

Direct  5° facing sou th,  
plywood  backing;
Energy dose:
426 MJ / m ²  (Total); 
10,182 Langleys
UV: 26  MJ / m ²  (295 - 385  
n m)

Figure  15.  The  table  outlining  the  details  of  3  s tan dar d  tes t s  carried  ou t  by  ATLAS an d  p hotos  
illus t ra ting the  ou tdoor  pla tfor ms  for  Emmaqua  (1) an d  Deser t  Weathering (2).

However,  d ue  to  t he  relatively  low  a m perage  of  t he  s mall  m o d ules  s tu died  here  it  

was  no t  possible to  measure  the  IV curves  a t  t he  recipient  ATLAS labora tories. Thus,  

af ter  different  times  of  exposure  the  m o d ules  were  shippe d  to  Risø  DTU an d  measu  

u n der  calibra ted  light  simulators  to  evaluate  t he  decay  level  of  each  m o d ule  a t  a  

cer tain  time  period.  All  t he  m eas ured  values  were  nor malized  to  m easure ment s  

perfor med  a t  Risø  DTU prior  to  shipping  to  ATLAS. Figure  16  s hows  the  decay  of  

each  p ho tovoltaic  para meter  af ter  a  cer tain  time  of  exposure.  One  has  to  keep  in  
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mind,  t ha t  each  point  in  t he  plot s  cor respon ds  to  differen t  m o d ules  an d  the  plo ts  

s hould  no t  be  regarded  as  decay curves. However, t he  resul ts  give a  good  insight  into  

how  the  m o d ules  behave  a t  differen t  conditions.  The  time  axes  only  consider  t he  

exposure  time and  no t  t he  s hipping time and  s torage in t he  dark.
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Figure 16.  Decay of  all pv  para meters  of  t he  m o d ules  af ter  cer tain  time  of  exposure.  
Each point  corres pon ds  to  different  m o d ule.

Clearly  Emmaqua,  which  involves  periodically  s p raying  the  sa m ples  with  water,  is  

degrading the  sa m ples  very fas t  com pared  to  two other  tes t s, while no  difference can  

be  seen  between  inland  and  deser t  experiment s.  No  firm  conclusions  can  be  m a de  
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however,  since  each  m o d ule  was  m easured  only  a t  one  time  point  and  differen t  

m o d ules  are com pared  along the  time axes. 

1.3.7 Co mparison of Different Tests

Table 22  s u m m arizes  all t he  p ros  and  cons  for  T1A, T2, T3A an d  T3B.

Table 22. Com parison  of 4  differen t  tes t s.

Test T1A T2 T3A T3B
Nu mber  of  grou ps  (modules) 18  (47) 13  (43) 6  (25) 15  (25)
Average  of  inter - lab  (intra - lab)  SDs 
of Isc

6.3 (2.4) 22  (4.4) 12  (4.4) 5.9 (2.7)

Average  of  inter - lab  (intra - lab)  SDs 
of Voc

3.3 (1.9) 4.4 (2.3) 5.7 (3) 2.2 (1.1)

Average  of  inter - lab  (intra - lab)  SDs 
of FF

6.2 (3.5) 13  (6) 7.7 (3.7) 8.3 (3.1)

Average  of  inter - lab  (intra - lab)  SDs 
of ɳ

8.5 (4.4) 19  (8.9) 13  (4.7) 11  (4.1)

Average T80 615 h rs 122 h r s 230 h rs 460 h rs*
Frequency of measure men ts Poor Sufficient Sufficien t Poor
Accuracy  of  Light  Intensity  d u ring  
measure men ts

Sufficient  (1 
su n)

Sufficien t  (1 
su n)

Poor  
(fluctuating)

Sufficient  (1 
su n)

Effect  of a mbien t  te m p. an d  RH Minimal Significant Major Major
Effect  of periodic han dling Major Minimal Minimal Major
Effect  of Light Spectru m Minimal Major Minimal Minimal

*The  reason  that  T3B has  in  average  longer  lifetime  is  because  in  case  of  T3A m o d ules  measured  a t  
Sede  Boqer  were  dying  q uickly  d ue  to  ra ther  high  te m peratu res  an d  th us  significantly  affect  t he  
average

1.3.8 Results of additional studies

1.3.8.1 MPP versus Open Circuit

The  grou p  from  TU Graz  tes ted  the  degrada tion  of  two  identical  devices  u n der  light  

soaking  (T2),  while  one  of  t he m  was  kep t  a t  open  circuit  and  the  o ther  a t  t he  

m aximu m  power  poin t  (MPP)  u sing  a  Keithley 2400  SMU. Figure  17  shows  the  decay  

of  t he  p ho tovoltaic  para meters  for  both  m o d ules.  Although,  t here  is  a  significant  
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difference in t he  dyna mics  of  t he  decay, overall the  degrada tion  of  bo th  devices  is in  

t he  sa me  range.  However,  since,  only  two  m o d ules  were  tes ted,  it  is  hard  to  m ake  

any firm  conclusions. Keeping the  device a t  MPP d uring s torage (active load) requires  

an  expensive  se tu p,  which  can  be  a  h u rdle  for  so me  groups.  Thus,  in  order  to  

com pare  s tability  a mong  m a ny  groups,  perhaps  open  circui t  or  a  passive  load  (a  

resis tor,  which  keeps  the  cell  a t  MPP  at  t he  t 0 poin t)  s hould  be  sugges ted  as  a  

s tan dard  p rocedure, while active load  can  be u sed  in advanced  tes ting techniques. 
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Figure  17.  Light  soaking  tes ting  of  two  iden tical  m o d ules  one  kep t  open  circuited  
(blue  rho mbs)  an d  o ther  a t  m p p  (red  squares)  carried  ou t  by  the  group  fro m  TU  
Graz.
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1.3.8.2 Additional Protecting of the Sa mple

The  group  from  ECN showed  how  ad ditional  p ro tection  by  a  vacuu m  bag  can  affect  

t he  perfor mance  of  devices  d u ring  the  ou t door  expos ure  (T3B). Figure  18  s hows  PCE 

versus  time  for  two  iden tical m o d ules  one  being p ro tected  additionally by  a  vacuu m  

bag. The figure clearly s hows  a  breaking of t he  m o d ule withou t  additional p ro tection  

a t  aroun d  t 400 p robably  d ue  to  ha n dling,  while  t he  one  with  ad ditional  p ro tection  

increases  t he  perfor mance  d uring  the  timeline  of  t he  en tire  experiment.  It is  ha rd  to  

m ake  any  conclusions,  as  only  two  m o d ules  were  com pared.  However,  t he  

experiment  confirms  the  fact  tha t  reducing  the  effect  of  environ mental  factors  can  

considerably change the  perfor mance of t he  m o d ule.
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Figure  18.  Outdoor  tes ting  two  iden tical  m o d ules  one  being  additionally  p ro tected  
by a vacuu m  bag. The measure men ts  were carried  ou t  by the  grou p  fro m  ECN.
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1.3.8.3 Inflection Point Studies

A  nu m ber  of  grou ps  worked  on  the  reproducibility  of  t he  inflection  poin t.  In  

par ticular,  t he  group  from  Israel  observed  a  recovery  of  t he  FF af ter  t he  device  was  

kep t  in  a  dark  for  long  time  an d  then  p ho to - annealed  u n der  real  s un  for  s hor t  

period.  The  grou p  fro m  Barcelona  s howed  the  recovery  of  PCE when  the  device  (MN 

type) was  kep t  in  t he  dark  and  m easured  u n der  light  t he  firs t  time  and  af ter  a  delay  

(25  min)  t he  second  time  Figure  19(left).  The  recovery  ap pears  for  all  p ho tovoltaic  

para meters  (Isc, Voc, FF an d  PCE), bu t  it is especially p ronou nced  in FF. The group  also  

s howed  the  firs t  increase  and  fur ther  degradation  of  IPCE for  a  ST type  m o d ule kept  

in dark  and  measured  u n der  light  source shown in Figure 19(right). 

 

Figure  19.  Recovery  of   af ter  each  p ho to - annealing  d ue  to  t he  inflection  poin tɳ  
effect  for  MN  type  device  (left)  an d  the  dyna mics  of  IPCE  change  d u ring  decay  
s t u dies  for  ST type m o d ule (right) repor ted  by  t he  grou p  fro m  CIN2, CSIC, Barcelona.
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Similarly  resul ts  were  repor ted  by  the  group  fro m  Konarka  Tech.  Figure  20  (left)  

s hows  similar  recovery na tu re  of  PCE, while  Figure  20  (right) s hows  the  dyna mics  of  

IV-curve change d uring the  p ho to - annealing of t he  m o d ule.
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Figure  20.  Recovery  of   af ter  each  p ho to - annealing  d ue  to  t he  inflection  poin tɳ  
effect  (left) and  the  dyna mics  of  t he  IV-curve  d u ring  p ho to - annealing  of  t he  device  
repor ted  by Konarka Tech.

1.3.9 Unreadable Data

Some of t he  da ta  were  ca tegorized  as  u nreadable, since it was  impossible to  evalua te  

t he  degrada tion  of  t he  para meters. As an  exam ple, Figure  21  shows  curves  of  Isc vs.  

time  for  two  different  m o d ules.  The  lines  are  for  guiding  the  eye.  The  reasons  for  

s uch  fluctuations  are  p robably  because  the  cells  have  been  periodically  exposed  to  

differen t  environ ment s, s uch as, a  d rawer, light  soaking and  ou t door  exposure.

Another  factor  t ha t  ha m pered  the  accura te  es timation  of  degrada tion  of  para meters  

was  the  scarce  da ta  taken  d u ring  the  tes t.  For  exa m ple,  2  or  3  times  m eas ured  

devices  d uring  1000  h r s  canno t  sufficiently  give  a  picture  of  t he  decay.  5  poin t s  

could  m ore  or  less  suffice,  although  de ter mina tion  of  t max would  involve  large  
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u ncer tain ty  and  thus,  cont ribute  in  t he  s p read  of  general  da ta.  In  addition,  of ten  

meas ure ment s  were  carried  out  only  d u ring  the  firs t  100  – 200  h r s  an d  therefore,  

could  not  be es timated  to  1000 h r s. 
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Figure 21. Examples  of u nreadable da ta.

1.4 Future w ork and recommended guidelines  based on this  w ork

This work revealed  a n u m ber  of issues  t ha t  need  to  be  fur ther  s tu died:

• The  sensi tivity  of  OPVs  towards  the  light  s pectru m  can  lead  to  

u n deres timation  of  t he  perfor ma nce  d ue  to  lower  con ten t  of  UV in  the  m os t  

indoor  light  sources  com pared  to  real  s un  in  cases  where  p ho to - do ping  is  an  

impor tan t  element  of device perfor mance. 

• If  t he  timescale  of  t he  dyna mic  changes  in  t he  p ho tovoltaic  res ponse  for  t he  

tes ted  devices  are  in  t he  sa me  range  as  t he  frequency of  t he  measure ments,  it  

can  resul t  in  an  inaccurate  es timation  of  t he  lifetime  (such  as  T80) of  a  device.  
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Other  me tho ds  for  accura te  es timation  of  a  device  lifetime  in  s uch  a  case  are  

required.  

• Handling  of  flexible devices  or  m echanical  s t resses  can  significantly affect  t he  

degrada tion  kinetics.

• A n u m ber  of  te m pera ture / rela tive  h u midity  combinations  have  to  be  defined  

an d  e m ployed  for  s tability  s t u dies  u n der  indoor  conditions  (both  in  dark  and  

light) a mong all t he  laboratories.   

• Light  sources  with  defined  s pect ral  dis t ribu tions  have  to  be  use d  for  light  

soaking tes t  in order  to  obtain com parable da ta  for  device lifetimes.

• A m et ho d  is  required  for  correct  de ter mination  of  light  intensi ty  in  ou t door  

s t u dies  an d  accura te  correlation  of  IV measure ments  with  t he  m easured  light  

intensity, which  can  significantly improve the  accuracy of  quan tification  of  t he  

lifetimes  in ou t door  conditions.

• Load  conditions  have  to  be  defined  for  devices  s tored  u n der  light.  The  

app roach  has  to  mee t  t he  capabilities of all or  m os t  of t he  grou ps.    

1.5 Conclusions

Inter - laboratory  s tability  s tu dies  of  roll - to - roll  coated  organic  solar  cell  devices  

were  perfor med.  Lifetimes  of  t he  devices  were  within  a  few  h u n dred  hours  in  

average, which  allowed  for  various  types  of  tes ting across  different  laboratories. Five  

ca tegories  of  s tability  tes ting  were  es tablished  based  on  the  ISOS -1&2  p rotocols.  

Twenty  four  laboratories  from  ten  coun t ries  and  across  four  continen ts  carried  ou t  
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differen t  tes t s. Deviations  across  t he  laboratories  an d  within  the  sa me  labora tory for  

p ho tovoltaic  para meter  decay  were  calcula ted  and  com pared.  The  advan tages  an d  

disadvantages  of  various  tes ting p rocedures  were discussed  an d  a  a  set  of guidelines  

for  fu ture  work  was  s uggested.  The  resul ts  can  help  in  es tablishing  s tandardized  

p rocedures  for  s tability tes ting of OPV devices.
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