
Phase evolution in reaction sintered zirconium titanate based materials  

E. López-López1, M.L. Sanjuán2, R. Moreno1 and C. Baudín1٭ 

1 Instituto de Cerámica y Vidrio (CSIC), C/ Kelsen 5, 28049, Madrid, España 

2 Instituto de Ciencia de Materiales de Aragón (CSIC), Facultad de Ciencias 

Universidad de Zaragoza, 50009 Zaragoza, España 

Abstract 

Zirconium titanate materials are proposed for structural components for which 

fully reacted and relatively large pieces are required. In this work the phase evolution in 

slip cast compacts constituted by equimolar mixtures of TiO2 and ZrO2 stabilized with 3 

mol% of Y2O3 at high temperature is studied, to establish the basis to design suitable 

thermal treatments for ZrO2(Y2O3)-TiO2 materials. The temperatures at which the 

processes involved in the reaction sintering occurred were identified by constant heating 

rate experiments. Phase and microstructure analyses have been performed on specimens 

treated at the identified temperatures and air quenched. Then the adequate temperature 

range to get fully reacted and dense materials has been deduced. Materials treated at 

1500ºC-2h were constituted by Zr5Ti7O24 as major phase, a solid solution of TiO2 and 

Y2O3 in c-ZrO2 as secondary phase and a ZrO2-TiO2-Y2O3 non-stoichiometric 

compound with pyrochlore structure as minor phase. Pyrochlore was demonstrated to be 

a metastable phase at 1500ºC. 
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1. Introduction 

The stoichiometric zirconium titanate, ZrTiO4, presents crystallographic 

anisotropy in thermal expansion (αa25-800ºC=6.2x10-6ºC-1, αb25-800ºC= 10x10-6ºC-1, αc25-

800ºC=8.6x10-6ºC-1 1)∗ and, therefore, it has high potential as constituent of low thermal 

expansion materials for structural applications. Thus, the fabrication of relatively large 

bulk pieces would be required. A main problem of the materials whose low thermal 

expansion derives from anisotropy is that it is usually associated to extensive 

microcracking. In this sense, it would be desirable to count with a phase compatible 

with zirconium titanate such as a zirconia polymorph, to add as reinforcing second 

phase for which the possibility of obtaining materials in the ZrO2-TiO2-Y2O3 system 

would be adequate. As discussed below, the composition and structure of zirconium 

titanate are variable as a function of the experimental parameters used to obtain the 

material. Moreover, there is no general agreement on the phase equilibrium 

relationships in the ZrO2-TiO2-Y2O3 system. Therefore, the study of the phase 

development in zirconium titanate based materials is required.  

The formation of ZrTiO4 has been studied by several authors2-10. Although it is 

possible to obtain ZrTiO4 at temperatures around 600ºC by sol gel methods2, the solid 

state reaction from the oxides of zirconium and titanium is required for the fabrication 

of relatively large bulk pieces. According to calculations by Hom et al.3 the formation of 

ZrTiO4 from the oxides is thermodynamically favourable from about 980ºC (1250±150 

K), however, it has only been reported at temperatures between 1300ºC and 1600ºC 3-10. 

The stoichiometric zirconium titanate (ZrTiO4) is the stable phase at high temperature 

(>1200ºC9), whereas, for lower temperatures (<1100ºC) the composition of zirconium 

titanate shifts towards higher TiO2 contents. McHale and Roth9, after annealing 

                                                 
∗ Lattice: Orthorhombic. Space group: Pnab. a=5.03580nm, b=5.48740nm, c=4.80180nm. ASTM 34-415 
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compacts with the stoichiometric composition (ZrTiO4) at 1000ºC for more than 4 

months, concluded that the composition of the stable phase of zirconium titanate below 

1100ºC was ZrTi2O6. For lower annealing periods the obtained phase was Zr5Ti7O24
9,11. 

For relatively short thermal treatments such as those used in ceramic processing, 

Zr5Ti7O24 is only formed in the presence of additives such as Y2O3
12,13. 

Even though the complete ZrO2-TiO2-Y2O3 phase equilibrium diagram has not 

been established, there are some studies of the isothermal sections at 1500ºC14-17. All 

authors agree that for equimolar mixtures of TiO2 and ZrO2 and low Y2O3 contents (<1 

mol%) the only stable phase would be zirconium titanate solid solution while for higher 

Y2O3 contents these studies predict different phases. Colomer14 predicts a solid 

solubility limit of Y2O3 in zirconium titanate at 1500ºC about 3 mol%, being the 

compatible phases for higher Y2O3 amounts zirconium titanate and cubic zirconia. 

Schaedler16 and Kobayashi17 also predict these phases for compositions out of the 

region of Y2O3 solid solution in zirconium titanate but setting the limits of solubility of 

Y2O3 in zirconium titanate in ≈1 mol% and ≈0.5 mol%, respectively. The compatible 

phases proposed by Feighery15 out of the region of Y2O3 solid solution in zirconium 

titanate are pyrochlore and zirconium titanate, with a limit of solubility of Y2O3 in 

zirconium titanate of ≈1 mol%. According to Schaedler et al.16, the compatibility 

between zirconium titanate and pyrochlore is only possible at lower temperature 

(1300ºC).  

However, there are no experimental data in the above mentioned studies that 

allow establishing the exact point for the solid solubility limit of Y2O3 in zirconium 

titanate at 1500ºC. Colomer et al.14 focused the studies in the zirconia-rich region (65-

97 mol%), the closest composition studied by Schaedler et al.16 was 42.1 mol% ZrO2, 

52.6 mol% TiO2, 5.3% mol Y2O3, and the only compositions in the zirconium titanate 
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primary field analysed by Feighery et al.15 and Kobayashi et al.17 where in the ZrO2-

TiO2 binary system. The closest compositions studied by these authors are ≈54.5 mol% 

ZrO2, ≈44.0 mol% TiO2, ≈1.5 mol% Y2O3
15 and ≈48.0 mol% ZrO2, ≈48.0 mol% TiO2, 

≈4.0 mol% Y2O3
17. McHale and Roth9 studied compositions with 0.5 mol% of Y2O3 

and different contents of ZrO2 (41.46-54.73 mol%) and TiO2 (58.04-44.77 mol%) at 

1500ºC for which zirconium titanate was the only phase. 

Furthermore, Fagg et al.18 studied the solubility limits and transport properties of 

compounds with fluorite structure in the system ZrO2-TiO2-Y2O3 and compared their 

data with data published in literature. They proposed that discrepancies could be due to 

temperature fluctuations and/or differences in cooling rates. 

In this context the objective of this work was to study the phase and 

microstructural evolution during reaction sintering of equimolar mixtures of TiO2, and 

ZrO2 stabilized with 3 mol% of Y2O3 (50 mol% TiO2, 48.5 mol% ZrO2, 1.5 mol% 

Y2O3), to establish the basis to design suitable thermal treatments for materials in the 

ZrO2(Y2O3)-TiO2 system. In a previous work the rheological behaviours of aqueous 

slips of the powders and their mixture were studied in order to establish the optimum 

processing conditions to get high green density bodies by casting of stable slips in 

plaster moulds19. 

 

2. Experimental  

Commercial ZrO2 stabilized with 3 mol% of Y2O3 (yttria-tetragonal zirconia  

polycrystal Y-TZP, TZ3YS, TOSOH, Tokyo, Japan) and anatase-TiO2 (Merck, 808, 

Darmstadt, Germany) were used as precursor powders. These powders have average 

particle diameters of 0.4 and 0.3 µm, respectively, and specific surface areas of 6.7 and 

9.0 m2/g, respectively. 
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The particle size distribution was determined with a laser diffraction analyser 

(Mastersizer S, Malvern, Worcestershire, United Kingdom), and the specific surface 

area was measured by the N2 adsorption method (Monosorb Surface Area Analyser 

MS13, Quantachrome Co., Florida, USA). 

 Concentrated suspensions of Y-TZP (Z) and TiO2 (T) were prepared separately  

to 45 vol.% solids by adding the powder to the proper amount of deionised water 

containing 0.8 wt.% of polyacrylic-based dispersant (Dolapix CE64, Zschimmer-

Schwarz, Lahnstein, Germany) and further mixing with a high shear mixer (Silverson, 

L2R, Chesham, United Kingdom). Then, they were ball milled for 24 hours using 

alumina jar and balls. The so-prepared one component suspensions were then mixed in 

a molar ratio 1:1 (i.e. 60.58 wt.% Z and 39.42 wt.% T) in order to obtain ZT50 

materials. The resulting mixture was ball milled further for 1h. Details of the 

preparation procedure are given in a previous work19.  

 The green bodies shaped into plates of 70x70x10 mm3 were prepared by slip 

casting the Z, T and ZT50 suspensions in plaster moulds and dried in air for 48h. 

Specimens for the different tests were obtained by cutting these plates. 

  Constant heating rate (CHR, heating and cooling rates 5ºC/min) experiments up 

to 1600ºC were performed in a differential dilatometer with alumina rod (Adamel 

Lhomargy, DI24, Brie France) and in a differential thermal and thermogravimetric 

analyser (STA 409, Netzsch, Selb, Germany, DTA-TG). From the results of the 

dilatometer and DTA-TG analyses of ZT50, the temperatures of interest were selected 

(1400 and 1500ºC on heating and 1000ºC on cooling) and specimens were prepared by 

quenching from those temperatures. The experimental process to get the 1400 and 

1500ºC quenched specimens consisted in heating at 5ºC/min to the final temperature, a 

dwell of 1 min at the maximum temperature and then quenching to room temperature; 
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the 1000ºC specimen was heated at 5ºC/min to 1500ºC where it was kept during 1 min 

before being cooled at 5ºC /min to 1000ºC where it was kept during 1 min before being 

quenched. Quenching was performed in air stream using a hair drier, this cooling 

method, traditionally used  in phase equilibrium diagram building, assures cooling times 

from the treatment temperature to 800ºC of less than one min for the small (≈ 

5x5x5mm3) specimens used. 

The quenched specimens were characterised as pieces by X-ray diffraction 

(XRD) using a Siemens D5000 diffractometer (Munich, Germany) and Si as internal 

standard. The obtained XRD patterns were analysed using the diffraction files of ZrTiO4 

(ASTM 34-415), Zr5Ti7O24 (ASTM 34-209), Zr0.963Y0.037O1.982 (ASTM 83-113), r-TiO2 

(ASTM 21-1276), Zr0.62Y0.20Ti0.18O1.90
15

 and Si (ASTM 77-2111).   

The microstructures of diamond polished (down to 3µm) samples were 

characterized by field emission gun-scanning electron microscopy with energy 

dispersive X-ray microanalysis (FE-SEM-EDX, Hitachi S-4700 type I, Tokyo, Japan). 

Additional FE-SEM characterization was done on fracture surfaces of materials 

quenched from 1400 and 1500ºC to complete the phase identification done on the 

polished specimens that did not allow the complete identification of existing phases.   

Two materials named ZT501500 and ZT501500-30h were prepared using 

thermal treatments of 2h and 30h, respectively, at 1500ºC and the same heating and 

cooling rates (5ºC/min) and characterized by XRD and FE-SEM-EDX. The 

microstructural characterization by FE-SEM-EDX of these materials was carried out in 

polished (down to 3µm) and thermally etched (1400ºC for 1min, heating and cooling 

rates of 5ºC/min) surfaces. Additional characterization was done on fracture surfaces of 

these materials to assure the phase identification done on the polished and thermally 
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etched specimens. Observations of un-etched polished surfaces did not allow the 

complete identification of existing phases.   

Raman determinations of ZT501500 and ZT501500-30h on polished and 

thermally etched at 1400ºC specimens were performed in backscattering configuration 

at room temperature (RT) in a DILOR XY spectrometer (Lille, France) with a liquid-

nitrogen cooled Charge-Coupled Device (CCD) detector and excitation through the 

100X objective lens of a microscope (Olympus, BH2, Tokyo, Japan). To improve 

spatial resolution a confocal diaphragm was inserted at the laser path. With this setup 

spatial resolution was of about 1 μm. The 514.5 nm line of an Ar+ laser was used as 

light source (Coherent, Innova 305C, Santa Clara, California, USA). 

 

3. Results and Discussion 

3.1. Reaction sintering process 

Results from the CHR experiments are plotted in figures 1-3. No special features 

were observed in the shrinkage curve of Z (Fig. 1), accordingly, only one peak 

corresponding to the progressive sintering process was observed in the derivative one 

(Fig. 2); shrinkage started at ≈1100ºC and was arrested at ≈1550ºC. Conversely, the 

shrinkage curve of T (Fig. 1) showed two significant slope changes that were 

highlighted in the derivative curve (Fig. 2). The first one, at intermediate temperatures, 

revealed a process occurring at about 1060ºC that accelerated shrinkage.  This process 

can be identified as the transformation of anatase to rutile, which involves a sudden 

shrinkage of about 8.5 vol.% (calculated using the theoretical densities of anatase-TiO2, 

3.89g/cm3, and rutile-TiO2, 4.25g/cm3, extracted from ASTM files 21-1272 and 21-

1276). This transformation occurs between 400-1200ºC depending on several 

parameters, such as grain size, impurities and atmosphere20-22. The second slope change 
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(≈1220ºC) corresponded to maximum shrinkage rate and it was wider than the previous 

one indicating a progressive process, as in the case of Z. Shrinkage was arrested at 

≈1400ºC for T. 

The initiation of shrinkage of the mixture ZT50 (≈1000ºC) (Fig. 1), was 

significantly delayed with respect to that of T (≈900ºC) and started at slightly lower 

temperature than for Z (≈1100ºC). The shrinkage curve showed two slope changes at 

intermediate temperatures, which were also highlighted in the derivative curve (Fig. 3). 

For ZT50, the transformation of TiO2 from anatase to rutile produced a sharp 

acceleration of shrinkage that occurred at a slightly higher temperature (≈1100ºC) than 

for T (≈1060ºC) and was less pronounced because of the smaller amount of TiO2 in the 

ZT50 composition. The anatase-rutile transformation is not detected by DTA (Fig. 3) 

due to the low enthalpy change associated (ΔH0
971= -0.78±0.20 kcal mol-1, according to 

calculations by Mitsuhashi et al.23). For higher temperatures, shrinkage of ZT50 

continued in a progressive way and was arrested at about 1440ºC, temperature at which 

a clear endothermic peak was observed in the DTA curve (Fig.3). In principle, both 

features, the shrinkage arrest and the endothermic peak could be associated to the 

formation of the high temperature phase of zirconium titanate, ZrTiO4, with a formation 

enthalpy of 11.64 kJ/mol at 1440ºC3 and which formation from the reaction of 

tetragonal zirconia (density=6.07g/cm3, ASTM 83-113) and rutile (density=4.25g/cm3, 

ASTM 21-1276) is slightly expansive (≈2.4 vol.%). In order to analyse this process, 

1400 and 1500ºC were selected as quenching temperatures. 

The DTA curve registered during cooling (Fig. 3) showed an exothermic peak at 

≈1150ºC, that would correspond to the transition between high-temperature form 

(ZrTiO4) and low-temperature form (Zr5Ti7O24)9,11,24 of zirconium titanate. In order to 
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analyse this process, samples treated up to 1500ºC and cooled down to 1000ºC were 

also selected for quenching.  

XRD patterns of the quenched samples are shown in figure 4 and SEM 

micrographs are shown in figures 5-8. In the specimens quenched from 1400ºC, the 

crystalline phases detected by XRD were rutile (r-TiO2) and tetragonal zirconia (t-ZrO2) 

(Fig. 4a), in agreement with the biphasic microstructure observed in the polished 

surfaces FE-SEM (Fig. 5), in which the two phases appeared highly interpenetrated. The 

semi-quantitative analysis by EDX was not possible due to the small size of the areas 

occupied by the phases in the samples quenched from 1400ºC, nevertheless the EDX 

diagrams allowed to identify the gray coloured areas as TiO2 and the white ones as ZrO2 

(Fig.5). In agreement, the XRD patterns showed the t-ZrO2 displaced towards higher 

angles with respect to the Zr0.963Y0.037O1.982 pattern, which could be due to the solid 

solution of TiO2 in t-ZrO2. In the specimens quenched from 1400ºC, ZrTiO4, 

equilibrium phase already at 1300ºC16, was not formed due to the short periods at 1300-

1400ºC involved in the CHR experiments, as occurred in the work by Ananta et al.8 that 

did not observe any significant process during CHR (10ºC/min) treatments up to 

1400ºC.  Even though the FE-SEM observations of polished surfaces and the XRD 

patterns corresponded to a biphasic material, additional observations of the fracture 

surfaces of specimens quenched from 1400ºC showed small particles located at the 

boundaries that corresponded to a minor third phase (fig. 6a), as will be discussed after 

the Raman determinations.  

The FE-SEM microstructure of the specimens quenched from 1500ºC (Fig. 7) 

and polished appeared also as biphasic. The semiquantitative EDX analyses of the 

major phase allowed associating it with ZrTiO4. The peaks that would correspond to 

ZrTiO4 in the XRD diagrams (Fig. 4) were clearly shifted towards angles higher than 
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those of the ZrTiO4 pattern. The possibility of solid solution of TiO2 in ZrTiO4 

(ZrTiO4ss) at 1500ºC was reported by several authors 9,15-17. Thus, the gray major phase 

observed in the specimens quenched from 1500ºC could be unequivocally identified 

with ZrTiO4ss. The EDX semiquantitative analysis of the white areas gave ZrO2 with 

TiO2 and Y2O3 in solid solution. The XRD peaks that would correspond to ZrO2 in the 

specimens quenched from 1500ºC (2θ≈30.45º, 35.25º, 50.65º and 60.1º, Fig. 4) were 

extremely shifted towards angles higher than those of t-ZrO2 (Zr0.963Y0.037O1.982, ASTM 

83-113) and c-ZrO2 (Zr0.8Y0.2O1.9, ASTM 82-1246) XRD patterns and close to those of 

c-ZrO2 with 11.4 wt.% of TiO2 and 18.0 wt.% of Y2O3 in solid solution reported by 

Feighery et al.15. Other authors14 have also reported the existence of a solid solution of 

TiO2 (up to 11.8 wt. %) and Y2O3 (up to 12.2 wt. %) in c-ZrO2 at 1500ºC.  Moreover, 

the above mentioned peaks were shifted about 0.2º towards angles higher than those 

reported by Feighery et al.15 which would indicate a higher amount of ions with smaller 

ionic radius than that of Zr4+ (Ri=0.80Å)25, such as Ti4+ (Ri=0.68Å)25, and/or a lower 

amount of ions with larger ionic radius than that of Zr4+, such as Y3+ (Ri=0.93Å)25,in 

agreement with the semiquantitative composition of the white grains (Fig. 7). The 

presence of c-ZrO2ss in the specimens quenched from 1500ºC supports the phase 

relationships proposed by Schaedler et al.16 in the isothermal section at 1500ºC. As 

occurred for the specimens quenched from 1400ºC, a minor third phase appeared in the 

fracture surfaces of these specimens. In this case the amount of third phase particles was 

higher and they appeared surrounding the c-ZrO2ss grains (Fig. 6b) as will be discussed 

also after the Raman determinations.  

In the microstructure of polished samples quenched from 1000ºC during the 

cooling part of the cycle major (gray) and minor (white) phases of similar compositions 

as those of specimens quenched from 1500ºC were detected (Fig. 8). From the XRD 
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patterns (Fig. 4), the white secondary phase could also be identified as c-ZrO2ss. The 

main difference between XRD spectra of the specimens quenched from 1500ºC and 

1000ºC on cooling was the position of the peaks of zirconium titanate (Fig. 4), that were 

shifted to higher angles, corresponding to those of the low temperature form of 

zirconium titanate, Zr5Ti7O24 (ASTM 34-209). 

3.2. Materials 

Summarizing the above results, the reaction sintering process of equimolar 

mixtures of TiO2 and ZrO2 stabilized with 3 mol% of Y2O3 using relatively low heating 

and cooling rates (5ºC/min) would produce materials constituted by Zr5Ti7O24 as major 

phase when temperatures higher than 1440ºC are used. On this basis, the selected 

temperature for the isothermal treatment to get a zirconium titanate based material was 

1500ºC.  

The density of the material sintered at 1500ºC during 2h (ZT501500) was 

5.02±0.01g/cm3. The XRD pattern of ZT501500 (Fig. 9) shows a biphasic material 

constituted by Zr5Ti7O24 as major phase and c-ZrO2ss as second phase. It was not 

possible to characterise the microstructure of this material on un-etched polished 

surfaces. In the fracture surfaces shown in figure 10 three kinds of grains are observed. 

The largest and darkest ones presented transgranular fracture and constituted the major 

part of the surface (Fig. 10a). The, smaller and clearer grains presented the characteristic 

facets of intergranular fracture (Fig. 10). These latter were surrounded by small (<2μm) 

clear gray grains also surrounded by the fracture (Fig. 10b). These observations show 

that ZT501500 was constituted by three phases.  

In order to reveal the grains of the phases in the polished surfaces, a very short 

(1 min) thermal etching at high temperature was performed; the obtained microstructure 

is shown in figure 11.  The major phase with dark gray colour in the FE-SEM images 
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(Fig. 10a and 11) and zirconium titanate composition (Fig. 11b) could be identified as 

the Zr5Ti7O24 observed by XRD (Fig. 9). The second phase formed by relatively large 

grains (≈3-5µm), clearer in the FE-SEM images (Fig. 10a and 11), was identified with 

c-ZrO2ss, in agreement with its composition and the XRD pattern of the material. The 

minor third phase constituted by small (<2µm) white grains that was found surrounding 

the c-ZrO2ss grains in the fracture surfaces (Fig. 10b) was clearly revealed by the 

thermal etching (Fig. 11).  Semiquantitative analysis by EDX (Fig. 11b) showed that 

this minor phase was Y2O3-richer than the major ones. In order to clarify the nature of 

this phase, Raman measurements were performed. Due to the triphasic character of this 

material, spectra were recorded by focusing the laser either into the major phase, 

identified as Zr5Ti7O24, or onto the second phase, identified as a c-ZrO2ss.  The 

microcrystals of the minor third phase appearing at the boundary of the second phase 

grains could be seen through the optical microscope of the Raman spectrometer. 

However, their size was too small to be sure that the spectrum came from only one of 

such microcrystals. Even inserting a confocal diaphragm to limit the field depth, the 

scattering volume collected was much larger than the microcrystal. Thus, the 

indentification could only be performed by indirect means.  

Figure 12 shows the Raman spectra of the material sintered at 1500ºC 2h 

(ZT501500). The spectrum of the major phase (Fig. 12a) corresponded to that of 

Zr5Ti7O24
26 and was unpolarized, in agreement with the expected depolarization of light 

in polycrystalline samples. When the laser was focused at the separation between the 

major and the second phases, where the microcrystals of the minor third phase were 

located, the spectrum (Fig. 12b) presented several differences compared to that of the 

matrix (Fig. 12a). The most important was the appearance of clear polarization rules, 

which implies that the laser was impinging on a single crystal area. However, the band 
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positions and general aspect of the spectrum were very similar to that of the major phase 

(Zr5Ti7O24) (Fig. 13a), except for minor frequency shifts in the region of 400 cm-1. 

A spectrum of a microcrystal of the minor third phase was tried to isolate 

through the following procedure (Fig. 13). Firstly, an area with large concentration of 

microcrystals was identified, and the laser was focused just at the surface of the 

material, so that the spectrum measured in that condition had maximum intensity. 

Strong polarization properties were found, indicating that the contribution of the 

microcrystals was important. Then, the sample holder was moved downward by steps, 

setting the laser out of focus and thus collecting a much wider area than in the optimal 

conditions. The spectrum resembled more and more that of the major phase (Zr5Ti7O24), 

and polarization disappeared. The spectrum coming from the microcrystals was 

obtained by subtracting, with the appropriate factors, the out-of-focus spectrum from the 

optimal one. In that way, a very simple spectrum with high intensity in the 330 cm-1 

region was obtained (Fig. 13). This region is typical of many Ti pyrochlores, though at 

slightly higher frequency27. The compositions of the regions containing the 

microcrystals (Fig. 11) would further support the microcrystals to be formed by Ti 

pyrochlores as suggested by the results of the Raman analyses.   

The experimental isothermal section at 1500ºC reported by Schaedler et al.16 

shows that pyrochlore and zirconium titanate are not compatible, being c-ZrO2 and 

zirconium titanate the compatible phases at 1500ºC. On the contrary, Feighery et al.15 

reported a isothermal section where pyrochlore and zirconium titanate are compatible at 

1500ºC. In order to verify whether pyrochlore is an equilibrium phase at 1500ºC in the 

composition studied here, additional specimens were fabricated by sintering at 1500ºC 

during 30h; the density of these specimens (ZT501500-30h) was 4.94±0.05g/cm3. The 

two crystalline phases, Zr5Ti7O24 and c-ZrO2ss were identified by XRD (Fig. 14) in this 
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material. FE-SEM observations on fracture surfaces (Fig. 15) and polished and 

thermally etched surfaces (Fig. 16) of this material, did not allow to discern any minor 

phase surrounding the c-ZrO2ss grains like in the material ZT501500 (Fig. 10 and 11), 

which would indicate that pyrochlore is not an equilibrium phase at 1500ºC, in 

agreement with the Raman observations discussed below and the results of Schaedler et 

al.16. Figure 17 shows Raman spectra of the material treated at 1500ºC for 30h 

(ZT501500-30h). The spectrum of the major phase showed no polarization and, as in 

the material annealed for 2h, corresponded to Zr5Ti7O24. The spectrum of the boundary 

between the major and the second phase showed some polarization degree, but it was 

much weaker than in the material annealed for 2h. Thus, if microcrystals of the minor 

third phase were present in material annealed for 30h, they had a negligible contribution 

in terms of volume content.  

One final aspect to comment about Raman measurements is the total 

impossibility to detect a spectrum that could be assigned to tetragonal or cubic zirconia 

in these materials. In the case of t-ZrO2, the non-detection of its spectrum means that 

this phase was not present in these materials, since it is a very active Raman scatterer. 

The situation with c-ZrO2ss is different, since this phase is only formed by extensive 

doping, which makes it very defective. Its spectrum, in consequence, is weak and 

presents very broad bands which might be difficult to detect if they were overlapped 

with another intense spectrum as in the case of Zr5Ti7O24. This situation might be more 

complicated if c-ZrO2 phase contains a large amount of TiO2 and Y2O3 in solid solution 

as in ZT501500 and ZT501500-30h materials. 

From the above discussion, it is clear that the pyrochlore particles observed 

surrounding the c-ZrO2ss grains in the material treated at 1500ºC during 2h are 

metastable. However, small pyrochlore particles were clearly observed surrounding the 
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zirconia grains in the specimens quenched from 1500ºC and at some grain boundaries in 

the specimens quenched from 1400ºC (Fig. 6), which shows that pyrochlore was formed 

during the heating treatment up to 1500ºC. This fact can be explained by the extremely 

low Gibbs free energy of formation of Pyrochlore (-4593kJ/mol at 1000ºC and -

4918kJ/mol at 1500ºC using the function given by Schaedler et al.16). It will be easily 

formed at the grain boundaries between zirconia and titania, even before the reaction of 

these compounds to form zirconium titanate, with a higher Gibbs free energy in the 

whole range of temperatures considered (-2292kJ/mol at 1000ºC and -2464kJ/mol at 

1500ºC using the function given by Schaedler et al.16). Therefore, pyrochlore formed at 

the grain boundaries of the material studied here during the heating up of the specimens 

and even at the initial part of the isothermal treatment at 1500ºC, as observed in the 

specimens quenched from 1400 and 1500ºC (Fig. 6) and treated at 1500ºC during 2 h 

(Fig. 10 and 11). Longer times at 1500ºC will allow the progressive reaction of 

pyrochlore and zirconium titanate to form c-ZrO2ss and r-TiO2, reaction which is 

favourable at 1500ºC16. In fact, an increase in the amount of c-ZrO2ss for the sample 

treated during 30h is qualitatively observed when a comparison between the XRD 

relative height of the (111) peak (2θ≈30.45º) of c-ZrO2ss and the (131) peak  

(2θ≈30.76º) of Zr5Ti7O24 of the samples treated 2h (≈0.22) and 30h (≈0.35) are 

compared. The excess r-TiO2 produced in this reaction could enter in the structure of 

ZrTiO4ss during cooling to form the low temperature form Zr5Ti7O24, or in c-ZrO2ss. 

 

4. Conclusions  

The reaction sintering process of equimolar mixtures of TiO2 and ZrO2 stabilised 

by 3 mol% of Y2O3 to get zirconium titanate based materials, using relatively low 
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heating and cooling rates (5ºC/min) and 1500ºC as maximum temperature, has been 

studied.   

 During the heating part of the cycle ZrTiO4 is formed at ≈1440ºC. On cooling, 

the transition between ZrTiO4 and Zr5Ti7O24 occurs at ≈1150ºC.   

Materials obtained by sintering using 1500ºC as maximum sintering temperature 

during 2h (relatively short thermal treatment such as those used in conventional ceramic 

processing), are constituted by Zr5Ti7O24 as major phase, a solid solution of TiO2 and 

Y2O3 in c-ZrO2 and pyrochlore as minor phase, which is not an equilibrium phase at 

1500ºC.  
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Figure Captions 

Figure 1. Shrinkage versus temperature recorded during the heating part of the constant 

heating rate experiments (5ºC/min) for the studied compositions Y-TZP (Z), TiO2 (T) 

and 50 mol% Z/50 mol% T (ZT50). 

Figure 2. Derivate versus temperature of the curves plotted in figure 1 for Z and T. 

Figure 3. Derivative versus temperature of the curve plotted in figure 1 for ZT50 

together with the differential thermal analysis (DTA) curves recorded for heating and 

cooling during the constant heating rate experiments for ZT50. 

Figure 4. X-Ray diffraction spectra of ZT50 samples after quenching tests in air from 

1400 and 1500ºC on heating and from 1000ºC on cooling. Si was used as internal 

standard. * Zr5Ti7O24 , ● ZrTiO4ss + t-ZrO2ss, ■ r-TiO2, ^ c-ZrO2ss. (a) General 

spectra; (b) Detail of the spectra showing the shift of the zirconium titanate (ZrTiO4ss) 

and the tetragonal zirconia (t-ZrO2ss) peaks of the material from ZrTiO4 (ASTM 34-

415, dashed line) and Zr0.963Y0.037O1.982 (ASTM 83-113, solid line), respectively. 

Figure 5. Microstructure of ZT50 quenched from 1400ºC on heating. FE-SEM 

micrographs of polished surfaces, together with characteristic EDX analyses. Ti and Zr 

are the major components in the gray and white areas, respectively. 

Figure 6. FE-SEM micrographs of fracture surfaces of ZT50 quenched specimens. 

a) Specimen quenched from 1400ºC. The phase presenting transgranular fracture is 

TiO2, the grains with intergranular fracture is t-ZrO2 and the small grains 

observed at the boundaries of these grains can be associated with pyrochlore. 

b) Specimen quenched from 1500ºC. It is not possible to distinguish the major 

phase (Fig. 4 and 7). Small angular grains of pyrochlore are observed.  

Figure 7. Microstructure of ZT50 quenched from 1500ºC on heating. FE-SEM 

micrographs of polished surfaces, together with characteristic EDX analyses. 
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Semiquantitative analyses gave a major phase (≈62-64 wt.% ZrO2, 34-36 wt.% TiO2, 2-

3 wt.% Y2O3) that could be identified as ZrTiO4ss, meanwhile the white areas (≈68-70 

wt.% ZrO2, 17-20 wt.% TiO2, 13-15 wt.% Y2O3) should correspond to c-ZrO2  with a 

certain amount of TiO2 and Y2O3 in solid solution. 

Figure 8. Microstructure of ZT50 quenched from 1000ºC on cooling. FE-SEM 

micrographs of polished surfaces, together with characteristic EDX analyses. 

Semiquantitative analyses gave a major phase (≈59-61 wt.% ZrO2, 36-38 wt.% TiO2, 1-

2 wt.% Y2O3) that could be identified as Zr5Ti7O24, meanwhile the white areas (≈68-71 

wt.% ZrO2, 16-18 wt.% TiO2, 12-14 wt.% Y2O3) should correspond to c-ZrO2  with a 

certain amount of TiO2 and Y2O3 in solid solution. 

Figure 9. X-Ray diffraction pattern of the composites ZT50 sintered at 1500ºC/2h. * 

Zr5Ti7O24,  ^c-ZrO2ss. 

Figure 10. Microstructure of the composite ZT50 sintered at 1500ºC/2h. FE-SEM 

micrographs of fracture surfaces. The major phase, dark gray, presents transgranular 

fracture and was identified as Zr5Ti7O24 (Fig. 11). The secondary phase, light gray, that 

presents intergranular fracture was identified as c-ZrO2 (Fig. 11). Small grains 

surrounding this phase were identified as pirochlore (Fig. 11). 

Figure 11. Microstructure of the composites ZT50 sintered at 1500ºC/2h. FE-SEM 

micrographs of polished and thermally etched (1400ºC/1min) surfaces, together with 

characteristic EDX analyses. Semiquantitative analyses gave a major phase (≈53-57 

wt.% ZrO2, 41-43 wt.% TiO2, 2-3% wt.% Y2O3) that could be identified as Zr5Ti7O24, 

meanwhile the second phase (≈62-64 wt.% ZrO2, 14-18 wt.% TiO2, 19-23% wt.% 

Y2O3) should correspond to c-ZrO2  with a certain amount of TiO2 and Y2O3 in solid 

solution, and the minor third phase (≈40-45 wt.% ZrO2, 27-33 wt.% TiO2, 24-30 wt.% 

Y2O3) should be pyrochlore 
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Figure 12. Raman spectra of composites ZT50 sintered at 1500ºC/2h. (a) Spectra of the 

major phase (Zr5Ti7O24); (b) Spectra of the microcrystals of the minor third phase. (x 

crossed configuration, // parallel configuration). 

Figure 13. Raman spectra in focus, out of focus and weighted difference, of the 

microcrystals of the minor third phase in composites ZT50 sintered at 1500ºC/2h. 

Figure 14. X-Ray diffraction pattern of the composites ZT50 sintered at 1500ºC/30h. * 

Zr5Ti7O24 , ^c-ZrO2ss. 

Figure 15. Microstructure of the composite ZT50 treated at 1500ºC/30h. FE-SEM 

micrographs of fracture surfaces. The phase that presents transgranular fracture was 

identified as Zr5Ti7O24 (Fig. 16). The grains that present intergranular fracture were 

identified as c-ZrO2 (Fig. 16). 

Figure 16. Microstructure of the composites ZT50 sintered at 1500ºC/30h. FE-SEM 

micrographs of polished and thermally etched (1400ºC/1min) surfaces, together with 

characteristic EDX analyses. Semiquantitative analyses gave a major phase (≈61-63 

wt.% ZrO2, 33-35 wt.% TiO2, 1-3% wt.% Y2O3) that could be identified as Zr5Ti7O24, 

meanwhile the second phase (≈64-66 wt.% ZrO2, 10-12 wt.% TiO2, 23-25 wt.% Y2O3) 

should correspond to c-ZrO2  with a certain amount of TiO2 and Y2O3 in solid solution. 

Figure 17. Raman spectra of composites ZT50 sintered at 1500ºC/30h. (a) Spectra of the 

major phase (Zr5Ti7O24); (b) Spectra of the boundary of the second phase (x crossed 

configuration, // parallel configuration). 
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Figure 1. Shrinkage versus temperature recorded during the heating part of the constant 

heating rate experiments (5ºC/min) for the studied compositions Y-TZP (Z), TiO2 (T) and 50 

mol% Z/50 mol% T (ZT50). 
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Figure 2. Derivate versus temperature of the curves plotted in figure 1 for Z and T. 
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Figure 3. Derivative versus temperature of the curve plotted in figure 1 for ZT50 together with the 

differential thermal analysis (DTA) curves recorded for heating and cooling during the constant heating rate 

experiments for ZT50. 
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Figure 4. X-Ray diffraction spectra of ZT50 samples after quenching tests in air from 1400 and 1500ºC on 

heating and from 1000ºC on cooling. Si was used as internal standard. * Zr5Ti7O24 , ● ZrTiO4ss + t-ZrO2ss, ■ 

r-TiO2, ^ c-ZrO2ss. (a) General spectra; (b) Detail of the spectra showing the shift of the zirconium titanate 

(ZrTiO4ss) and the tetragonal zirconia (t-ZrO2ss) peaks of the material from ZrTiO4 (ASTM 34-415, dashed 

line) and Zr0.963Y0.037O1.982 (ASTM 83-113, solid line), respectively. 
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Figure 5. Microstructure of ZT50 quenched from 1400ºC on heating. FE-SEM micrographs of 

polished surfaces, together with characteristic EDX analyses. Ti and Zr are the major components in the 

gray and white areas, respectively. 

Figure 6. FE-SEM micrographs of fracture surfaces of ZT50 quenched specimens. 

a) Specimen quenched from 1400ºC. The phase presenting transgranular fracture is TiO2, the grains with 

intergranular fracture is t-ZrO2 and the small grains observed at the boundaries of these grains can be 

associated with pyrochlore. 

b) Specimen quenched from 1500ºC. It is not possible to distinguish the major phase (Fig. 4 and 7). Small 

angular grains of pyrochlore are observed.  
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Figure 7. Microstructure of ZT50 quenched from 1500ºC on heating. FE-SEM micrographs of 

polished surfaces, together with characteristic EDX analyses. Semiquantitative analyses gave a major 

phase (≈62-64 wt.% ZrO2, 34-36 wt.% TiO2, 2-3 wt.% Y2O3) that could be identified as ZrTiO4ss, 

meanwhile the white areas (≈68-70 wt.% ZrO2, 17-20 wt.% TiO2, 13-15 wt.% Y2O3) should correspond to 

c-ZrO2  with a certain amount of TiO2 and Y2O3 in solid solution. 

Figure 8. Microstructure of ZT50 quenched from 1000ºC on cooling. FE-SEM micrographs of 

polished surfaces, together with characteristic EDX analyses. Semiquantitative analyses gave a major 

phase (≈59-61 wt.% ZrO2, 36-38 wt.% TiO2, 1-2 wt.% Y2O3) that could be identified as Zr5Ti7O24, 

meanwhile the white areas (≈68-71 wt.% ZrO2, 16-18 wt.% TiO2, 12-14 wt.% Y2O3) should correspond to 

c-ZrO2  with a certain amount of TiO2 and Y2O3 in solid solution. 
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Figure 9. X-Ray diffraction pattern of the composites ZT50 sintered at 1500ºC/2h. * Zr5Ti7O24,  

^c-ZrO2ss. 

Figure 10. Microstructure of the composite ZT50 sintered at 1500ºC/2h. FE-SEM micrographs of fracture 

surfaces. The major phase, dark gray, presents transgranular fracture and was identified as Zr5Ti7O24 (Fig. 11). The 

secondary phase, light gray, that presents intergranular fracture was identified as c-ZrO2  (Fig. 11). Small grains 

surrounding this phase were identified as pyrochlore (Fig. 11). 
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Figure 11. Microstructure of the composites ZT50 sintered at 1500ºC/2h. FE-SEM micrographs 

of polished and thermally etched (1400ºC/1min) surfaces, together with characteristic EDX analyses. 

Semiquantitative analyses gave a major phase (≈53-57 wt.% ZrO2, 41-43 wt.% TiO2, 2-3% wt.% Y2O3) 

that could be identified as Zr5Ti7O24, meanwhile the second phase (≈62-64 wt.% ZrO2, 14-18 wt.% TiO2, 

19-23% wt.% Y2O3) should correspond to c-ZrO2  with a certain amount of TiO2 and Y2O3 in solid 

solution, and the minor third phase (≈40-45 wt.% ZrO2, 27-33 wt.% TiO2, 24-30 wt.% Y2O3) should be 

pyrochlore. 
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Figure 12. Raman spectra of composites ZT50 sintered at 1500ºC/2h. (a) Spectra of the major phase 

(Zr5Ti7O24); (b) Spectra of the microcrystals of the minor third phase. (x crossed configuration, // parallel 

configuration). 
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Figure 13. Raman spectra in focus, out of focus and weighted difference, of the microcrystals of the minor third 

phase in composites ZT50 sintered at 1500ºC/2h. 
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Figure 14. X-Ray diffraction pattern of the composites ZT50 sintered at 1500ºC/30h. * Zr5Ti7O24 , ^c-ZrO2ss. 
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Figure 15. Microstructure of the composite ZT50 treated at 1500ºC/30h. FE-SEM micrographs of fracture 

surfaces. The phase that presents transgranular fracture was identified as Zr5Ti7O24 (Fig. 16). The grains that 

present intergranular fracture were identified as c-ZrO2 (Fig. 16). 
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Figure 16. Microstructure of the composites ZT50 sintered at 1500ºC/30h. FE-SEM micrographs of polished and 

thermally etched (1400ºC/1min) surfaces, together with characteristic EDX analyses. Semiquantitative analyses 

gave a major phase (≈61-63 wt.% ZrO2, 33-35 wt.% TiO2, 1-3% wt.% Y2O3) that could be identified as Zr5Ti7O24, 

meanwhile the second phase (≈64-66 wt.% ZrO2, 10-12 wt.% TiO2, 23-25 wt.% Y2O3) should correspond to c-

ZrO2  with a certain amount of TiO2 and Y2O3 in solid solution. 
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Figure 17. Raman spectra of composites ZT50 sintered at 1500ºC/30h. (a) Spectra of the major phase (Zr5Ti7O24); 

(b) Spectra of the boundary of the second phase (x crossed configuration, // parallel configuration). 

 


