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ABSTRACT  

The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress 

response and the regulation of plant growth and development. ABA binding to 

PYR/PYL/RCAR intracellular receptors leads to inhibition of key negative regulators of 

ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as ABI1 and 

HAB1, causing the activation of the ABA signaling pathway. In order to gain further 

understanding on the mechanism of hormone perception, PP2C inhibition and its 

implications for ABA signaling, we have performed a structural and functional analysis 

of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a gain-of-

function mutation in a critical residue of the phosphatase, hab1W385A, which abolished 

ABA-dependent receptor-mediated PP2C inhibition without impairing basal PP2C 

activity. As a result, hab1W385A caused constitutive inactivation of the protein kinase 

OST1 even in the presence of ABA and PYR/PYL proteins, in contrast to the receptor- 

sensitive HAB1, and therefore hab1W385A qualifies as a hypermorphic mutation. 

Expression of hab1W385A in Arabidopsis thaliana plants leads to a strong, dominant 

ABA-insensitivity, which demonstrates that this conserved Trp residue can be targeted 

for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the 

critical role of molecular interactions mediated by Trp385 equivalent residues for clade 

A PP2C function in vivo and the mechanism of ABA perception and signaling. 
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INTRODUCTION 

Abscisic acid (ABA) is required for biotic and abiotic stress responses as well as the 

control of plant growth and development. Plant growth can be severely impaired by 

adverse environmental conditions like drought, salinity, cold or high temperature, which 

can reduce average productivity of crops by 50% to 80% (Bray et al., 2000). ABA plays 

a key role in orchestrating the adaptive response of the plant to cope with these forms of 

abiotic stress (Cutler et al., 2010; Verslues et al., 2006). Under drought  stress, cleavage 

of ABA from ABA conjugates stored in the vacuole or apoplastic space (Lee et al., 

2006) as well as de novo ABA biosynthesis  (Nambara and Marion-Poll, 2005) are 

stimulated, leading to a sharp increase in the cellular concentration of the hormone. This 

elicits a plant response that limits water loss and, under prolonged stress, the hormone 

response adapts plant metabolism to the low water potential of the cellular environment.  

 A large number of cellular components have been implicated in the ABA 

signaling pathway (Hirayama and Shinozaki, 2007). However, recently it has become 

clear that just three types of proteins constitute the so-called “core ABA pathway” 

(Cutler et al., 2010).  These include the family of PYR/PYL/RCAR ABA receptors, the 

clade A of protein phosphatases type 2C (PP2Cs) and three ABA-activated protein 

kinases from the sucrose non-fermenting1-related subfamily 2 (SnRK2) (Cutler et al., 

2010). Under non-stress conditions clade A PP2Cs can interact with and 

dephosphorylate three SnRK2s, i.e. 2.2, 2.3 and 2.6/OST1, reducing their catalytic 

activity (Umezawa et al., 2009; Vlad et al., 2009).The increase of ABA levels in the 

plant cell leads to the PYR/PYL/RCAR receptor-mediated inhibition of the PP2C 

activity which results in the activation of the three SnRK2s and ultimately of the ABA 

signaling pathway (Ma et al., 2009; Park et al., 2009; Umezawa et al., 2009; Vlad et al., 

2009). Upon activation, the SnRK2s directly phosphorylate transcription factors that 

bind to ABA-responsive promoter elements (ABREs), named ABFs/AREBs for ABRE-

binding factors, and components of the machinery regulating stomatal aperture like the 

anion channel SLAC1 (Fujii et al., 2009; Fujita et al., 2009; Geiger et al., 2009; Lee et 

al., 2009). 

 To date, three receptors, i.e. PYR1, PYL1 and PYL2, and two receptor-ABA-

phosphatase complexes, i.e. PYL1-ABI1 and PYL2-HAB1, have been studied at a 

structural level, which has contributed to the understanding of the molecular 
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interactions between receptor, hormone and phosphatase (Melcher et al., 2009; 

Miyazono et al., 2009; Nishimura et al., 2009; Santiago et al., 2009a; Yin et al., 2009). 

The PYR/PYL/RCAR proteins belong to the super-family of START/Bet v proteins, 

whose members are widespread in eukaryotes and are characterized by the presence of a 

cavity able to accommodate hydrophobic ligands (Iyer et al., 2001; Radauer et al., 

2008). This cavity represents the hormone-binding pocket and is flanked by two flexible 

loops (b3-b4 and b5-b6), the so-called gating loops, which close over the hormone once 

inside the binding pocket.  In the two structures available from ternary complexes, the 

ABA-bound receptor contacts the PP2C through the gating loops that cover the ABA-

binding pocket. Thus, the side-chains of Ser112 of PYL1 and the Ser89 of PYL2, 

located in the b3-b4 loop, insert into the PP2C active site and presumably occlude the 

access of the substrates (Melcher et al., 2009; Miyazono et al., 2009; Yin et al., 2009). 

These conserved Ser residues establish contacts with Gly180 of ABI1 or Gly246 of 

HAB1, next to the PP2C active site, and the metal-coordinating residue Glu142 of ABI1 

or Glu203 of HAB1, respectively. Another important feature of the ternary complex, 

involves a key water-mediated interaction between the ABA´s ketone group and the 

Trp300 or Trp385 residue of ABI1 or HAB1, respectively. Indeed, this is the only 

residue of the PP2C approaching the ABA molecule and accordingly, this interaction 

has been postulated to play a key role in the stabilization of the whole ternary complex, 

contributing to the higher ABA affinity measured for PYR/PYL/RCAR receptors in the 

presence of the PP2Cs (Ma et al., 2009; Santiago et al., 2009b). However, beyond the 

structural data, no in planta evidence has been provided for its direct role in ABA 

signaling. Moreover, the ternary complexes analyzed at a structural level have not 

included PYR1, which plays a predominant role in germination (Park et al., 2009). 

 Plants harbouring abi1G180D, abi2G180D and hab1G246D dominant mutations have 

represented valuable tools to dissect ABA signaling (Leung et al., 1994; Leung et al., 

1997; Meyer et al., 1994; Robert et al., 2006; Rodriguez et al., 1998). Their ABA-

insensitive phenotypes are in agreement with a reduced capacity of the mutant PP2Cs to 

interact with PYR/PYL/RCAR receptors (Park et al., 2009; Santiago et al., 2009b; 

Umezawa et al., 2009). In spite of their utility, these alleles bear mutations close to the 

phosphatase catalytic site and have reduced basal PP2C activity (Bertauche et al., 1996; 

Leube et al., 1998; Leung et al., 1997; Robert et al., 2006) Rodriguez et al., 1998), 

which has complicated the interpretation of their in vivo phenotypes. Mutations in the 
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conserved Trp residue described above have not been isolated by forward genetic 

screens, or engineered in Arabidopsis plants, and the functional relevance of this residue 

has been documented uniquely on in vitro studies for the case of ABI1 (Miyazono et al., 

2009).  Since mutations in the Trp residue are expected to affect the stability of the 

ternary complex without compromising the phosphatase catalytic activity, they 

represent an ideal tool for studying in planta the effect of de-coupling the receptor and 

phosphatase interaction.  

 Here we present a combined structural and functional analysis of the ternary 

complex formed by PYR1-ABA-HAB1. We analyzed the effect of PYR1-HAB1 

mutations on OST1 kinase activity in vitro, since this SnRK2 is a key target of HAB1 

(Vlad et al., 2009). We also performed in planta analysis of a hab1W385A mutation that 

de-couples receptor and phosphatase interaction without impairing PP2C activity. These 

transgenic plants show an acute ABA-insensitivity demonstrating the importance of 

ABA-mediated PYR/PYL/RCAR-PP2C contacts for receptor function in vivo, and 

enabling a new method for probing PP2C function with dominant receptor-insensitive 

mutations.  

   

RESULTS 

Architecture of the PYR1-ABA-ΔΝHAB1 ternary complex  

The PYR1 receptor and the catalytic domain of the HAB1 phosphatase (residues 179-

511, ΔΝHAB1) were separately overexpresed in E. coli, purified and mixed in 

equimolar amounts in the presence of 1 mM (+)-ABA. The resulting complex was 

assayed for crystallization at the high throughput crystallization facility of the EMBL 

Grenoble Outstation (https://embl.fr/htxlab) (Dimasi et al., 2007). X-ray diffraction data 

was collected from orthorhombic crystals at the ID14-4 beam line of the ESRF to 1.8 Å 

resolution. Initial phases were obtained by the molecular replacement method using the 

two central β-sheets of the catalytic domain of the human PP2Cα protein (1A6Q) (Das 

et al., 1996) as a search model. The initial phases provided an easily interpretable 

electron density map extending outside the search model region. Successive rounds of 

automatic refinement and manual building resulted in a refined model with a Rwork and 

Rfree of 17.4% and 21.8 % respectively. In the refined model, the crystallographic 
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asymmetric unit contains one molecule of PYR1 one molecule of ΔΝHAB1, one 

molecule of ABA and three manganese ions (Fig. 1 and Table I). 

 The structure of PYR1 in the complex is very similar to that of the ABA-bound 

subunit in dimeric PYR1 (Nishimura et al., 2009; Santiago et al., 2009a). The ABA 

molecule is located in the receptor cavity stabilized by both polar and hydrophobic 

interactions and the gating loops are in the closed conformation, as described previously 

(Nishimura et al., 2009; Santiago et al., 2009a) (Fig. 1). Subtle differences between the 

two PYR1 structures likely induced by interaction with HAB1 are found around Ser85 

in one of the gating loops, and the loop β7/α5, adjacent to the gating loops (Fig. 1, B 

and C). The structure of the HAB1 catalytic domain is similar to those of Arabidopsis 

ABI1 (Melcher et al., 2009; Miyazono et al., 2009; Yin et al., 2009) and the human 

PP2Cα protein phosphatase (Das et al., 1996). It is formed by a central 10-strand 

antiparallel β-sandwich flanked by two long α-helices at each side. A 55 amino acid α/β 

domain, which has been named the flap sub-domain in some bacterial PP2Cs (Schlicker 

et al., 2008) is inserted between strands β8 and β12 of HAB1. This sub-domain contains 

the HAB1 Trp385 (Fig. 1A), which is highly conserved in plant clade A PP2Cs.  Small 

conformational differences between the three phosphatases are found at the β2-β3 and 

α1-α2 loop regions of HAB1. In addition to this, HAB1 displays a 16 amino acid 

insertion at the α3/β4 loop not found in ABI1 and the human PP2Cα (Supplemental 

Fig. S1).  

 The catalytic site of HAB1 is located inside a deep channel formed at the top of 

the β-sandwich and flanked by the flap sub-domain (Fig. 2; Supplemental Fig. S2). In 

our structure, the catalytic site of HAB1 contains three metal ions designated here as 

M1, M2 and M3 according to Alzari and co-workers (Wehenkel et al., 2007) (Fig. 2). 

While some protein phosphatases contain two metal ions at the catalytic site, a few 

bacterial phosphatases have been shown to display a third conserved metal ion site, M3 

(Pullen et al., 2004; Schlicker et al., 2008; Wehenkel et al., 2007). The M3 site, is 

located at the exit of the catalytic channel and is typically coordinated by one conserved 

aspartic residue also involved in coordination of the metal at M1 (Asp432 for HAB1), 

and one residue from the flap domain. In some bacterial PP2Cs coordination of the third 

metal ion at M3 has been correlated with a change in position of the flap sub-domain 

(Wehenkel et al., 2007), however, this site displays low metal binding affinity and has 
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been shown to be dispensable for catalysis (Wehenkel et al., 2007). To our knowledge, 

HAB1 is the first eukaryotic PP2C with three metal sites.  

 Molecular interactions stabilizing the PYR1-ABA-HAB1 complex 

The PYR1-HAB1 interface comprises a total protein buried surface area of 1691 Å2. As 

in the case of the PYL2-HAB1 and PYL1-ABI1 structures (Melcher et al., 2009; 

Miyazono et al., 2009; Yin et al., 2009), HAB1 docks into the ABA-bound receptor 

establishing interactions with the gating loops (loops β3/β4 and β5/β6), the N-terminal 

part of the α5 helix and the α4/β2 loop of PYR1 (Fig. 1, A-C).  The HAB1 residues 

involved in those interactions are located both in the flap sub-domain including Trp385 

and the phosphatase active site including the β1/β2 , β3/α1 and α2/β4 loops (Fig. 1, A-

C; Fig. 2; Supplemental Fig. S3). The HAB1 Trp385 residue is inserted between the 

PYR1 gating loops with the nitrogen in the indole group establishing a hydrogen bond 

with the water located at the channel between the gating loops (Fig. 1B). This water 

molecule represents a critical point in the ternary complex, establishing hydrogen bonds 

not only with HAB1 Trp385 but also with the receptor gating loops (with the backbone 

carbonyl and amine groups of Pro88 and Arg116 respectively) and with the hormone 

itself, through its ketone group. Comparison of the present structure with the previously 

reported structures of isolated PYR1 reveals a conformational rearrangement in the 

β7/α5 loop of PYR1 upon binding to HAB1. This loop moves forward towards the flap 

domain of HAB1 (Fig. 1B), establishing new interactions that stabilize both the closed 

conformation of the gating loops and the receptor-phosphatase complex. These 

interactions involve Asn151 of PYR1, which is hydrogen bonded to both the carbonyl 

group of HAB1 Gln384 in the flap domain and PYR1 Arg116, located in one of the 

gating loops. At the same time, in the present structure the side chain of PYR1 Ser152 is 

involved in a helix capping interaction (Presta and Rose 1988) that stabilizes the 

forward movement of the β7/α5 loop. 

 Another important interaction region involves the PYR1 β3/β4 loop containing 

Ser85 and the catalytic site of the phosphatase (Fig. 1C). PYR1 Ser85 takes part in a 

hydrogen bond network with the backbone amine of Gly246 and the carboxylic group 

of Glu203 at the catalytic site of HAB1. This interaction is likely to be responsible for 

the inhibition of the phosphatase activity, as the β3/β4 loop containing Ser85 seems to 

block access to the phosphatase catalytic site (Fig. 2).  The structure of the human 
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PP2Cα contains a phosphate ion at the catalytic site, which is likely mimicking the 

position of the phosphorylated amino acid substrate (Das et al., 1996). Interestingly, 

when PP2Cα and HAB1 catalytic cores are superimposed the phosphate ion of human 

PP2Cα is 2.9 Å away from the Cβ carbon of Ser 85 of PYR1 (Fig. 2; Supplemental Fig. 

S4), which suggests that a phosphoserine substrate might enter the catalytic site in a 

similar manner. 

Mutational analysis of the PYR1-HAB1 interaction and effect on the HAB1-

dependent inhibition of OST1 activity 

To test the biological relevance of the interactions observed in the PYR1-HAB1 

complex, we analyzed the effect of a number of single point mutations on both proteins. 

In the case of PYR1, we mutated key amino acid residues involved in either direct 

ABA-binding (Glu94Lys, Glu141Lys and Tyr120Ala) or both ABA-binding and PP2C 

interaction, particularly residues located in the gating loops (Ser85Ala, Leu87Ala, 

Pro88Ser, Arg116Ala) and the loop β7-α5 (Ser152Leu). For HAB1 we chose the 

Gly246Asp mutation, equivalent to abi1-1D and abi2-1D mutations, since expression of 

hab1G246D in planta leads to a dominant ABA-insensitive phenotype (Robert et al., 

2006) and Trp385Ala, due to its critical interactions with the PYR1 gating loops and 

ABA. For each PYR1 mutant we first tested both its capacity to interact with HAB1 and 

inhibit its activity through yeast two hybrid (Y2H) interaction and in vitro phosphatase 

activity assays, respectively (Fig. 3, A and B; Supplemental Fig. S5). In general, the 

PYR1 mutations abolished or severely reduced the ABA-mediated interaction and the 

inhibition of HAB1 phosphatase activity as compared to the wt. An exception is the 

PYR1R157H variant. Although this mutation confers resistance to pyrabactin, a seed 

ABA-agonist (Park et al., 2009), it shows very limited effect in both the Y2H and 

phosphatase activity assays.  

In vitro reconstitution of an ABA signaling cascade can be achieved by 

combining PYR1, PP2C, SnRK2.6/OST1 and ABF2 in a test tube (Fujii et al., 2009). In 

this system, OST1 activity is measured as auto-phosphorylation as well as trans-

phosphorylation of its natural substrate ABF2. We used this assay to determine how the 

different mutations affect the control of the OST1 activity. Figure 3 shows that HAB1 

dephosphorylates OST1 and inhibits its kinase activity (lanes 1 and 2, Fig. 3, C and D). 

However, if ABA and PYR1 are added, HAB1 is inactivated, and consequently a 
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significant recovery of OST1 activity is observed (lane 5, Fig. 3, C and D). All the 

PYR1 mutants assayed, except R157H, showed a strongly decreased capacity to 

antagonize the HAB1-mediated dephosphorylation of OST1 and were unable to 

promote ABA-dependent recovery of the OST1 protein kinase activity. 

 Both HAB1 Trp385Ala and Gly246Asp mutations abolished the ABA-

dependent interaction between HAB1 and PYR1, as revealed by the Y2H and in vitro 

phosphatase activity assays (Fig. 4, A and B). In agreement with these results and in 

contrast to wild type HAB1, both mutant PP2Cs were able to dephosphorylate OST1 in 

the presence of ABA and PYR1 (Fig. 4C). Thus, both mutant PP2Cs were refractory to 

inhibition by PYR1 under these experimental conditions.  This result indicates that both 

hab1W385A and hab1G246D qualify as hypermorphic mutants compared to wild type HAB1 

in the presence of ABA and PYR1(Wilkie 1994). However, the basal dephosphorylation 

of OST1 by hab1G246D was less-effective than wild type in the absence of ABA and 

PYR1(Vlad, et al., 2009; this work), which can be explained because this mutation is 

located close to the PP2C active site. Indeed, using p-nitrophenol as substrate, hab1G246D 

showed 4 times lower specific activity as compared to wt HAB1 (4.86 ± 0.43 and 18.76 

± 2.13 nmoles Pi/min · mg, respectively). Instead, the activity of hab1W385A was similar 

to wild type both in the pNPP (20.52 ± 2.53 nmoles Pi/min · mg) and the OST1 

dephosphorylation assays (Fig. 4C).  

 In summary, the mutational analysis of both PYR1 and HAB1 confirms that the 

interactions revealed by the structural analysis of the ternary complex are crucial for the 

inhibition of HAB1 activity. Additionally, these results illustrate that certain mutations 

in the PP2C lead to escape of the inhibitory ABA-mediated PYR/PYL mechanism. The 

results obtained for hab1G246D provide additional support to the model proposed by 

Merlot and co-workers (Vlad et al., 2009) to explain the negative regulation of OST1 

activity by HAB1 and the strong ABA-insensitive phenotype of 35S:hab1G246D plants 

(Robert et al., 2006), assuming that a general escape from PYR/PYL receptors occurs in 

these plants. Indeed, we have demonstrated in vitro that hab1G246D phosphatase, as well 

as hab1W385A, are refractory to inhibition by different PYR/PYL proteins (Fig. 4D).  
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Expression of hab1W385A in Arabidopsis plants leads to reduced ABA sensitivity  

To test the biological relevance of the PYR1-ABA-HAB1 interaction mediated by the 

residue Trp385 of HAB1, we generated 35S:hab1W385A transgenic lines and examined 

their ABA response compared to 35S:HAB1 plants (Fig. 5). For this analysis, we 

selected three 35S:hab1W385A transgenic lines that showed expression levels of the 

recombinant protein similar to those of the previously described 35S:HAB1 plants (Saez 

et al., 2004), as determined by immunoblot analysis against the HA-epitope added to 

each protein (Fig. 5C). Germination and early seedling establishment of 35S:HAB1 and 

35S: hab1W385A seeds were less sensitive to ABA-mediated inhibition than wild type 

seeds (Fig. 5, A and B). Moreover, 35S: hab1W385A seeds were able to germinate and 

establish seedlings at 10 μM ABA, which is an inhibitory concentration for 

establishment of 35S:HAB1 seeds (Fig. 5, A and B).  

 Stomatal closing is a key ABA-controlled process that preserves water under 

drought conditions. We mimicked drought by exposing plants to the drying atmosphere 

of a flow laminar hood and under these conditions we measured water-loss in two-week 

old seedlings (Fig. 5, D and E). Both 35S:HAB1 and 35S:hab1W385A plants showed a 

higher transpiration rate than wild type, and water-loss in plants over-expressing the 

mutated phosphatase was higher than in the wild type PP2C. The increased insensitivity 

to ABA of the 35S:hab1W385A plants as compared to 35S:HAB1, is consistent with the 

inability of the PYRL/PYL/RCAR receptors to inhibit in vitro the activity of hab1W385A 

(Fig. 4D). Finally, the expression of ABA-inducible genes was severely reduced in 

35S:hab1W385A plants as compared to the wild type (Fig. 5F). The accumulation of these 

transcripts was also impaired in 35S:HAB1 plants; in some cases, RAB18, RD29B, the 

effect was similar to 35S:hab1W385A plants, however, ABA induction of other 

transcripts, KIN1, RD29A, P5CS and RD22, was less affected (Fig. 5F). 
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DISCUSSION 

The structure of the PYR1-ABA-HAB1 complex presented here and those of the ternary 

complexes studied previously (Melcher et al., 2009; Miyazono et al., 2009; Yin et al., 

2009) contribute to explain how ABA binding induces the interaction between receptor 

and phosphatase and its inhibitory nature on phosphatase activity. Interestingly, these 

complexes show a 1:1 receptor:phosphatase stoichiometry. Since it has been shown that 

PYR1 forms a dimer in vivo (Nishimura et al.,  2009), evidence that is not yet available 

for PYL1 and PYL2, our data confirm that PYR1 dimer dissociation is required for the 

formation of the ternary complex, as Yan and co-workers have suggested (Yin et al., 

2009). However, a detailed understanding of the dimer dissociation process is not 

available yet. 

 Once the hormone enters the receptor cavity, the cyclic moiety of the ABA 

molecule establishes interactions with the receptor gating loops, which favours their 

closed conformation. This closed conformation offers an optimal surface for the 

docking of the phosphatase, which contributes in turn to the stability of the ternary 

complex by locking the gating loops in their closed conformation and trapping the 

hormone inside the binding cavity. For instance, PYL9 and PYL5 bind to ABA with a 

Kd of 0.70 μM and 1.1 μM, respectively, whereas inclusion of ABI2 and HAB1 in the 

binding assay leads to a Kd of 64 nM and 38 nM, respectively (Ma et al., 2009; 

Santiago et al., 2009b). The HAB1 Trp385 residue plays a major role in this 

stabilization process by inserting between the gating loops, and additionally via an 

indirect contact with the ABA ś ketone group through a hydrogen bond network 

mediated by a critical water molecule. This water molecule establishes hydrogen bonds 

not only with HAB1 Trp385 and the hormone, but also with key residues (Pro88 and 

Arg116) of the receptor gating loops. This complex network of interactions provides a 

mechanism through which the phosphatase is able to monitor hormone occupancy of the 

ABA binding cavity, and therefore ensuring that the conserved Trp residue will only 

contribute to the stabilization of the receptor-phosphatase complex if the hormone is 

present. The in vitro data presented here for hab1W385A and by Miyazono et al., (2009) 

for abi1W300A support this conclusion. Moreover, our results show that this hormone 

sensing mechanism is critical for ABA response in planta. Thus, expression of 

hab1W385A in Arabidopsis plants leads to a strong ABA-insensitive phenotype, which 

can t́ be explained solely by enhanced PP2C gene dosage, since 35S:HAB1 plants, 
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although less sensitive to ABA than wt, show milder phenotypes. The reduced 

sensitivity to ABA-mediated inhibition of seed germination and seedling establishment, 

enhanced water-loss and reduced expression of ABA-responsive genes in 

35S:hab1W385A plants support the relevance of this locking interaction, postulated by 

structural studies. Additionally, these plants represent a valuable tool to dissect the 

ABA pathway by using dominant receptor-insensitive PP2C mutants that do not 

compromise the intrinsic phosphatase activity. Taking into account the large number of 

screenings performed to identify ABA-insensitive plants, the failure to isolate mutants 

harbouring missense mutations in this Trp residue is somehow surprising. However, 

since EMS mutagenesis usually leads to G →A transitions, such mutation in the Trp 

codon (UGG) would lead to stop codons and presumably loss-of-function alleles. The 

locking mechanism provided by the Trp residue appears to be a particular evolution of 

the plant clade A PP2Cs, since with the exception of AHG1, they are the unique plant 

PP2Cs that present this residue in the appropriated position of the flap PP2C sub-

domain. Interestingly, AHG1 was less-sensitive to ABA-dependent PYL8-mediated 

inhibition than other clade A PP2Cs, such as PP2CA and At5g59220 (Supplemental 

Fig. S6).   

 This work and previous structural analyses indicate that the insertion of the 

PYR1 Ser85-containing β3-β4 loop (Ser112 of PYL1 and Ser89 of PYL2) into the 

phosphatase catalytic site could account for the inhibition of PP2C catalytic activity by 

blocking access of potential substrates to the phosphatase catalytic site in a competitive 

manner. However, although this mechanism looks plausible, the phosphatase catalytic 

channel remains open in its lower part in the ternary complexes formed by both HAB1 

and ABI1 (Supplemental Fig. S2). This lower part of the phosphatase catalytic groove 

might represent an alternative entry site for substrates and indeed initial studies based 

on biochemical assays with a non-peptidic substrate, suggested that inhibition of the 

PP2C activity by PYR/PYL/RCAR proteins occurs by a non-competitive, rather than 

competitive mechanism (Ma et al., 2009). In contrast, in other studies the inhibition of 

HAB1 by ABA-bound PYL2 was overcome by increasing concentrations of an OST1 

phosphopeptide containing residues of the kinase activation loop (Melcher et al., 2009). 

Unfortunately the structure of a PP2C in complex with a natural peptide substrate is 

lacking, which could contribute to resolve this issue.  However, one striking observation 

arising from the present structural analysis is the proximity of Ser85 in the gating loop 
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of the PYR1 receptor to the position expected to be occupied by the phosphoryl group 

of the substrate of the phosphatase reaction. Superposition of the present structure and 

the catalytic domain of human PP2Cα shows that the β-carbon of PYR1 Ser85 is next to 

the phosphate ion oxygen atom that Barford and co-workers have proposed as the 

seryl/threonyl  oxygen in their analysis of the PP2Cα catalytic site (Das et al., 1996). 

This would suggest that the PYR1 Ser85, and its equivalent in other PYR/PYL proteins, 

might act as a product mimic and occupy a similar position as the phosphorylated serine 

residues in SnRK2s and other PP2C targets. In our view, this important observation 

lends weight to the interpretation that the formation of the receptor-phosphatase 

complex prevents access of natural PP2C substrates to the catalytic site, supporting the 

competitive nature of the inhibition mechanisms. At the same time it would support the 

catalytic mechanism proposed by Barford (Das et al., 1996), where the water molecule 

linked to the metal at the M2 site and Glu37 of human PP2Cα (Glu203 in HAB1) would 

contribute to catalysis by facilitating the protonation of the oxygen atom in the P-O 

scissile bond. 

 Since Ser85 of PYR1, Ser112 of PYL1 and Ser89 of PYL2 insert into the PP2C 

active site and establish contacts with Gly180 of ABI1 or Gly246 of HAB1, the 

structural data provide a framework to explain the effect of abi1G180D and hab1G246D 

mutations. However, no direct biochemical evidence had been previously provided in 

the case of hab1G246D. The present analysis shows that hab1G246D is insensitive to 

inhibition by various PYR/PYL proteins, which leads to the escape from the ABA-

dependent PYR/PYL inhibitory mechanism and the subsequent constitutive inhibition 

of OST1 activity. Therefore, these data are in agreement with the notion that hab1G246D 

behaves as a hypermorphic mutation in the presence of ABA, as noted by Schroeder and 

co-workers (Robert et al., 2006). Paradoxically, in the absence of ABA, hab1G246D 

shows lower intrinsic phosphatase activity than wild type HAB1, probably because this 

mutation perturbs the PP2C active site to some extent. 

 Even though other ABA receptors have been identified (Pandey et al., 2009, 

Shang et al., 2010) and therefore other input sources exist for ABA signaling, the 

phenotypes of both 35S:hab1G246D and 35S:hab1W385A plants indicate that constitutive 

activation of the PP2Cs (and the consequent inactivation of the SnRK2s) leads to a 

severe blockade of ABA signaling. Therefore, the action of the SnRK2s is likely 

localized downstream of the other putative inputs and could represent a core ABA 
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signaling component shared by all ABA receptors. This would be in agreement with the 

extreme ABA insensitivity of triple snrk2.2/2.3/2.6 mutant plants (Fujii and Zhu 2009). 

MATERIAL AND METHODS 

Construction of plasmids 

Plasmids pETM11 or pET28a were used to generate N-terminal His6-tagged 

recombinant proteins. The cloning of 6xHis-ΔNHAB1 (lacking residues 1-178), PYR1, 

PYL4, PYL5 and PYL8 constructs was previously described (Santiago et al., 2009b). 

Using a similar approach, PYL1 and PYL6 were cloned in pETM11, whereas PYL9 

was cloned in pET28a. HAB1(W385A), HAB1(G246D), PYR1(S85A), PYR1(R116A), 

PYR1(L87A) and PYR1(Y120A) mutants were produced using the overlap extension 

procedure (Ho et al., 1989) and cloned into pETM11. PYR1(S152L), PYR1(P88S), 

PYR1(R157H), PYR1(E141K) and PYR1(E94K) mutants were obtained from the pyr1-

2, pyr1-3, pyr1-4, pyr1-5 and pyr1-6 alleles, respectively (Park et al., 2009) and cloned 

into pET28a. The coding sequence of OST1 and a C-terminal deletion of ABF2 

(ΔCABF2, amino acids 1-173) were cloned into pET28a.  

Protein expression and purification  

BL21(DE3) cells transformed with the corresponding constructs in pETM11 or  pET28a 

vectors were grown in LB medium to an OD600 of 0.6-0.8. At this point 1 mM IPTG 

was added and the cells were harvested after overnight incubation at 20ºC. Proteins used 

for crystallization were purified as described (Santiago et al., 2009a). For small scale 

protein preparations, the following protocol was used. Pellets were resuspended in lysis 

buffer (50mM Tris pH 7.5, 250mM KCl, 10% Glycerol, 1 mM β-mercaptoethanol) and 

lysed by sonication with a Branson Sonifier 250. The clear lysate obained after 

centrifugation was purified by Ni-affinity. A washing step was performed using 50mM 

Tris, 250 mM KCl, 20% Glycerol, 30 mM  imidazole and 1mM β-mercaptoethanol 

washing buffer, and finally the protein was eluted using 50mM Tris, 250 mM KCl, 20% 

Glycerol, 250mM imidazole and 1mM β-mercaptoethanol elution buffer  

Crystallization and structure solution  

The PYR1-ABA-HAB1 ternary complex was prepared by mixing PYR1, ΔNHAB1  and 

1mM ABA to a final concentration of 3 mg/ml, 5 mg/ml and 1 mM respectively in 
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20mM Tris pH7.5, 150mM NaCl, 1mM MnCl2, 1mM βmercaptoethanol. Crystallization 

conditions for the complex were identified at the High Throughput crystallization 

Laboratory of EMBL Grenoble Outstation (https://htxlab.embl.fr) as described in 

(Marquez et al., 2007). The crystals used for data collection were obtained by vapour 

diffusion method in 0.25M NaCl, 19% Peg 3350 at 20oC. X-ray diffraction data was 

collected at the ID14-4 beam line of the ESRF to 1.8 Å resolution. Initial phases were 

obtained by the molecular replacement method using the two central β-sheets of the 

catalytic domain of the human PP2Cα protein (1A6Q) (Das et al., 1996) as a search 

model and the program Phaser (McCoy et al., 2007). Successive rounds of automatic 

refinement and manual building were carried out with RefMac5 (Murshudov et al., 

1997) and Coot (Emsley and Cowtan 2004). Atomic coordinates from the final model 

have been deposited in the Protein Data Bank under accession code 3QN1. 

PP2C and OST1 in vitro activity assays 

Phosphatase activity was measured using either the Ser/Thr Phosphatase assay system 

(Promega) using the RRA(phosphoT)VA peptide as substrate or pNPP (p-nitrophenyl 

phosphate). In the first case assays were performed in a 100 μl reaction volume 

containing 25 mM Tris-HCl pH 7.5, 10 mM MgCl2, 1 mM DTT, 25 μM peptide 

substrate and the PP2C. When indicated, PYR-PYL recombinant proteins and ABA 

were included in the PP2C activity assay. After incubation for 60 min at 30ºC, the 

reaction was stopped by addition of 30 μl molybdate dye (Baykov et al., 1988) and the 

absorbance was read at 630 nm with a 96-well plate reader. For the pNPP phosphatase 

activity assays a 100 μl solution containing 25 mM Tris-HCl pH 7.5, 2 mM MnCl2 and 

5mM pNPP substrate and the indicated amount of the PP2Cs was used. Measurements 

were taken with a ViktorX5 reader at 405nm every 60 seconds over 30 minutes.   

Phosphorylation assays were done basically as described previously (Belin et 

al., 2006; Vlad et al., 2009). Assays to test recovery of OST1 activity were done by 

previous incubation for 10 min of the protein phosphatase HAB1 together with the 

PYR1 wt or PYR1 mutant proteins in the presence of the indicated concentration of (+)-

ABA.  Next, the reaction mixture was incubated for 50 min at room temperature in 30 μl 

of kinase buffer: 20 mM Tris-HCl pH 7.8, 20 mM MgCl2, 2 mM MnCl2, and 3.5 µCi of 

γ-32ATP (3000 Ci/mmol). The reaction was stopped by adding Laemmli buffer. When 

indicated, ΔCABF2 recombinant protein (100 ng) was added as substrate of OST1. 
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After the reaction proteins were separated by SDS-PAGE using an 8% acrylamide gel 

and transferred to an Immobilon-P membrane (Millipore). Radioactivity was detected 

using a Phosphorimage system (FLA5100, Fujifilm). After scanning, the same 

membrane was used for Ponceau staining. The data presented are averages of at least 

three independent experiments. 

Yeast two-hybrid assays 

Protocols were similar to those described previously (Saez et al., 2006).  

Generation of 35S:hab1W385A transgenic lines 

The mutated hab1W385A was cloned into pCR8/GW/TOPO entry vector (Invitrogen) and 

recombined by LR reaction into the gateway compatible ALLIGATOR2 vector 

(Bensmihen et al., 2004). This construct drives expression of hab1W385A under control of 

the 35S CaMV promoter and introduces a triple HA epitope at the N-terminus of the 

protein.  Selection of transgenic lines is based on the visualization of GFP in seeds, 

whose expression is driven by the specific seed promoter At2S3. The ALLIGATOR2-

35S:3HA-hab1W385A construct was transferred to Agrobacterium tumefaciens C58C1 

(pGV2260) (Deblaere et al., 1985) by electroporation and used to transform Columbia 

wild type plants by the floral dip method. T1 transgenic seeds were selected based on 

GFP visualization and sowed in soil to obtain the T2 generation. Homozygous T3 

progeny was used for further studies and hab1W385A protein level was verified by 

immunoblot analysis using anti-HA-peroxidase (Roche). The generation of 35S:HAB1-

dHA lines was described previously (Saez et al., 2004). 

Seed germination and seedling establishment assays 

After surface sterilization of the seeds, stratification was conducted in the dark at 4ºC 

for 3 d. Next, approximately 200 seeds per experiment were sowed on solid medium 

composed of Murashige and Skoog basal salts, 1% sucrose and supplemented with 

different ABA concentrations. To score seed germination, radical emergence was 

analysed at 72 h after sowing. Seedling establishment was scored as the percentage of 

seeds that developed green expanded cotyledons and the first pair of true leaves at 7 d.  

Water loss assays 
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2-3 weeks-old seedlings growing in MS plates were used. Three seedlings per genotype 

with similar growth were submitted to the drying atmosphere of a flow laminar hood. 

Kinetic analysis of water-loss was performed and represented as the percentage of initial 

fresh weight loss at each scored time point. Data are averages ± SE from two 

independent experiments. 

RNA analyses 

ABA treatment, RNA extraction and RT-quantitative PCR amplifications were 

performed as previously described (Saez et al., 2004). 

 

Supplemental data 

The following materials are available in the online version of this article 

Supplemental Fig. S1. Structural superposition of ternary receptor complexes.  

Supplemental Fig. S2. Detail of the catalytic groove of HAB1.  

Supplemental Fig. S3. Amino acid sequence and secondary structure alignment of 

plant PP2Cs and the catalytic core of human PP2C.  

Supplemental Fig. S4. Detail of the HAB1 catalytic site around the PYR1 Ser85.  

Supplemental Fig. S5. Comparison of the ABA-dependent inhibitory effect of PYR1 

wt and mutant proteins on HAB1 activity.  

Supplemental Fig. S6. Amino acid sequence alignment of Arabidopsis clade A PP2Cs 

and representative PP2Cs from other groups. AHG1 is less-sensitive to ABA-dependent 

PYL8-mediated inhibition than PP2CA and At5g59220.   
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Table I. Crystallographic data collection and refinement statistics 

Data collection 

Space group   P212121 

Unit cell a, b, c,          45.849    65.857   170.867     

α, β, γ    90    90    90 

resolution      30.0 - 1.80    

higest reso. shell   (1.9-1.8) 

Rsym (%)   6.2 % (19.6 %) 

Completeness   97 % (91%) 

I/σ(I)    22.6 (5.2) 

Refinement 

Resolution Range (A)  28.24 – 1.8 

No Reflections  340.949 

No Unique refl.  47.524 

Rwork(%)   17.386 

Rfree(%)   21.760 

No Atoms   4170 

Protein    3720 

Ligand    21 

Solvent   475 

R.m.s. deviations 

Bond Length   0.02 

Angles    1.655 
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Figure Legends 

Figure 1. Structure of the PYR1-ABA-HAB1 complex. A, The PYR1 receptor is shown 

with strands in red, loops in magenta and helices in cyan. The HAB1 catalytic domain is 

shown in green. The (+)-ABA molecule is shown as stick model with semi-transparent 

surface. The three metal ions at the phosphatase catalytic site are depicted (blue 

spheres). The gating loops containing Pro88, Ser85 and Arg116 are indicated. The flap 

sub-domain containing Trp385 can be easily appreciated. The water molecule (red 

sphere) at the narrow channel between the gating loops is hydrogen bonded to the 

ketone group of the hormone, the backbone atoms of PYR1 Pro88 and Arg116 and the 

side chain of HAB1 Trp385. B, Detail of the interaction between HAB1 Trp385 region 

and the PYR1 gating loops. C, Detail of the interaction between the β3-β4 loop 

containing Pro88 and Ser85 and the phosphatase catalytic site. Relevant amino acids are 

shown as sticks, hydrogen bonds are indicated by dotted lines. The conformation 

rearrangements in the β7/β5 and β3/β4 loops of PYR1 upon binding to the phosphatase 

(magenta) as compared to the ABA-bound subunit of the PYR1 dimer (yellow) can be 

appreciated. 

Figure 2. The PYR1 β3/β4 loop docks at the catalytic site of HAB1. The ABA-bound 

PYR1 receptor is shown as in Fig. 1. The accessible surface of the HAB1 phosphatase is 

depicted in light green with the flap sub-domain containing Trp385 in dark green. 

Residues coordinating the three metal ions at the catalytic site were excluded in the 

calculation of the molecular surface and are depicted as stick models. The water 

molecules involved in metal coordination are depicted as red spheres. The human 

PP2Cα structure (not shown), which contains a phosphate ion (shown as stick model) in 

the active site, was superposed on HAB1 to transfer the position of the phosphate ion 

into the catalytic site of HAB1.  

Figure 3. Analysis of the PYR1 mutations and their effect on the HAB1-dependent 

inhibition of OST1 activity. A, Interaction between HAB1 and PYR1 variants was 

analysed by the yeast two-hybrid (Y2H) growth assay on medium lacking His and Ade 

in the presence of 5, 10 or 20 μM (+)-ABA. Immunoblot analysis using antibody against 

the Gal4 binding domain (GBD) verifies the expression of the different fusion proteins 

in the Y2H assay. Ponceau staining from a representative yeast protein is shown as 

loading control. B, Relative inhibition of HAB1 activity by the different PYR1 variants 
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in the presence of 8 μM ABA with respect to wt PYR1 (100%; SD was below 7%,). C, 

OST1 in vitro kinase activity assay in the presence of HAB1, PYR1 wt and mutated 

versions, ΔCABF2 and 10 μM ABA, when indicated. The autoradiography shows the 

levels of auto-phosphorylation of OST1. D, Quantification of ΔCABF2 phosphorylation 

levels in the previous assay using the phosphoimager Image Gauge V.4.0. Standard 

error measurements are shown (n=3). 

 

Figure 4.  The  hab1W385A and hab1G246D PP2Cs are refractory to inhibition by PYR1 

and dephosphorylate OST1 in the presence of ABA and PYR1. A, The HAB1 mutations 

Trp385Ala and Gly246Asp abolish the interaction of the PP2C and PYR1 in a Y2H 

assay. Immunoblot analysis using antibody against the Gal4 activation domain (GAD) 

is shown to verify the expression of the different fusion proteins. Ponceau staining from 

a representative yeast protein is shown as loading control. B, Phosphatase activity of 

HAB1, hab1W385A and hab1G246D proteins was measured in vitro using p-nitrophenyl 

phosphate as substrate in the absence or presence of PYR1 and ABA, as indicated. 

Assays were performed in a 100 μl reaction volume containing 2 μM phosphatase and, 

when indicated, 4 μM HIS6-PYR1 and 1 μM (+)-ABA. Data are averages ± SD from 

three independent experiments. C, In vitro OST1 kinase activity in the presence of wt 

and mutated versions of HAB1, PYR1 and ABA, as indicated. The autoradiography 

shows the level of autophosphorylation of OST1 in each reaction. The graphs show the 

quantitative analysis of the autoradiogram. D, hab1W385A and hab1G246D proteins are 

resistant to ABA-mediated inhibition by different PYR/PYLs. The assay was performed 

as described in B.    

Figure 5. Constitutive expression of hab1W385A leads to reduced ABA sensitivity. A, 

Seed germination and seedling establishment of representative Columbia wt, 35S:HAB1 

and 35S:hab1W385A plants in medium lacking or supplemented with ABA. Photographs 

were taken 7 d after sowing. B, Inhibition of seed germination and seedling 

establishment by ABA in Columbia wt, 35S:HAB1 and 35S:hab1W385A plants. C, 

Immunoblot analysis using antibody against HA tag to quantify phosphatase expression 

in transgenic lines. Ponceau staining from the large subunit of RuBisCO is shown as 

loading control. D, Enhanced water loss measured in detached leaves of 35S:HAB1 and 

35S:hab1W385A plants as compared to Columbia wt. Values are averages from two 

independent experiments (n=10), and SD (not shown) was below 7%. E, The 
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photograph illustrates the severe phenotype observed in 35S:hab1W385A plants after 60 

minutes of water loss. F, Reduced expression of ABA-inducible genes in 35S:hab1W385A 

(line #4) and 35S:HAB1 plants compared with Columbia wt. Values are expression 

levels reached in the transgenic lines with respect to wt (value 1) as determined by RT-

qPCR analysis. Expression of gene markers was analyzed in 10-days-old seedlings 

treated with 10 μM ABA for 3h. Values are averages ± SD for two independent 

experiments (n=30 to 40 seedlings per experiment).     












