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Abstract 

Hepcidins are antimicrobial peptides with an important role in the host innate immunity. 

Moreover, it has been reported that mammalian hepcidins present a dual-function being 

a key regulator in the iron homeostasis. Here, we describe the coding sequence of a 

novel hepcidin-like peptide in turbot, Scophthalmus maximus. This molecule presents 

several differences with regard to the previously characterized hepcidin in this flatfish 

species and it has not the hypothetical iron regulatory sequence Q-S/I-H-L/I-S/A-L in 

the N-terminal region. Therefore we propose the existence of at least two types of 

hepcidin in turbot. Moreover, results revealed a higher variability in the mRNA 

sequences of the novel hepcidin compared with the other form. Constitutive expression 

of turbot hepcidins (Hepcidin-1 and Hepcidin-2) was analyzed in several tissues and as 

expected, both molecules were highly represented in liver. On the other hand, the effect 

of three different stimuli (bacterial or viral infection and iron overloading) in the level 

of hepcidin mRNA was also examined and a differential response to pathogens and iron 

was observed. Whereas both hepcidins were affected by pathogen challenge, only 

Hepcidin-1 was up-regulated after iron overloading. Therefore, this and other evidences 

suggest that these peptides could be involved in different functions covering the dual 

role of mammalian hepcidins. 
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1. Introduction 

Antimicrobial peptides (AMPs) are cationic and amphipathic host defense peptides 

generally composed of 12–50 amino acids in length and produced by many organisms, 

including plants, invertebrates, and vertebrates [1]. A wide variety of AMPs have been 

described to date, presenting diversity in their sequence and structure [2], but all AMPs 

have in common their capacity to disrupt lipidic membranes in order to kill or inhibit 

the proliferation of microbes [3] and in some cases, inhibit DNA or protein synthesis 

[4]. Moreover, several AMPs posses immunomodulatory properties. They can act as 

chemokines or regulate the chemokine production, participate in the recruitment, 

maturation and activation of immune cells, as well as act as powerful anti-inflammatory 

or pro-inflammatory molecules [5-8]. 

Hepcidin is one of these multifunctional peptides. It was discovered for the first time as 

a cysteine-rich peptide composed by 25 amino acids in human blood and named LEAP-

1 (liver-expressed antimicrobial peptide) because its expression was predominantly 

detected in liver [9]. In addition to its bactericidal activity, hepcidin is also implicated in 

immunomodulatory functions and iron metabolism [10-18]. To our knowledge, the only 

mammal presenting two hepcidin genes in the genome is the mouse [10]. However, two 

or more hepcidin genes have been identified in several bony fish [19-26], with different 

degrees of sequence divergence. There are evidences suggesting that murine hepcidins 

(hepc1 and hepc2) perform different functions, given that only hepc1 seems to be 

involved in iron metabolism [27]. In fish, the different roles of hepcidin peptides still 

remain less clear. 

Previously to our study, one hepcidin gene from turbot (Scophthalmus maximus) had 

been characterized [28]. In the present work, several Expressed Sequence Tags (ESTs) 

presenting homology to an “Antimicrobial peptide precursor” were analyzed and a 

novel hepcidin-like antimicrobial peptide was characterized in turbot. In addition, the 

constitutive expression of both hepcidins was analyzed in several tissues and the 

response to bacterial or viral infections and iron overload was also examined. On the 

basis of the obtained results, a potential role of turbot hepcidins is proposed.  

 

2. Materials and Methods 

 

2.1. Animals 



Juvenile turbot (average weight 2.5 g) were obtained from a commercial fish farm 

(Insuiña S.L., Galicia, Spain). Animals were maintained in 500 L fiberglass tanks with a 

re-circulating saline-water system with a light–dark cycle of 12:12 h at 18 °C and fed 

daily with a commercial diet (LARVIVA-BioMar, France). Prior to experiments, fish 

were acclimatized to laboratory conditions for 2 weeks. Fish care and challenge 

experiments were reviewed and approved by the CSIC National Committee on 

Bioethics. 

 

2.2. ESTs analysis 

ESTs presenting similarity to an “Antimicrobial Peptide precursor” were obtained from 

a turbot sequencing assays performed by Pardo et al. [29] and from a high-throughput 

sequence analysis of turbot transcriptome using 454-pyrosequencing performed in our 

laboratory. The ESTs alignment was performed using ClustalW [30] and a contig was 

constructed using CAP3 sequence assembly program [31]. The sequence was translated 

from nucleotide to amino acid sequence using the translation tool from ExPasy [32] and 

was submitted to Blastp (http://blast.ncbi.nlm.nih.gov/Blast.cgi) for detecting 

homologies with other proteins. A comparison with other hepcidin proteins was 

performed for determining if this sequence represents the full-length coding sequence.  

According to the classification of hepcidin peptides performed by Hilton & Lambert 

[33] we propose the nomenclature of Hepcidin-1 (Hep-1) for the molecule described by 

Chen et al. [28] and Hepcidin-2 (Hep-2) for the novel AMP identified in the present 

work, and they will be named accordingly in this paper. 

 

2.3. Analysis of sequence variability of both turbot hepcidins 

Total RNA was extracted from a pool composed by head kidney from 4 turbot 

intraperitoneally stimulated with the pathogen bacteria Aeromonas salmonicida subsp. 

salmonicida (5.5 x 105 CFU/fish) using TRIzol® (Invitrogen) in accordance with 

instructions provided by the manufacturer in combination with the RNeasy mini kit 

(Qiagen) for RNA purification after DNase treatment (RNase-free DNase set, Qiagen). 

Quantity of the total purified RNA was determined using the spectrophotometer 

Nanodrop ND-1000. The reverse transcription was performed with the SuperScript II 

Reverse Transcriptase (Invitrogen) using 0.5 µg of RNA and following the 

manufacturer indications.  

http://blast.ncbi.nlm.nih.gov/Blast.cgi


In order to determine if Hepcidin-1 and Hepcidin-2 presented variations in the 

sequence, specific primers were designed to amplify the open reading frame (ORF) 

(Table 1). The amplifications were performed in a 25 µl total volume containing 10µl of 

ultrapure water (Sigma-Aldrich), 12 µl of 2x PCR Master Mix (Fermentas), 1 µl of each 

specific primer (10 µM) and 1 µl of cDNA. PCR conditions consisted on an initial 

denaturation for 5 min at 94°C, 30 cycles of denaturation at 94°C for 30 s, annealing at 

54°C for 30 s, elongation at 72°C for 1 min and a final extension for 7 min at 72°C in a 

GeneAmp® PCR System 2700 thermocycler (Applied Biosystems). The PCR products 

were analyzed on a 1.5% agarose gel stained with ethidium bromide under UV light 

using the Gel Doc XR system and the Quantity one program (Bio-Rad, Hercules, Ca). 3 

µl of PCR product were linked into pCR® 2.1 plasmid vector (Invitrogen) for its 

cloning following the protocol instructions and One Shot® TOP10F´ competent cells 

(Invitrogen) were transformed using the plasmid. Bacteria were cultured on 

LB/Ampicillin/IPTG/X-Gal plates during 24 hours at 37°C and the bacterial colonies 

were selected by the blue-white screening method. 25 positive clones for each hepcidin 

were selected and the insert was amplified using the M13 vector specific primers 

(M13F: 5´-GTAAAACGACGGCCAG-3´, M13R:  5´-CAGGAAACAGCTATGAC-3). 

PCR was performed as mentioned above. cDNA sequencing was conducted using an 

automated ABI 3730 DNA Analyzer (Applied Biosystems, Inc. Foster City, CA, USA). 

For each hepcidin, the 25 sequences were compared using ClustalW [30] in order to 

detect sequence variations.  

The consensus sequences for both hepcidin were obtained using CAP3 software [31] 

that corresponded to the most prevalent clone. In each case, sequences were aligned for 

identifying the conserved regions between both turbot hepcidins. Sequence similarity 

and identity scores were calculated with the software BioEdit [34] using the 

BLOSUM62 matrix. Prediction of cleavage sites for the signal peptide and the 

prodomain was performed using ProP 1.0 server [35]. The molecular weight and 

isoelectric point of the mature peptide were determined using the Compute pI/Mw tool 

from ExPASy [32] and the estimated half-life of both peptides was predicted using 

ProtParam tool too from ExPASy [32]. 

 

2.4. Genomic organization 

Genomic DNA was extracted from healthy turbot muscle using the Phenol-Chloroform 

method [36]. In order to determine the presence of introns in the genomic sequence of 



the novel Hepcidin-2 the amplification was performed with the same primers used for 

the confirmation of the full-length coding sequence (Table 1). One µg of DNA was used 

as template for PCR amplification. The elongation step on each cycle was 90 seconds 

for the genomic sequence. Four positive clones were sequenced. Exon-intron junctions 

were deduced using Wise2 software (http://www.ebi.ac.uk/Wise2/programming).  

 

2.5. Phylogenetic analysis 

Amino acid sequences of turbot hepcidins were compared with those from other fish 

and vertebrates (whole prepropeptides). Sequences employed for the alignment and 

their GenBank accesion numbers were: Ictalurus punctatus (NP_001187130), Siniperca 

chuatsi (ACO88905), Salmo salar (AAO85553), Oncorhynchus mykiss (ADU85830), 

Sparus aurata (CAO78619), Morone chrysops (AAM28440), Danio rerio 

(AAN10302), Dicentrarchus labrax (AAZ85124), Paralichthys olivaceus (BAE06234) 

and (BAE06235), Puntius sarana (CAZ68137), Crocodylus siamensis (ADA68357), 

Xenopus tropicalis (NP_001090729) and (ABL75284), Homo sapiens (NP_066998), 

Pan troglodytes (ABU75211), Equus caballus (NP_001161799), Mus musculus 

(NP_115930) and Rattus norvegicus (NP_445921). Multiple sequence alignment was 

performed using the T-Coffee server [37] in regular computation mode and using the 

t_coffee_msa multiple alignment method and phylogenetic tree was drawn using Mega 

4.0 software [38] Neighbor-Joining algorithm [39] was used as clustering method, the 

distances matrix was computed using Poisson correction method and all positions 

containing alignment gaps and missing data were eliminated. Statistical confidence of 

the phylogenetic analysis was assessed by performing 1,000 bootstrap replicates. 

 

2.6. Constitutive expression of hepcidins 

Eight different tissues (kidney, spleen, gill, liver, intestine, heart, brain and muscle plus 

skin) were removed from 20 healthy fish in order to examine the constitutive expression 

of both hepcidins. Equal amounts of the same tissue from four fish were pooled, 

obtaining 5 biological replicates for each tissue (4 turbot/replicate). Total RNA was 

extracted and cDNA was synthesized as mentioned above. Hepcidin expression profiles 

were determined using Real-time quantitative PCR. Specific PCR primers (Table 1) 

were designed using the Primer3 program [40] and their amplification efficiency was 

calculated using seven serial five-fold dilutions of head kidney cDNA from 

http://www.ebi.ac.uk/Wise2/programming


unstimulated turbot with the Threshold Cycle (CT) slope method [41]. Individual real-

time PCR reactions were carried out in 25 µl reaction volume using 12.5 µl of SYBR® 

GREEN PCR Master Mix (Applied Biosystems), 10.5 µl of ultrapure water (Sigma-

Aldrich), 0.5 µl of each specific primer (10 µM) and 1 µl of five-fold diluted cDNA 

template in MicroAmp® optical 96-well reaction plates (Applied Biosystems). All 

reactions were performed using technical triplicates in a 7300 Real-Time PCR System 

thermocycler (Applied Biosystems) with an initial denaturation (95°C, 10 min) followed 

by 40 cycles of a denaturation step (95°C, 15 s) and one hybridization-elongation step 

(60°C, 1 min). An analysis of melting curves was performed for each reaction. Relative 

expression of Hepcidin-1 and Hepcidin-2 was normalized using the Elongation Factor-1 

alpha as reference gene, which was constitutively expressed and not affected by the 

experimental treatments, and calculated using the Pfaffl method [41]. Fold-change units 

were calculated by dividing the normalized expression values for each tissue by the 

normalized expression values obtained in the organ presenting the lower expression 

level for each hepcidin. The relative rates of turbot hepcidin types expressed in the 

different tissues were calculated taking into account the normalized values of each 

hepcidin in the same tissue. 

 

2.7. Expression of hepcidins under different stimuli 

In order to study the transcriptional induction of turbot hepcidins several experimental 

stimulations were performed. Three kinds of stimuli were used: bacterial or viral 

infections and iron overloading. Fish were divided into five groups, composed of 80 fish 

each. Turbot belonging to one group were injected intraperitoneally with 50 µl of an 

Aeromonas salmonicida subsp. salmonicida (strain VT 45.1 WT) suspension (5.5 x 105 

CFU/fish), other group was inoculated with a Viral Haemorrhagic Septicaemia Virus 

(VHSV- strain UK-860/94) suspension (1.2 x 105 TCID50/fish) and eighty turbot using 

Iron-dextran (Sigma Chemical Co., St. Louis, MO, USA) (0.1 mg/fish). The Gram-

negative bacteria and Iron-dextran were resuspended in 1x Phosphate Buffered Saline 

(PBS 1x) and the viral suspension using Eagle´s minimum essential medium (MEM, 

Gibco) supplemented with 2% fetal bovine serum (FBS), penicillin (100 IU/ml) 

(Invitrogen) and streptomycin (100 µg/ml) (Invitrogen). Therefore, two control groups 

were necessary, one injected intraperitoneally with 50 µl of PBS 1x and another one 

using MEM + 2% FBS + P/S. Head kidney and liver from twenty fish belonging to each 



experimental group were removed at different sampling points (3, 8, 24 and 72 hours). 

For each sampling point and treatment, equal amounts of each tissue from four turbot 

were pooled, constituting five biological replicates for head kidney and other five for 

liver (4 turbot/replicate). Moreover, in order to determine if hepcidins expression was 

iron dose-dependent, thirty-six fish were divided into 3 batches of 12 individuals each 

and every group was injected with a different Iron-dextran dose (0.1 µg/fish, 0.1 

mg/fish and 0.5 mg/fish). Head kidney and liver were removed at 24 hour after 

stimulation and the tissues from four turbot were pooled, obtaining 3 biological 

replicates. Total RNA was extracted and cDNA was synthesized as mentioned above 

and amplification was carried out using the same protocol previously described. 

 

2.8. Statistical analysis 

Expression results were represented graphically as the mean ± the standard deviation of 

the biological replicates. In order to determine statistical differences, data were analyzed 

using the computer software package SPSS v.19.0. One-way ANOVA followed by 

Tukey’s multiple comparison test of the means among the different time groups and 

between each time group and its corresponding control was performed. Differences 

were considered significant when p < 0.05. 

 

3. Results 

 

3.1. Molecular characterization of Hepcidin-2  

Hepcidin-1, previously identified in turbot [28], was composed of 90 amino acids, 

however, the deduced amino acid sequence of the new hepcidin form characterized in 

the present work consisted of 84 amino acids with a full-length coding sequence of 255 

bp in length (Figure 1). Turbot Hep-2 exhibited cleavage sites for processing the 

immature peptide. A potential cleavage site for the signal peptide was predicted to be 

located between positions 24 and 25 (SAA-TF) and a motif for the propeptide cleavage 

was predicted between the residues Arg62 and Gly63. Consequently, the predicted 

prepropeptide consisted of a 24 amino acids signal peptide, a prodomain of 38 residues 

and a mature processed peptide of 22 amino acids. The predicted molecular weight of 

the mature peptide was 2365.87 Da and the isoelectric point was 7.70. The estimated 

half-life for Hep-1 (0.8 hours in mammalian reticulocytes in vitro, 10 min in yeast or 10 



hours in Escherichia coli) was shorter than the half-life for Hep-2 (30 hours in 

mammalian reticulocytes in vitro, >20 hours in yeast or >10 hours in E. coli). 

 

3.2. Patterns of nucleotide and amino acid variability in the sequence of both hepcidins 

The comparison of the 25 sequences of the previously described Hepcidin-1 revealed 

only a single nucleotide polymorphism (SNP) in the mature peptide at the nucleotide 

position 241 of ORF: 5/25 of the sequences presented an A and 20/25 a T which coded 

for a different amino acid in the position 81 (Asn or Tyr, respectively). Hepcidin-2 

however, presented a higher polymorphism showing several nucleotide substitutions. 

The presence of these changes resulted more prevalent in the mature peptide region, 

affecting in some cases the presence of the fifth cysteine (Figure 1). The amino acid 

sequences of turbot Hep-2 were submitted to GenBank under accession numbers 

JQ219831-9. 

The alignment between both hepcidin consensus sequences revealed numerous 

differences in the amino acid sequences, but the eight Cys residues were relatively well 

conserved with some exception as it was mentioned above (Figure 2). The identity and 

similarity scores between both hepcidins were 51.1% and 66.67%, respectively. 

Interestingly, only Hep-1 presents the hypothetical iron regulatory sequence Q-S/I-H-

L/I-S/A-L in the N-terminal region of the mature peptide. 

 

3.3. Genomic organization 

The hepcidin-2 genomic structure was composed by 3 exons and 2 introns. Intron 1 was 

85 bp in length whereas intron 2 was 132 bp in length. The exon 1 contained the signal 

peptide region and 12 nucleotides belonging to the prodomain, the exon 2 was entirely 

composed by a prodomain sequence and the exon 3 contained 24 nucleotides of the 

prodomain and the mature peptide nucleotide sequence (Figure 3). Turbot Hep-2 gene 

organization followed the same pattern of hepcidin genes from other vertebrates. 

Interestingly, partially spliced Hep-1 transcripts retaining the first intron were 

identified, but not in Hep-2. The genomic sequence of turbot Hep-2 was submitted to 

GenBank under accession number JQ219840. 

 

3.4. Phylogenetic analysis  

Protein alignment with other hepcidin sequences from fish species and other vertebrates 

showed that hepcidins are relatively well conserved among the vertebrates, specially the 



eight cysteine residues in the mature peptide (Figure 4A). The alignment revealed that 

hepcidin sequence similarity among fish species is higher than between fish and the 

other vertebrates. Moreover, notable variations in the mature peptide length are present 

among species and between hepcidin types of the same organism, as occurs in 

Paralichthys olivaceus and Xenopus tropicalis, as well as in S. maximus. 

Phylogenetic analysis placed the fish hepcidins in a separated cluster from the other 

vertebrates (Figure 4B). Danio rerio and Puntius sarana are cyprinids, and the 

hepcidins from these species were grouped in a branch. The salmonid proteins appeared 

also forming a separate group within the cluster of fish. Hepcidins from the perciforms 

Sparus aurata, Siniperca chuatsi, Dicentrarchus labrax and Morone chrysops also 

grouped together. Scophthalmus maximus Hep-1 was placed in the same cluster of 

Paralichthys olivaceus Hep-JF2, the other flatfish used in the analysis; Scophthalmus 

maximus Hep-2 was grouped within the same branch of Paralichthys olivaceus Hep-

JF1. Between turbot Hep-1 and Japanese flounder Hep-JF2 the identity was 79.1% and 

the similarity was 83.5%, and the values between turbot Hep-2 and Japanese flounder 

Hep-JF1 were 58.3% and 74.1%, respectively.  

 

3.5. Constitutive expression of both Hepcidins  

Hepcidin-1 and Hepcidin-2 mRNA were detected in all tissues tested in healthy turbot. 

Fold-change for each tissue was referenced to the brain (1 fold), the organ presenting 

the lower expression level for both transcripts. Hep-1 was predominantly expressed in 

the liver (about 150 fold-change), a moderate level was detected in kidney, intestine and 

spleen (7-11 fold) and the lowest expression in gill, muscle plus skin, heart and brain 

(<2 fold) (Figure 5A). Hep-2 was also predominantly detected in liver (about 2255 fold-

change); an elevated presence of transcripts was also observed in intestine (about 440 

fold) and kidney (about 100 fold); the other tissues presented a lower fold-change of 20 

fold) (Figure 5B). The relative rates of turbot hepcidin types expressed in the different 

tissues showed a higher presence of Hep-2 mRNA in most of the tissues tested, with the 

exception of muscle/skin and brain. The highest proportion of Hep-2 with regard to 

Hep-1 was observed in intestine and the larger proportion of Hepcidin-1 compared with 

Hep-2 was obtained in brain (Figure 5C). 

 

3.6. Hepcidin expression after bacterial or viral infections and iron overload. 



Regarding hepcidin expression after immunostimulation using the fish-pathogenic 

bacteria Aeromonas salmonicida subsp. salmonicida, Hep-1 increased its expression 

significantly in head kidney at 3 h post-infection (p.i.) (2.5 fold), and reached the larger 

fold-change at 24 h p.i. (35 fold). In liver, there were not significant differences 

compared to PBS-injected control at 3 h p.i., but the level of Hep-1 mRNA exhibited an 

increase at 8 h after bacterial challenge (2.6 fold), and the level remained more elevated 

at 24 and 72 h p.i. (about 5 fold) (Figure 6A). Hepcidin-2 expression was significantly 

inhibited in head kidney at 3 h p.i. (fold-change value of 0.2), but at 8 h p.i. the fold-

change reached an increase of 10 fold and at 24 h after bacterial stimulation the level 

increased until 700 fold with regard to the control group. In liver, a significant up-

regulation of Hep-2 was observed at 24 h post-injection (about 2.8 fold) and the level 

remained in the same value at 72 h. (Figure 6B). Interestingly, although the constitutive 

expression of hepcidin was predominant in liver, its induction after Aeromonas 

salmonicida subsp. salmonicida challenge was more pronounced in head kidney. 

Moreover, in head kidney the highest induction was for Hep-2 and in liver was reached 

for Hep-1. 

Hep-1 expression was drastically reduced after viral stimulation with VHSV at 8 h p.i. 

in head kidney (fold-change value of 0.15) but at 72 h the expression level was 

significantly up-regulated (2.6 fold). In liver this increase occurs earlier, at 24 h after 

VHSV infection with the same fold-change value (2.6 fold) and at 72 h the increase 

with regard to the MEM + 2% FBS + P/S-injected control group was 3.5 fold (Figure 

7A). As occurs with Hep-1, Hep-2 transcripts were highly down-regulated in head 

kidney at 8 h after viral stimulation (fold-change value of 0.01) but it was strongly up-

regulated at 72 h (more than 42 fold). In liver a significant inhibition was also detected 

after VHSV injection at 8 h (about 0.7 fold-change value), but an important increase of 

Hep-2 mRNA was observed after 72 h (Figure 7B). The highest increase of hepcidin 

expression also occurred for Hep-2 in head kidney. 

The administration of Iron-dextran (0.1 mg/fish) to juvenile turbot for generating an 

iron overload also affected the expression of hepcidins. Hep-1 transcripts were inhibited 

in head kidney and liver at 3 h after stimulation. In head kidney an up-regulation was 

detected at 72 h (3.1 fold) and in liver at 24 h (4.6 fold), remaining high values until 72 

h (7 fold) (Figure 8A). A significant initial inhibition of Hep-2 level was also detected 

in head kidney at 3 h after iron administration with regard to PBS-injected control. No 

significant differences were found at subsequent sampling points. During the 



experimental time course, iron overloading did not affect Hep-2 mRNA level in liver 

(Figure 8B). Moreover, hepcidin expression was Iron-dextran dose dependent at 24 h 

after administration. A significant up-regulation was detected for Hep-1 with the lowest 

iron dose (0.1 µg/fish) in head kidney (about 1.8 fold), but this increase disappeared 

with the intermediate dose (0.1 mg/fish) and a notable inhibition at concentrations of 0.5 

mg/fish was observed. In liver the response was opposite, exhibiting significant 

elevation of Hep-1 expression with higher iron doses (Figure 9A). Regarding Hep-2, 

head kidney showed an inhibition in mRNA level, and this reduction was more 

pronounced using more concentrated solution (Figure 9B). The same tendency was 

observed in liver, but differences were non-significant. 

 

4. Discussion 

 

Mammalian hepcidins are multifunctional molecules involved in numerous immune 

processes but, on the other hand, present a pivotal role in iron metabolisms [10-18]. A 

new hepcidin-like antimicrobial molecule from the flatfish Scophthalmus maximus was 

characterized in this study. Turbot Hep-2 presents several differences in the sequence 

and length of the three regions (signal peptide, prodomain and mature peptide) with 

regard to the previously described turbot Hep-1. The identity score between both turbot 

hepcidins suggests that there are at least two different types of hepcidin in turbot. 

Genetic duplication and further mutation of AMPs has been suggested as a molecular 

strategy in the evolution of these molecules [42]. There are evidences for positive 

Darwinian selection on antimicrobial peptides [43], and more specifically in hepcidin-

like variants of pleuronectiform and perciform [44]. The prevalence of mutations is 

usually most elevated in the mature peptide region compared to the signal sequence and 

prodomain [45]. Turbot Hep-2 presents amino acid substitutions in the three regions 

conforming the prepropeptide, but the prevalence of SNPs is more pronounced in the 

mature peptide, that is, the active region. This genetic variation due to accelerated 

evolutionary rates might possibly be directed by pathogens when the host is exposed to 

new environments [44,46]. As it was proposed for the complement component C3 in 

teleost fish, the presence of different isoforms would allow these animals to expand 

their innate immune recognition capabilities [47]. It could be interesting to investigate 

whether changes in the mature peptide region generate diversification or specialization 

in the functions of turbot hepcidins and affect their ability for bacterial inhibition. 



In a similar way to other vertebrates, Hep-2 genomic organization is composed by three 

exons and two introns. As occurs in the majority of fish hepcidins, the first intron is 

larger than the second intron [19,20,22,28,48-54] with some exception [55]. Moreover, 

introns of turbot Hep-2 (85 and 132 bp) are shorter that introns of turbot Hep-1 (114 and 

172 bp). A curious phenomenon of truncated hepcidin transcripts retaining the first 

intron was observed in some turbot Hep-1 transcripts. This event was also reported 

previously in rockbream hepcidins [52], where a significant increase of these partial 

spliced transcripts occurred after bacterial challenge or iron overload. In our work, we 

also cloned the turbot hepcidin from turbot previously stimulated with A. salmonicida. 

The resultant forms presented a stop codon in the intron and, as a result, these 

transcripts may not be translated into functional hepcidin. Cho et al. [52] proposed that 

the massive induction of transcripts causes a reduction in the specificity of the splicing 

process in immature transcripts, but further analysis will be necessary for determining 

the incomplete processing of these mRNA. 

A phylogenetic analysis of hepcidins in vertebrate species revealed a strong 

conservation of the eight cysteine residues in the mature peptide region, conforming 

four disulphide bonds characteristic of hepcidins. Interestingly, Japanese flounder Hep-

JF1 only presents six cysteines. Moreover, one mutation detected in turbot Hep-2 can 

affect the presence of the fifth cysteine. As was reported by Nemeth et al. [56] for 

human hepcidin, altered disulfide-bonding pattern allow a nearly full activity of the 

peptide in vitro. It is possible that in the case of turbot Hep-2 functionality also remains. 

Fish hepcidins formed a separated cluster from de other vertebrate hepcidins and within 

the fish group the similarities were higher among species belonging to the same order. 

The identities and similarities between turbot Hep-1 and Japanese flounder Hep-JF2 and 

between turbot Hep-2 and Japanese flounder Hep-JF1 were higher than the identity and 

similarity between both turbot hepcidins. These results suggest that Hep-1 and Hep-2 

from turbot could have different functions. 

As expected, both turbot hepcidins were abundantly expressed in liver. Our results for 

Hep-1 distribution differ in some tissues with those obtained by Chen et al. [28] using 

RT-PCR which could be due to differences in the age of the animals (adult fish or 

juveniles) or to the used technology (real-time quantitative PCR is more sensitive than 

the conventional PCR used by these investigators). The relative proportion of hepcidin 

types showed a predominant presence of Hep-2 in all tissues tested with the exception 



of muscle plus skin and brain. This tissue-specific pattern of hepcidin mRNA in healthy 

juvenile turbot is in agreement with what it has been reported for other fish hepcidins 

[20-22,52,57]. 

Turbot hepcidins were significantly induced after bacterial challenge with Aeromonas 

salmonicida. Despite the highest presence of hepcidin transcripts in liver, the fold 

increase relative to control fish was more pronounced in head kidney for Hep-1 and 

Hep-2. Our findings contrast with the results obtained by Chen et al. [28] which 

observed a significantly up-regulation of turbot Hep-1 expression at 24, 48, 72 and 96 h 

after infection with Listonella anguillarum in liver and spleen but not in head kidney. 

Another experimental assay revealed a significant up-regulation of hepcidin transcripts 

in liver and spleen but not in head kidney after Listonella anguillarum infection in 

gilthead seabream [53]. Interestingly, Japanese flounder hepcidins were differentially 

affected by lipopolysaccharide (LPS) injection; Hep-JF1 expression was induced in 

liver but not in kidney and Hep-JF2 expression was up-modulated in kidney but not in 

liver [20]. Bo et al. [26] observed an increase in both Oryzias melastigma hepcidins 

(OM-hep1 and OM-hep2) in liver and spleen after Vibrio parahaemolyticus 

administration and, as in our case, the response was faster in the case of type 1 hepcidin. 

Induction of hepcidin expression after bacterial or LPS administration could varies as a 

function of the type of hepcidin in species presenting more than one form.  

There is scarce information about the response of fish hepcidin peptides to viral 

infections and the studies are usually based in the effect of Polyriboinosinic 

polyribocytidylic acid (poly I:C) injection, which is a synthetic nucleic acid widely used 

in the study of the immune response to double-stranded RNA virus  [21,55,58]. These 

reports have shown that fish hepcidins can be induced by poly I:C. Cho et al. [52] 

analyzed the expression of hepcidin peptides in rockbream after iridovirus infection and 

detected an up-regulation of hepcidins in liver, intestine, kidney and spleen at 10 days 

post-challenge and the increase was especially high in liver. Hepcidin up-regulation was 

also reported in gilthead seabream after VHSV inoculation at 4 and 72 h post-injection 

in liver, head kidney and spleen [53]. Our analysis about the modulation of turbot 

hepcidins after VHSV challenge revealed an initial inhibition of Hep-1 and Hep-2 

expression in head kidney and liver, but at 72 h after infection an up-regulation of both 

hepcidins was detected. This initial down-regulation of hepcidin levels could be related 

to increased levels of Tumor necrosis factor (TNF)-α after VHSV infection at 3, 8 and 



24 h but not at 72 h post-challenge (data not shown). It has been found that TNF inhibits 

the release of iron from macrophages inducing hypoferremia and consequently hepcidin 

levels may be affected [59,60], but more research is needed to clarify this issue. 

Moreover, in vitro analysis will be necessary in order to determine if hepcidin peptides 

can inhibit viral replication, as was reported for marine medaka Om-hep1 against White 

Spot Syndrome Virus (WSSV) [61]. 

On the other hand, hepcidin is the main negative regulator in iron homeostasis in 

mammals [10-12]. Nicolas et al. [11] concluded in their study using upstream 

stimulatory factor-2 (USF2) gene knock-out mice that hepcidin was a negative regulator 

of iron uptake at the intestinal level and of the iron release from macrophages. When the 

level of iron in the organisms is high, the expression of hepcidin is elevated. Hepcidin 

acts by direct binding to its cellular receptor ferroportin, the unique known iron 

transporter on the cell membrane, and this receptor is internalized and degraded at 

lysosomal level [62]. As consequence, the iron absorption from enterocytes to plasma 

and its exportation from macrophages get canceled. Moreover, hepcidin reduces the iron 

available for pathogen proliferation since bacteria require iron as a growth-essential 

nutrient [63] and an efficient viral replication needs an iron-replete host [64]. The role 

of fish hepcidins in iron homeostasis remains still unclear. There are evidences about 

the conservation of the dual role of hepcidins in fish. Rodrigues et al. [51] detected an 

up-regulation of sea bass hepcidin level in liver at 4 days after experimental treatment 

using Iron-dextran. Huang et al. [21] studying the effect of an iron overload in the 

expression of the three different hepcidins from tilapia have suggested that these 

different types have their own functions in different organs for regulating iron 

metabolisms, since each hepcidin responds to the iron administration in different 

tissues. With regard to Japanese flounder, gene expression of Hep-JF1 in liver was 

down-regulated during experimental iron overloading (at 1, 2 or 3 weeks after 

treatment), whereas Hep-JF2 expression was not affected in liver but its expression in 

kidney increased after injection of iron-dextran [20]. Our results showed a possible role 

of Hep-1 in iron homeostasis in head kidney and liver, since a significant increase in the 

expression level was detected in both tissues. However, the gene expression of Hep-2 

was not up-regulated during the experimental assay. On the other hand, a significant 

initial inhibition was detected for Hep-1 in head kidney (3 h) and liver (3 and 8 h) and 

for Hep-2 in head kidney (3 h). The reason for this initial down-regulation of hepcidin 



transcripts is unknown and further studies are necessary in order to understand this 

process. Moreover, increasing doses of Iron-dextran significantly reduced the Hep-1 and 

Hep-2 expression in head kidney, but the Hep-1 levels in liver were progressively 

increased using higher doses of Iron-dextran.  

The overall results of this paper seem to suggest that Hep-1 is more involved in body 

iron regulation, whereas the role of Hep-2 would be a more specialized one in the 

immune defense. Furthermore, the higher variability in the amino acid sequence of Hep-

2 may be an evolutionary mechanism for the recognition of a diverse range of microbes 

and the longer half-life with regard to Hep-1 could favor the elimination of pathogens. 

Other evidence supporting this hypothesis is the presence of the Q-S/I-H-L/I-S/A-L 

sequence in the N-terminal region of the mature peptide. As was proposed by Robertson 

et al [23] the existence of these amino acids could be related with an iron-regulatory 

function. There are three hepcidins in Oreochromis mossambicus and one of those 

hepcidins (TH2-3) possesses the characteristic sequence and the other two peptides lack 

these amino acids; interestingly, tilapia hepcidin TH2-3 seems be the peptide implicated 

in iron regulation in liver [21]. Paralichthys olivaceus possesses two types of hepcidin, 

and Hep-JF2 contains a similar N-terminal sequence, H-I-S-H-I-S-M. As was reported 

for tilapia TH2-3, only Japanese flounder Hep-JF2 was up-regulated in head kidney 

after iron overloading [20], Turbot Hep-1 contains the typical N-terminal sequences 

and, as occurs with their homolog in P. olivaceus, their expression was up-regulated 

after Iron-dextran administration, whereas the level of Hep-2 (hepcidin lacking this 

sequence) remained low.  

In conclusion, a novel hepcidin-like antimicrobial peptide was characterized in the 

flatfish Scophthalmus maximus, presenting numerous differences in the sequence with 

the previously described hepcidin. Our results on the expression of both hepcidins 

suggest that Hep-1 and Hep-2 may have different functions, since their transcriptional 

modulation was different, the variability in the sequence and the half-life was higher in 

Hep-2 compared to Hep-1 and the presence of the Q-S/I-H-L/I-S/A-L sequence in the 

N-terminal region may be a marker to identify those most involved hepcidin in iron 

metabolism function. Hence, the dual role of mammalian hepcidins could be divided 

between both peptides in turbot. Further studies will be needed in order to elucidate this 

question. 
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Figure legends 

Figure 1. ORF sequence of turbot Hepcidin-2. The amino acid sequence corresponding 

to the predicted signal peptide is boxed, the prodomain region is in cursive letters and 

the mature peptide is shaded in grey colour. Polymorphic nucleotide and amino acid 

positions are marked in bold. Intron positions and lengths are indicated by vertical lines.  

Figure 2. Alignment showing the identities between both turbot hepcidins. Identical 

amino acids are shaded in grey color. Hashes indicate the positions of the eight 

conserved Cys residues. 

Figure 3. An exon-intron diagram showing the organization of turbot Hepcidin-2 gene. 

Figure 4. (A) Amino acid alignment of turbot hepcidins with hepcidin peptides from 

other vertebrates. The signal peptides are underlined, the mature peptides are shaded in 

grey colour and the eight conserved Cys are indicated with hashes. (B) Phylogenetic 

tree of hepcidins from different vertebrates based on the complete amino acid sequence. 

The tree was constructed using the neighbour-joining method and gaps were completely 

deleted. Numbers indicate the percentage of bootstrapping after 1,000 replications. 

Figure 5. (A) Hep-1 and (B) Hep-2 constitutive expression in various tissues of juvenile 

turbot. Fold-change units were calculated by dividing the normalized expression values 

for each tissue by the normalized expression values obtained in the organ presenting the 

lower expression level for each hepcidin (brain in both cases). (C) Relative proportions 

of turbot hepcidin types in different tissues calculated taking into account the 

normalized values of each hepcidin in the same tissue.  

Figure 6. Expression of Hep-1 (A) and Hep-2 (B) in head kidney and liver at 3, 8, 24 

and 72 h after Aeromonas salmonicida subsp. salmonicida challenge (black bars). 

Asterisks above the bars indicate significant differences between each sampling point 

and the corresponding control (PBS-injected groups) (white bars), and asterisks over 

lines show statistical significant differences across the different sampling points (p < 

0.05). 

Figure 7. Expression of Hep-1 (A) and Hep-2 (B) in head kidney and liver at 3, 8, 24 

and 72 h after Viral Haemorrhagic Septicaemia virus infection (black bars). Asterisks 

above the bars indicate significant differences between each sampling point and the 



corresponding control (MEM + 2% FBS + P/S-injected groups) (white bars), and 

asterisks over lines show statistical significant differences across the different sampling 

points (p < 0.05). 

Figure 8. Expression of Hep-1 (A) and Hep-2 (B) in head kidney and liver at 3, 8, 24 

and 72 h after Iron-dextran administration (black bars). Asterisks above the bars 

indicate significant differences between each sampling point and the corresponding 

control (PBS-injected groups) (white bars), and asterisks over lines show statistical 

significant differences across the different sampling points (p < 0.05). 

Figure 9. Expression of Hep-1 (A) and Hep-2 (B) in head kidney and liver at 24 h after 

administration of three different Iron-dextran doses (black bars). Asterisks above the 

bars indicate statistical significant differences between each sampling point and the 

corresponding control (PBS-injected groups) (white bars) (p < 0.05). 

Tables 

Table 1. Primer sequences used in the ORF amplification and expression analysis. 

 Gene Primer  Sequence (5´-3´) 

ORF amplification Hepcidin-1 Hepcidin Comp F1 CTCAAAATGAAGGCATTCAG 

Hepcidin Comp R1 GAATCCTCAGAACTTGCAGC 

Hepcidin-2 AMP Comp F1 ATGAAGACTCTCACCGTTGCAG 

AMP Comp R1 CATGGCTGTTGGAGCAGGAATTC 

q-PCR Hepcidin-1 Hepc.-F3 CGAGTCACATCAGGCAGAAG 

Hepc.-R4 TCCTCAGAACTTGCAGCAGA 

Hepcidin-2 AMP prec2 F ATGAAGACTCTCACCGTTGC 

AMP prec2 R TTCTGTCTGTTACTCGGCATC 

EF1 alpha T1-F2 GGAGGCCAGCTCAAAGATGG 

T1-R2 ACAGTTCCAATACCGCCGATTT 

 

 



A novel hepcidin-like antimicrobial peptide (Hep-2) was characterized in turbot  

A. salmonicida and VHSV challenge affect the expression of  both turbot hepcidins 

Iron overload only induces the expression of Hep-1 

A differential role of turbot hepcidins in suggested in this paper 
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