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ABSTRACT 

 

The temporal profile of the phosphorescence of singlet oxygen endogenously photosensitized by 

photosystem II (PSII) reaction centre (RC) in an aqueous buffer has been recorded using laser excitation 

and a near infrared photomultiplier tube. A weak emission signal was discernible, and could be fitted to 

the functional form    2 1exp expa t t      , with 0a   and 2 1  . The value of 2  decreased 

from 11.6 0.5 µs under aerobic conditions to 4.1 0.2 µs in oxygen saturated samples, due to enhanced 

bimolecular quenching of the donor triplet by oxygen, whereas that of 1 , identifiable with the lifetime of 

singlet oxygen, was close to 3 µs in both cases. Extrapolations based on the low amplitude of the 

emission signal of singlet oxygen formed by PSII RC in the aqueous buffer and the expected values of 

1 and 2 in chloroplasts indicate that attempts to analyse the temporal profile of singlet oxygen in 

chloroplasts are unlikely to be rewarded with success without a significant advance in the sensitivity of 

the detection equipment. 
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Direct detection of singlet oxygen—molecular oxygen in its lowest excited electronic state (Schweitzer 

and Schmidt 2003)—becomes a herculean task when one wants to determine its concentration and 

temporal profile in a biological environment. The quantum yield of singlet oxygen phosphorescence (P ) 

in water is extremely low, close to 510–7, and the lifetime of singlet oxygen rather short, 3.5 µs in neat 

water (Schmidt and Afshari 1990; Gorman and Rodgers 1992; Schweitzer and Schmidt 2003; Baier et al. 

2005; Arellano et al. 2007a). Thorough analyses of the time-resolved phosphorescence emission of singlet 

oxygen in an aqueous environment became possible after the availability of NIR-sensitive photomultiplier 

tubes, which possess the requisite sensitivity and adequate time resolution (Jimenez-Banzo et al. 2008). 

The analysis of the temporal profile becomes even harder when singlet oxygen is produced by a 

photosensitizer dispersed in a biological (or a crowding) system, where biological compounds at high 

concentrations (i.e., small cell metabolites, macromolecules or biological structures) dissolved in, or in 

close contact with, the aqueous medium provide additional pathways for the scavenging of singlet 

oxygen. Under these conditions, the lifetime of singlet oxygen ( ) is shortened to a range of only a few-

hundred of ns (Gorman and Rodgers 1992; Bisby et al. 1999; Redmond and Kochevar 2006) and 

Pdecreases by at least 1–2 orders in magnitude in comparison with its value in water. The extremely 

low values for Pand  impose severe demands on the detection system, which must be sensitive as 

well as fast if one wants to analyse the temporal profile of singlet oxygen in a biological medium. Ogilby 

and co-workers (da Silva et al. 2012) have recently reported the temporal profile of singlet oxygen in 

HeLa cells after exchanging the intracellular water with deuterium oxide and they anticipate that the 

determination of  and D (the quenched lifetime of the donor triplet) can be a challenging and error-

prone endeavour when the two lifetimes are very similar. 

A satisfactory system for studying the kinetics of singlet oxygen emission should possess, apart 

from high sensitivity and rapid response, the capacity to discriminate effectively against extraneous 

luminescence. The singlet oxygen signal at 1270 nm is contaminated by phosphorescence and delayed 

fluorescence emissions from other molecules and scattered laser light. The intensity of the additional 

radiation can be several orders of magnitude larger than that of the singlet oxygen emission itself. 

Although the bulk of this unwanted radiation disappears in the first few hundreds of ns after the pulse 

excitation, its contribution must be determined in a control experiment (where the singlet oxygen 

emission is suppressed) and subtracted from the total signal from the sample under investigation. If the 

burst of stray light is sufficiently intense, it will drive the detector into a nonlinear region or even into 
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saturation, in which case the result of the subtraction will not be completely satisfactory, the early part of 

the subtracted signal will be devoid of significance, and a bi-exponential fitting of the temporal profile of 

the singlet oxygen emission will become prone to a large uncertainty, particularly when the rise time of 

the singlet oxygen emission is a few µs or shorter.  

The kinetic traces satisfy the equation      2 1exp expI t a t t       , with 0a  and 

2 1  ; the shorter lifetime determines the rise time of the curve. One of the two lifetimes is to be 

identified with   and the other with D . If one compares two samples, which differ only in the 

concentration of dissolved oxygen, one of the two lifetimes should remain unchanged whereas the other 

would be shorter in the sample with the large concentration of oxygen.  

An in vitro study where 2  has been demonstrated to depend on the concentration of molecular 

oxygen, has recently been published (Jarvi et al. 2011); on account of the difficulties mentioned above, 

they were not able to disentangle the early part of the curve, characterised by 1 . Since most experiments 

designed to detect singlet oxygen in water or biological systems will suffer from similar handicaps, we 

have investigated a case (so far unique) in which singlet oxygen is endogenously photosensitized by a 

biological complex, namely the (type II) reaction centre (RC) of photosystem II (PSII), to see if it is 

possible to determine the formation and deactivation rate constants of the singlet oxygen produced by this 

complex in water. This is an intermediate situation between two extremes: a system where is 

significantly larger than D , and the opposite case involving a system in situ (i.e., plant chloroplasts or 

cells of oxygenic photosynthetic prokaryotes), where  becomes appreciably smaller than D . The 

feasibility of investigating the first case (   D ) has already been established by Barber and co-workers 

(Macpherson et al. 1993; Telfer et al. 1999), who worked with PSII RC in deuterium oxide, and will not 

be further discussed in this technical communication. However, no results pertaining to the opposite 

inequality (   D ) have been reported so far. Our results might shed some light on whether or not the 

analysis of the intensity and kinetic traces at 1270 nm of singlet oxygen produced by PSII RC in situ is a 

feasible task. The PSII RC consists of the heterodimer of the so-called D1 and D2 proteins, the 

cytochrome b559 subunits PsbE and PsbF, and the small subunit named PsbI (Barber et al. 1987; Nanba 

and Satoh 1987). The protein complex of PSII RC in its most active and stable form houses six 

chlorophyll (Chl) molecules, two pheophytin molecules and two β-carotene (β-Car) molecules. The 

pigment organization in the PSII RC complex, dictated by the protein matrix (Loll et al. 2005), is 
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unfavourable for efficient triplet-triplet energy transfer from 3P to β-Car because the β-Car molecules are 

far from the accessory Chl in the D1 protein (ChlD1), where the triplet is mainly localized and only a 

minor population is in the primary donor 680P (Noguchi 2002). Hereafter, 3P represents the sum of ChlD1 

and 680P triplets in thermal equilibrium formed, through the radical pair mechanism (Takahashi et al. 

1987), when the electron transport chain is inhibited on the acceptor side of PSII RC. The lifetime of the 

3P has been determined to be 600–1000 µs under anaerobic conditions, 20–40 µs under aerobic 

conditions and 4–6 µs under oxygenic conditions (Mathis et al. 1989; Telfer et al. 1999), which clearly 

indicates that 3P is efficiently quenched by molecular oxygen. Evidence for triplet-triplet energy transfer 

from 3P to molecular oxygen and the concomitant singlet oxygen production have been demonstrated in 

deuterium oxide (Macpherson et al. 1993; Telfer et al. 1994; Telfer et al. 1999). 

The five-Chl PSII RC (RC5) was first isolated by Vacha and co-authors (Vacha et al. 1995) and 

minor modifications for its isolation procedure were introduced by our group (Arellano et al. 2007b). This 

type of RC5 is characterized by the loss of the peripheral Chl (Chlz) and β-Car molecules in the D2 

protein during the isolation procedure and has been successfully used to monitor endogenous production 

of singlet oxygen in deuterium oxide (Arellano et al. 2011). The experimental procedure and the details of 

the experimental setup to follow the kinetic traces of the singlet oxygen emission have been described 

previously (Arellano et al. 2007a; Arellano et al. 2011). Aliquots of the stock solution of RC5 (dissolved 

in 0.01% (w/v) n-dodecyl β-D-maltoside, 50 mM Tris-HCl pH 7.2) were diluted in 20 mM Tris-HCl pH 

7.2 to reach a final absorbance (for a path length of 1 cm) of 1.5 at 675 nm. RC5 samples were replaced 

with fresh samples every 256 scans before any significant change in absorption spectrum of RC5 could be 

identified. The cuvette with the RC5 sample was left open for experiments under aerobic conditions in 

equilibrium with the air atmosphere; whereas a constant stream of pure molecular oxygen blowing on the 

surface of the RC5 sample was used to ensure the oxygen saturation of the RC5 solutions inside the 

cuvette. Before the laser beam excitation, a volume of 20–30 mL of RC5 was also exposed to a 

continuous a stream of pure oxygen and incubated for approximately 1.0–1.5 h in the dark to ensure 

oxygen saturation. Aliquots of 1 mL of the RC5 sample were transferred from the reservoir to the cuvette 

with the aid of a long needle syringe to avoid any contact with the air of the room. The ratio of the oxygen 

concentration in aerated and oxygenated buffer was measured using a Foxy fiber optic oxygen sensor 

probe (Ocean Optics Inc, Dunedin FLA). 
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The temporal profile of the 1270 nm emission signal of singlet oxygen photosensitized by RC5 

in 20 mM Tris-HCl pH 7.2 is depicted in Fig. 1. Although the kinetic traces show a poor signal-to-noise 

ratio, a time-dependent emission signal was discernible. The intensity of the signal was oxygen dependent 

and disappeared when oxygen was displaced with a stream of N2 or NaN3 was present in the medium 

(data not shown). A simple bi-exponential fitting of the temporal profile of the singlet oxygen emission 

yields two lifetimes with values close to 2.9 0.2 µs and 11.6 0.5 µs for 1 and 2 , respectively. The 

estimation of the uncertainties of the two lifetimes is given in Online Resource 1. The latter value cannot 

be identified with  , for it differs substantially even from the weighted lifetime of singlet oxygen in 

aqueous solutions containing a small percentage of detergent micelles. In these solutions, singlet oxygen 

is partitioned between the water phase and the detergent micelles, where the lifetime is longer because of 

the more hydrophobic environment (Lee and Rodgers 1983; Ohara et al. 2009; Arellano et al. 2011). The 

value of 1 cannot be identified with D , for it is much shorter than the lifetime of 3P under aerobic 

conditions, where values in the range of 20–40 µs have been reported depending on the temperature and 

the viscosity of the solution (Mathis et al. 1989; Telfer et al. 1999). The values for the 3P lifetime found 

correspondence with the rise time of singlet oxygen when the PSII RC samples are dispersed in deuterium 

oxide, although these values decreased by approximately a factor of two when the energy power of the 

laser excitation beam was increased (Telfer et al. 1999). It follows therefore that we should identify 

1 with  and 2 with D . In one of our previous studies, singlet oxygen emission in purple bacteria 

(type II) RC preparations was observed (Arellano et al. 2007a) and we concluded that the singlet oxygen 

produced by the RC was more likely to be deactivated by the solvent or the same RC where it was 

produced (geminate quenching) than by a different RC (non-geminate quenching). Based on the fact that 

both the PSII RC and the purple bacteria RC are very bulky protein complexes, it is reasonable to 

speculate that geminate quenching also takes place in PSII RC preparations and therefore a noticeable 

decrease in the value for  must occur. 

To check that our assignment was correct, we investigated the dependence of the two lifetimes 

on the concentration of dissolved oxygen in the sample. The temporal profile of the emission signal of the 

endogenous singlet oxygen produced by RC5 in the oxygen-saturated solution is depicted in Fig. 1. The 

peak height of the signal showed a nearly twofold increase and the signal-to-noise ratio improved notably. 

A bi-exponential fitting of the kinetic trace revealed two lifetimes with values 3.1 0.2 µs and 
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4.1 0.2 µs for 1 and 2 , allowing us to identify 2  with D . We also measured the concentration of 

dissolved oxygen in oxygenated buffer and found it to be 3.23 0.03 times that in aerated buffer. The 

ratio of the values of D in aerated and oxygenated buffer is 2.83 0.07 . Though the discrepancy between 

the two ratios is outside the bounds of error, we feel that it is not serious enough to vitiate our principal 

conclusions. 

In the exponential equation 2 2 1( )a C     and Δ R[P]C N   , where N stands for the 

number of incident photons per unit area,  is the photosensitizer molecular absorption cross-section, [P] 

is the concentration of RC5, R is the radiative lifetime of singlet oxygen in the medium and Δ is the 

quantum yield of singlet oxygen. Based on the fact that the decay rate of 3P in the presence of oxygen 

(either under aerobic or oxygenic conditions) is far larger than anaerobic conditions, the value for Δ can 

be considered nearly equal in aerobic and oxygenic conditions and, consequently, so can C . This implies 

that the integrated area of the emission signal of singlet oxygen should be similar in both experiments and 

that the maximum of its signal will depend on the formation rate constant of the singlet oxygen (i.e., 2 in 

this study). A theoretical simulation of the temporal profile of the singlet oxygen emission shows that the 

experimentally-observed changes in the profile from aerobic to oxygenic conditions follow the expected 

behaviour (Online resource 2). 

The value of  in cells, a matter of debate over the last two decades, has been reported to be 

lower than 1 µs in several studies (Gorman and Rodgers 1992; Bisby et al. 1999; Redmond and Kochevar 

2006), and close to 3 µs in nuclei of neurons, where DNA was claimed not to be a particularly good 

quencher (Skovsen et al. 2005). An accurate value for   in chloroplasts has not been reported yet, but 

based on the high concentration of soluble and membrane proteins, polyunsaturated lipids in thylakoids, 

and hydrophilic and lipophilic singlet oxygen scavengers (i.e., carotenoid, vitamins E and C and 

glutathione), it is very unlikely that the value of   can be larger than 0.5 µs. Based simply on the 

concentration of ascorbate in the stroma of chloroplasts (20–300 mM) (Smirnoff 2000), one can estimate 

a value for   below 200 ns (Bisby et al. 1999). This value of  can be underestimated if intracellular 

phenomena (e.g., molecular crowding and protein-protein interaction) are taken into account (Jensen et al. 

2011). If 3P has a lifetime of 10–20 µs and   in chloroplasts is as large as 0.5 µs (a rather optimistic 

value), the singlet oxygen should suffer a ten-fold decrease in intensity in comparison with that observed 

in water (Online resource 2). This estimate of the drastic reduction in the phosphorescence intensity, and 
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the inevitability of interference from stray light during the rising part of the phosphorescence signal, 

suggest that the experimental determination of the kinetic rate constants of the singlet oxygen emission 

endogenously produced by PSII in chloroplasts would be a tall order indeed. 
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Figure Legends 

 

Fig. 1. Temporal profile of the emission signal at 1270 nm of singlet oxygen produced endogenously by 

RC5 in 20 mM Tris-HCl pH 7.2 under aerobic (black line) and oxygenic (red line) conditions. The 

absorbance of RC5 (for a path length of 1 cm) is 1.5 at 675 nm. The discontinuity in the y-axis illustrates 

the intensity of additional radiation reaching the NIR-sensitive photomultiplier tube. The number of 

averaged scans is 6144 and 5120 for aerobic and oxygenic conditions, respectively. The best fit for each 

signal and the residuals are also shown 
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Online Resource 1 

Since we are not aware of any unambiguous and robust method of estimating the uncertainties of 1τ , and 

2τ , we have adopted the following approach. Three different softwares were tried for performing 

constrained non-linear least-squares fittings: Matlab version 7.8 (Mathworks, Natick MA), OriginPro 

version 8 SR4 (OriginLab Corporation, Northampton, MA), and the Solver tool in Microsoft Excel 2003 

(Microsoft Corporate, Redmond WA). When reasonable values of the three adjustable parameters ( 1,a τ , 

and 2τ ) became available, five (or more) new rounds of fitting were performed (by using Solver) in 

which the initial guesses for the starting parameters were varied systematically, each round resulting in a 

new set of best-fit values for the adjustable parameters. A fit was accepted only if the residuals were 

found (on visual examination) to be uniformly distributed and the sum of squared residuals was within a 

small margin (10%) of the values obtained in earlier rounds. Finally, the mean value of a parameter and 

its standard error were calculated from the resulting data; the error quoted here is twice the standard error 

so obtained. Once a set of values became available, a set of simulated signals were generated and 

analysed by the three softwares to check that the retrieved values were in agreement with the values 

reported here (and used for generating the simulated curves). 
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Online resource 2 
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Figure Caption. Simulation of the temporal profile of singlet oxygen emission produced endogenously 

by RC5 using the rate constants derived from the bi-exponential fitting analysis. The noise-free temporal 

profiles are compared with that expected in chloroplasts assuming values of 0.5 µs and 20 µs for τΔ  and 

τD , respectively 
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