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Abstract

The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic
effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value.
Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We
assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation.
Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions
favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of
experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the
ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and
found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were
added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude
that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This
finding has important implications for applied evolutionary research in both biological and computational realms.
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Introduction

Mutation is the ultimate source of genetic variation, and thus

the rate at which spontaneous mutations appear is a fundamental

evolutionary parameter. The mechanisms of DNA replication and

repair are themselves genetically encoded and variable [1–5],

making mutation rates potential targets of evolutionary optimiza-

tion. Two opposing forces contribute to the evolution of mutation

rates. On the one hand, most mutations with phenotypic effects

are deleterious, producing a genetic load that favors organisms

with low mutation rates; on the other hand, beneficial mutations

are necessary for adaptation. Given this trade-off between genetic

load and adaptation, there should exist an intermediate mutation

rate—hereafter referred to as the ‘optimal’ rate, or Uopt—that

balances these forces and maximizes adaptation over the long-

term [6–9]. It is important, however, to note that these two forces

operate at different timescales. The costs of genetic load are

continuously paid in the short-term, whereas the payoffs of

adaptation come in the long-term [6–8,10–12].

Experiments have shown that genotypes with increased

mutation rates can be favored by selection if they face novel or

changing environments [1,13–21]. Similarly, recent work with

RNA viruses has shown that certain high-fidelity genotypes have

diminished fitness and virulence in mice [22,23], which might

reflect their restricted ability to create the genetic variability

needed to escape from immune surveillance. However, another

recent study with an RNA virus failed to observe a positive

association between mutation rate and the rate of adaptation to a

novel environment [24]. Despite their importance, these studies

suffer from some unavoidable limitations. For example, it is

unknown whether the observed mutation rates are the product of

evolutionary optimization or, alternatively, if they are far from

their optimal values. Also, it is often difficult to assess whether

experimental observations reflect evolutionary equilibria or

transient states.

These limitations can be overcome using evolution with digital

organisms owing to the speed and ease of data collection. Digital

organisms are self-replicating computer programs that inhabit a

virtual world where they reproduce, mutate, compete for

resources, and evolve according to the same fundamental

processes as biological organisms [25]. Here, we use digital

organisms to study the ability of natural selection to adjust the

mutation rate. We first validate the existence of an optimal

mutation rate by extensively exploring a range of mutation rates

and observing which rate maximizes adaptation over the long-

term. Then we allow mutation rates to evolve under natural

selection and assess whether the optimal rate is reached. Even in

conditions highly favorable for mutation rate optimization,

mutation rates systematically evolve that are far below the

optimum, showing that natural selection fails to optimize mutation
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rates. We propose a novel hypothesis for these results based on the

topology of the underlying fitness landscape, and we then proceed

to experimentally test it.

Results

Selection Fails To Find the Optimal Mutation Rate
We studied the evolution of mutation rates using the Avida

digital evolution platform [25–34]. To test empirically whether

there was an intermediate, optimal rate of mutation that

maximized adaptation, we performed a series of evolution

experiments. In each experiment, a genetically homogenous

population was placed in a novel environment where it evolved

for 150,000 updates (,15,000 generations) at a constant mutation

rate (see Methods). We explored 15 different mutation rates

spanning six orders of magnitude (1025 to 10 mutations per

genome per generation). The final fitness values confirmed that

there was an optimal mutation rate at an intermediate value, with

Uopt<4.641 (Figure 1). An analysis of the temporal dynamics of

these experiments showed that this rate yielded the highest fitness

from about generation 230 onward. Interestingly, for the very

earliest time points (before generation 50), the lowest mutation rate

(1025) produced the highest fitness values, whereas for generations

50–230 a mutation rate of 2.2 gave the highest fitness values.

To assess whether evolution would produce organisms with

mutation rates near the long-term Uopt, we ran additional

experiments in which mutation rates were allowed to change

(see Methods), starting from rates either below (1023) or above (10)

the optimum. Strikingly, mutation rates evolved to levels far below

the long-term Uopt, regardless of the starting value (Figure 1). In

light of our observation that the optimum rate can change over

time, one might hypothesize that the typical mutation rate of an

evolving population had actually followed a near-optimal

trajectory throughout its evolution, but that the final mutation

rate is not a good indicator of the ability to optimize the mutation

rate. However, this explanation can be ruled out because the final

average fitness of the populations whose mutation rates could

change was significantly lower than the fitness levels of the

populations that evolved at a constant Uopt. The log-transformed

final fitness values for treatments with changing mutation rates

were 4.6160.70 and 1.2360.15 (mean61 s.e.m.) for the

populations starting at high and low initial rates, respectively.

Both of these values are significantly lower than the 14.4560.64

obtained for populations evolved at Uopt (Mann-Whitney tests,

both P,0.001). The fitness advantage for Uopt is also clear for

nearly all intermediate time points (Figure 2A). While populations

starting below Uopt did experience a transient increase in their

mutation rates (Figure 2B), the mutation rates still stayed more

than two orders of magnitude below Uopt. For populations starting

above Uopt, the results were particularly striking because selection

pushed the populations through the optimal rate on their way to

an evidently very suboptimal rate (Figures 1 and 2B).

The finding that mutation rates evolved to be suboptimal was

robust to diverse and substantial changes in the experimental

conditions. First, we tested whether our results depended on the

particular ancestral organism used. In the original experiments,

the ancestor was a default, hand-coded organism. To assess

whether this condition substantively influenced our results, we let a

population founded by this organism adapt for 50,000 updates to

an environment without any rewarded functions, using U = 4.641.

The most abundant genotype at the end of this preliminary run

was then used as the ancestor in repetitions of our original

experiments. Second, we modified the complexity of the

environment by varying the number of rewarded functions. Third,

we tested the effect of environmental fluctuations by introducing

periodic changes in the set of rewarded functions. In some of these

experiments the non-rewarded functions were neutral, and in

others performing these functions reduced fitness. The rate at

which environmental fluctuations occurred was also varied.

Fourth, we experimented with different implementations of how

mutation rates could themselves change over time. In the original

experiments, each organism’s mutation rate had a constant

probability P of changing every generation, and the magnitude

of any resulting change was controlled by a dispersion parameter

s, with P= 0.5 and s = 0.1. We conducted additional experiments

in which we lowered P, raised s, or both by orders of magnitude.

We also explored a configuration where increases in the mutation

rate were more likely than decreases, as may happen in biological

Figure 1. Evolution of suboptimal mutation rates on a complex
fitness landscape. Fitness is shown as a function of the genomic
mutation rate. The solid line shows mean fitness of the final population,
itself averaged over 50 runs, for 15 different static mutation rates
(U = 1025, 1024 and from 1023 to 10 at 1/3 log10 intervals). The shaded
area represents61 s.e.m. The optimal mutation rate—the rate that
maximized final fitness—was Uopt<4.641 (vertical dashed line). The two
colored points show the mean fitness and mutation rate of the final
population, averaged over 50 runs, in experiments where mutation
rates freely evolved with starting values of either 10 (red) or 1023 (blue)
(error bars represent61 s.e.m). Evolved mutation rates and fitness
values were both orders of magnitude lower than those observed in the
experiment with Uopt.
doi:10.1371/journal.pcbi.1000187.g001

Author Summary

Natural selection is shortsighted and therefore does not
necessarily drive populations toward improved long-term
performance. Some traits may evolve because they
provide immediate gains, even though they are less
successful in the long run than some alternatives. Here,
we use digital organisms to analyze the ability of evolving
populations to optimize their mutation rate, a fundamen-
tal evolutionary parameter. We show that when the
mutation rate is constrained to be high, populations adapt
considerably faster over the long term than when the
mutation rate is allowed to evolve. By varying the fitness
landscape, we show that natural selection tends to reduce
the mutation rate on rugged landscapes (but not on
smooth ones) so as to avoid the production of harmful
mutations, even though this short-term benefit limits
adaptation over the long term.

Natural Selection Fails to Optimize Mutation Rates
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systems where it is more likely for mutations to harm than to

improve an existing DNA repair pathway. Finally, we let the

mutation rate apply reflexively to itself, such that high-fidelity

genotypes rarely changed their mutation rates whereas low-fidelity

genotypes did so frequently. In all of these additional experiments,

mutation rates evolved to suboptimal levels (data not shown). We

conclude, therefore, that selection fails to optimize mutation rates

for long-term adaptation in a broad range of experimental

conditions.

Selection Favors Suboptimal Mutation Rates Because
They Are Advantageous in the Short Term

A possible explanation for why mutation rates evolved to be

much lower than Uopt is that selection favored those genotypes that

minimized the short-term fitness costs caused by deleterious

mutations. This explanation is supported by the observations that,

during the earliest generations of the evolution experiments, the

lowest mutation rate yielded the highest fitness values. To test

whether short-term selection would favor low mutation rates, we

performed competition experiments between two kinds of

organisms, designated A and B. These organisms were identical

except for their mutation rate, which was set to Uopt for A and 0 for

B; neither mutation rate was allowed to change during the

competition. All competitions were conducted with the same

environmental configurations as in the main experiments. In all of

50 runs, B drove A extinct in fewer than 40 generations.

Competitions were also performed using U = 1.0 and U = 2.154

for B in order to address whether selection would also favor less

extreme reductions in mutation rate. In both treatments, B drove

A extinct in all 50 trials in fewer than 800 generations. These

experiments confirm our hypothesis that natural selection was

shortsighted and favored low mutation rates, even when such low

rates precluded further adaptation.

Whether an Optimal Mutation Rate Can Evolve Depends
on the Ruggedness of the Fitness Landscape

We conclude from the results presented thus far that the failure

of the evolving populations to achieve or even maintain the

mutation rates that maximize long-term adaptation reflect the

conflict between the short-term cost of deleterious mutations and

the long-term potential for adaptive evolution. We further

hypothesize that the resolution of this tension may depend on

the topology of the fitness landscape on which evolution occurs. In

a rugged fitness landscape, where there are multiple peaks

separated by maladaptive valleys [35,36], populations at a local

optimum must traverse regions of low fitness in the short-term in

order to reach higher-fitness solutions in the long-term. This

conflict leads us to hypothesize that the inability of natural

selection to optimize mutation rates may depend on the

ruggedness of the fitness landscape. The ideal test of this

hypothesis requires comparing the evolution of mutation rates

on fitness landscapes with and without fitness valleys. This test

cannot be performed using the standard Avida setup, owing to the

presence of extensive genetic interactions that make the fitness

landscape complex and rugged [23]. We therefore modified Avida

to allow simple, explicit, user-defined fitness functions that allowed

us to manipulate the ruggedness of the fitness landscape (Methods,

Figure 3). Adaptation occurs so fast when using these simple

configurations that we also had to make the environment fluctuate

between two ‘seasons’ in order to ensure a continual opportunity

for beneficial mutations. These fluctuations mean that genotypes

that are more fit in one season are less fit in the other (Figure 3).

A quantitative investigation of mutation rates spanning orders of

magnitude revealed, once again, that intermediate mutation rates

were optimal over the long-term (Figure 3). We then allowed

mutation rates to evolve starting at a genomic mutation rate either

below (1025) or above (1) the long-term optimum. Near-optimal

values were efficiently selected in those landscapes without a fitness

valley or with a narrow valley (Figure 3, rows 1 and 2). However,

as the width of the valley grew, mutation rates evolved to be orders

of magnitude lower than Uopt (Figure 3, rows 3 and 4). Fitness

values were again used to judge the optimality of mutation rates.

With no valleys or with narrow valleys, the average fitness in

populations with variable mutation rates was slightly above that of

populations with a constant rate of Uopt (Figure 3, rows 1 and 2,

Mann-Whitney test, P,0.001 in both cases), which indicates a

small benefit of adjusting mutation rates during evolution [37]. In

stark contrast, for wider valleys, the average fitness in populations

with variable mutation rates was far below that of populations with

a constant rate of Uopt (Figure 3, , rows 3 and 4 Mann-Whitney

test, P,0.001 in both cases), confirming that the evolved mutation

rates were suboptimal on the these rugged landscapes.

These results show that there exists a conflict between short-

term and long-term evolutionary strategies on rugged landscapes.

In the short-term, low mutation rates are favored because they

Figure 2. Evolutionary trajectories for fitness and mutation
rate on a complex fitness landscape. (A) Evolution of average log-
fitness61 s.e.m. for treatments with the mutation rate fixed at
Uopt = 4.641 (black) and for treatments with variable mutation rates
starting at either 10 (red) or 1023 (blue). (B) Evolution of average log
genomic mutation rate61 s.e.m. for treatments with variable mutation
rates starting at either 10 (red) or 1023 (blue). The black line indicates
the mutation rate that had produced the highest average fitness for
that time point.
doi:10.1371/journal.pcbi.1000187.g002
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Figure 3. Evolution of mutation rates on simple fitness landscapes with different ruggedness. Here, fitness depended solely on the
match between the environment and the number of a key instruction that organisms had in their genomes. In season A (left column) the key
instruction was deleterious while it was beneficial in season B (center column). Rugged fitness landscapes with maladaptive valleys (rows 2–4) were
introduced by setting the fitness of organisms with intermediate numbers of the key instruction to the minimum fitness level of one. The right-most
column shows the results of evolution experiments under each of these selective regimes. Final fitness is shown as a function of genomic mutation
rate for both static and dynamic mutation rates. The solid black line represents the average of the mean fitness across 10 runs for each of 100
different static mutation rates ranging from U = 0.01 to 1 in increments of 0.01. The two colored points represent the mean fitness and mutation rate,

Natural Selection Fails to Optimize Mutation Rates
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reduce the load of deleterious mutations, whereas in the long-term,

high rates are favored because they increase the chance of

producing beneficial mutants. Whether the short-term interests

dominate, allowing genotypes with suboptimal mutation rates to

spread, should be a function of the expected waiting time until the

discovery of a beneficial mutant. To test this prediction, we

competed genotypes with either optimal or suboptimal rates in the

explicit fitness landscape with a valley size of three (Figure 3). In

one set of experiments, we placed all organisms of both types on

the low local fitness peak (asterisk in Figure 3) and let them

compete for 300 generations (the duration of one season in the

previous experiments). We then repeated the same experiments

except that one of the individuals with the long-term optimal

mutation rate started on the other side of the valley (triangle in

Figure 3), such that the waiting time for the production of a

beneficial mutant was eliminated. A comparison between these

two sets of competition experiments shows that the probability that

a genotype with a mutation rate that is below the long-term

optimum can invade declines significantly when the waiting time

to discover beneficial mutants is artificially eliminated (Table 1).

This result illustrates why wider valleys, which create longer

waiting times for beneficial mutants, cause the evolution of

suboptimal mutation rates.

The reader may also notice that the probability of invasion by

the genotype with the suboptimal mutation rate was rather small

in both sets of experiments (Table 1). This observation might

seem, at first glance, to be at odds with the fact that mutation rates

evolved over the long run to be extremely suboptimal (Figure 3,

rows 3 and 4). This difference makes sense, however, for two

interrelated reasons. First, each environmental change that follows

the fixation of a mutation on one adaptive peak requires another

waiting period for a beneficial mutation, which provides another

opportunity for invasion by a genotype with a suboptimal

mutation rate that reduces the mutational load. Second, any

reductions in the mutation rate become self-reinforcing, as the

lower mutation rates make it less likely to generate a beneficial

mutant on a distant peak, which increases the expected waiting

time for the generation of the next beneficial mutants, thereby

increasing the opportunity for a genotype with an even lower

mutation rate to invade.

Finally, we examined whether the frequency with which the

mutation rate changes (in essence, the mutation rate in the

pathway that encodes the mutation rate), which we call P, affects

the evolutionarily stable mutation rate. Our intuition was that

lower values of P would make contests between lineages with

different mutation rates less frequent, but that the long-term results

of many such contests would remain the same. To test this

prediction we again used the explicit landscape with a valley size of

three. Even when P varied over four orders of magnitude, it did

not affect the final mutation rate that was reached (Figure 4).

Hence, the inability of selection to optimize the mutation rate for

long-term adaptation depends on the topology of the fitness

landscape, but not on the frequency with which the mutation rate

itself changes.

Discussion

We have shown that mutation rates evolve to near-optimal

levels on extremely smooth fitness landscapes. However, if fitness

landscapes are rugged, and the maladapted valleys between

nearby fitness peaks are wide, then the scarcity of immediately

accessible beneficial mutations tips the scale such that short-term

selection favors mutation rates that are far below the optimum that

would produce the fastest long-term adaptation. Moreover, this

process is self-reinforcing because the lower the mutation rate, the

less likely it becomes to produce a genotype on the other side of the

fitness valley, thereby effectively widening the valley. The digital

organisms in the standard Avida configuration used in our first set

of experiments exhibit extensive and variable genetic interactions,

making the fitness landscape rugged [23]. In those experiments,

populations invariably evolved to have mutation rates that were

far below the rate that would maximize their long-term fitness

gains. We hypothesized that the ruggedness of the landscape was

responsible for this inability to optimize their mutation rate for

long-term adaptation. In order to test this hypothesis rigorously,

we had to change the fitness landscape in Avida from one that is

an emergent feature of complex interactions among many

both averaged over 50 runs where the mutation rate freely evolved, with initial rates of U = 1 (red) or 1025 (blue). Mutation rate and fitness values
were time-averaged over the last 10 of 50 environmental changes. Owing to very similar final values, despite the very large initial differences, the
individual colored points are indistinguishable in the first two rows, and error bars are not visible. The arrows indicate where mutation rates began
and ended, on average, for the dynamic-rate experiments. Although the optimal mutation rate increases as a function of valley size (note the right-
shift in the dashed line from top to bottom), the evolved mutation rates in fact decrease as a function of valley size (note the left-shift of the blue and
red points from top to bottom).
doi:10.1371/journal.pcbi.1000187.g003

Table 1. Outcomes of competitions between lineages with optimal (Uopt = 0.24) versus suboptimal (Usubopt) mutation rates in the
explicit fitness landscape with a valley size of 3.

With Waiting Time Without Waiting Time

Usubopt Uopt Fixed Usubopt Fixed Neither Fixed Uopt Fixed Usubopt Fixed Neither Fixed P

0 238 2 10 249 0 1 0.0082

0.06 149 24 77 242 0 8 ,0.0001

0.12 185 12 53 229 1 20 ,0.0001

A total of 250 runs were performed for each treatment shown below. The two lineages started with equal numbers in all cases. The entries show the number of times
that each lineage was fixed (i.e., reached 100% of the total population) or that neither lineage was fixed within 300 generations. With waiting time: all individuals started
at the lower fitness peak (asterisk in Figure 3). Without waiting time: one individual belonging to the lineage with Uopt started on the other side of the fitness valley
(triangle in Figure 3). Three different values of Usubopt were examined. P values are based on x2 tests (with 2 degrees of freedom) that measured the effect of waiting
time.
doi:10.1371/journal.pcbi.1000187.t001
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instructions to a much simpler surface that could be tuned to be

either smooth or rugged. We found that evolving populations were

indeed able to achieve mutation rates that maximized their rate of

adaptation on smooth landscapes, whereas they became stuck at

much lower mutation rates when the valleys between fitness peaks

became too large, thus confirming our hypothesis. A growing body

of experiments with viruses, bacteria, yeast, and higher eukaryotes

shows that epistatic interactions are widespread and vary in their

sign and intensity, implying that natural fitness landscapes are also

often rugged [35,36,38]. Thus, our finding that rugged fitness

landscapes can impede the optimization of mutation rates for long-

term evolutionary adaptation is relevant to the natural world.

Our experiments were performed under conditions that were

favorable for the optimization of mutation rates. First, the

organisms reproduced asexually. Both theoretical [12,39,40] and

experimental work [15] has shown that asexuality facilitates the

evolution of elevated mutation rates, because sexual recombina-

tion breaks up the linkage between mutator alleles that increase

mutation rates and the beneficial mutations that are generated by

the mutators. Second, to ensure that beneficial mutations were

always available, our experiments used either an environment with

more rewarded functions than the organisms ever evolved during a

run (standard configuration) or a changing environment (explicit

landscapes configuration). Third, population sizes were large and

strong directional selection was imposed, so that drift was only a

minor force in our experiments. Smaller populations might

traverse maladaptive valleys more easily, owing to increased drift.

However, small populations would be less likely to generate the

multiple simultaneous mutations that would allow them to leap

across these valleys in a single generation. In populations much

larger than those we tested, the probability of an adaptive leap

involving multiple simultaneous mutations would increase, but

selection should be more powerful in preventing a multi-

generation transition across a valley via drift. The effect of

population size on the optimal mutation rate, and on the evolution

of suboptimal mutation rates, thus remains an interesting area for

future investigation. Nevertheless, while the optimal mutation rate

and the precise width of the valley that is necessary to cause the

evolution of a suboptimal rate may depend on population size, we

would not expect that dependency to undermine the general

conclusion of this paper, namely, that on sufficiently rugged fitness

landscapes, mutation rates will evolve to be suboptimal for long-

term adaptation.

The inability of evolving populations to optimize their mutation

rates for long-term adaptation, even with such favorable

conditions, indicates that mutation rates will be suboptimal under

a wide range of circumstances, at least when fitness landscapes are

rugged and populations are far from a global fitness peak. While

novel environments can promote increases in the mutation rate if

many beneficial mutations become accessible [1,13–21,40], our

work suggests that this rise will be temporary and, moreover, that

even the elevated mutation rates may be suboptimal (Figure 2B).

Also, given the difficulty of optimizing mutation rates that we have

shown, it seems unlikely that stably high mutation rates, such as

those for RNA viruses, are maintained primarily because of the

rapid adaptive capacity they bestow, as has sometimes been

argued [23,41]. Alternative explanations are needed. For example,

the evolution of mutation rates is also influenced by the costs of

replication fidelity [8,23], and recent work has suggested that this

cost might explain the high mutation rates observed in RNA

viruses [24,42]. We expect that a cost of replication fidelity, all else

being equal, will increase the evolved mutation rate. However, we

would not expect the resulting increase to cause the optimization

of mutation rates in general, although in a few fortuitous situations

the cost of fidelity might increase the evolved mutation rate by just

enough to push it near the optimal rate.

Recent theoretical work by Gerrish et al. [43] has predicted

that, contrary to our results, natural selection could favor a self-

reinforcing increase in mutation rates in asexual populations. This

process would continue even until a population suffered a

mutational meltdown and went extinct, because a genotype with

an increased mutation rate generates greater numbers of

deleterious as well as beneficial mutations. Although not explicitly

stated, the prediction of Gerrish et al. [43] of a run-away process

toward higher mutation rates appears to assume a smooth fitness

landscape. However, as we have shown here, the mutation rate

typically evolves to a low value on a rugged fitness landscape, so

that the runaway process explored by Gerrish et al. should not

occur on such landscapes.

Beyond their implications for understanding nature, our

findings are also relevant for applied fields that use evolution to

improve the performance of biological and computational systems,

from molecular and microbial engineering to robotics and

evolutionary computation [44,45]. Researchers using evolution

in computational fields have long sought to use natural selection to

adjust mutation rates automatically and ‘‘on the fly’’, in such a way

that would sustain and even optimize long-term adaptation [46–

48]. These efforts were successful on simple ‘‘toy’’ problems [46],

but became frustrated when applied to more complex problems

because self-adaptive mutation rates generally evolved to subop-

timal levels [47,48]. Our results suggest an explanation: the toy

problems had smooth fitness landscapes, whereas the complex

problems had rugged landscapes with wide valleys that favored

evolutionary conservatism. Our findings also imply that high, fixed

mutation rates will often outperform self-adaptive rates on more

complex problems, although what the fixed rate should be will

depend on the particular problem at hand.

In summary, natural selection is not universally effective at

optimizing mutation rates for long-term adaptation; in fact, it is

very poor in this respect for populations that evolve on complex

Figure 4. Evolutionarily stable mutation rate does not depend
on the frequency with which the mutation rate changes (P).
The evolution of mutation rates in the explicit fitness landscape with a
valley size of three is shown for several values of P, as indicated by the
colored key. Each curve shows the average of 20 runs; the adjacent
bands represent61 s.e.m. The value of Uopt was determined in previous
experiments (see text). The rate of approach toward the evolutionarily
stable mutation rate depends on P, but the equilibrium value itself
does not.
doi:10.1371/journal.pcbi.1000187.g004

Natural Selection Fails to Optimize Mutation Rates
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fitness landscapes. Also, our results caution against making

generalizations based on analyses of simple fitness landscapes,

whether one is studying natural systems or using evolution for

engineering. As we have shown, the mere inclusion of fitness

valleys—which are presumably common to the vast majority of

fitness landscapes—can yield radically different conclusions from

those based on smooth fitness landscapes.

Methods

Experiment One: Standard Configuration
A general description of the Avida software can be found

elsewhere [25]. Here, each experiment started with 3,600 identical

digital organisms. Genome length was held constant at 100

instructions, with 26 possible instructions per site [27]. Reproduc-

tion was asexual. To replicate, an organism first had to copy its

genome line by line by repeatedly executing the copy instruction; it

then had to execute a divide instruction, which took the offspring

and used it to replace a random organism from the population.

During replication, each genomic instruction could mutate to

another with probability m, the genomic mutation rate being

U = 1006m. All instructions were equally likely to result from any

given mutation. The mutation rate was held constant in some

experiments, while in others the rate could change by evolving

over time. In treatments where the mutation rate could change, m
had a constant and high probability P of changing by a small

amount during any replication cycle. The magnitude of any

resulting change was obtained by drawing log2(moffspring/mparent)

values from a Gaussian distribution (0,s2). For the experiments in

which mutation rates were more likely to increase than to

decrease, we drew log2(moffspring/mparent) from a Gaussian (bs2,s2),

where b controls the upward bias, and tested values such that

mutation rates were up to ,1.6 times more likely to increase than

decrease (though seemingly small, this bias has a large cumulative

effect over many generations).

Organisms died when another organism’s offspring replaced

them or when they executed 2,000 instructions without producing

an offspring of their own. All experiments using the standard

configuration lasted 150,000 updates. Updates are an arbitrary

unit of time in Avida; they represent the time during which each

organism, on average, executes 30 instructions [25]. In this

configuration, an update corresponded to roughly 0.1 generations,

although the precise generation time varied depending on the

complexity of the evolved organisms’ phenotypes.

Each organism’s phenotype depended on the complex rules that

governed how its genomic program was executed, and its fitness

depended on the interaction between the resulting phenotype and

its environment [25]. More specifically, each organism had a

metabolic rate that affected how fast it executed instructions, which,

in turn, affected its reproduction rate. The ancestral rate doubled

with every rewarded logic function that an organism performed.

The ancestral organisms could self-replicate but not perform any

other function. The ability to perform logic functions evolved by

mutation and selection during each run. An organism’s fitness,

therefore, represents its expected growth rate relative to others in

the population and depended on both its replication efficiency and

its ability to perform computations. All fitness values are expressed

relative to the ancestor. In reporting fitness data, relative fitness

values were first averaged over all organisms in a population, then

log10 transformed, and finally averaged over all replicate popula-

tions (independent trials) in an experimental treatment.

To perform logic functions, organisms used inputs consisting of

three randomly generated 32-bit strings, which they manipulated

to produce an output. The manipulation of these numbers

occurred as organisms moved them on and off stacks or between

registers by executing instructions such as push, pop, add

(combines the numbers in the two specified registers and places

the result in a third), shift-r (bit shift right), and so on. A function

was rewarded only if the input to output conversion conformed to

one of the 77 canonical one-, two- or three-input logic operations.

For example, the two-input EQU (‘equals’) function requires

inputting two strings and outputting a third string that had a 1 for

each of the 32 bits where both inputs had the same value and a 0

where they differed.

Avida runs are inherently stochastic with respect to mutation

and death. Therefore, we performed 50 replicate runs for each

treatment. Those replicates had identical initial conditions except

for a random number seed. That seed affects the outcome of all

subsequent stochastic events.

Experiment Two: Explicit Landscapes Configuration
The standard and the explicit Avida configurations differed in the

instruction set, the fitness calculation and the mode of replication.

We modified Avida to mimic a two-allele, 10-locus bit-string model

used in a previous study [49]. Genome length was always 10, while

each ‘‘instruction’’ was either A or B; the ancestral genome was

entirely A. Fitness depended only on the number of A or B

instructions in an organism’s genome, according to the seasonal

scheme shown in Figure 3. Every 300 generations the environment

fluctuated between the two seasons, and the experiments ran for

15,000 generations. We found empirically that fluctuating the

environment more or less frequently than every 300 generations

produced smaller fitness differences between the optimal fixed

mutation rate and suboptimal mutation rates (data not shown). That

high mutation rates are most fit at an intermediate rate of

environmental change has been previously shown [49].

In the standard configuration, digital organisms had to copy

their genomic instructions in order to replicate, and their fitness

depended on their speed of replication as well as any rewards they

obtained for performing computational functions. Under this

alternative configuration, the organisms did not copy themselves,

and only the number of A or B instructions mattered to their

fitness. The rest of the setup, such as population size, was identical

to the standard configuration.

Software
All experiments were performed with the Avida software, which

can be downloaded for free at http://devolab.cse.msu.edu/

software/avida. Default settings were used unless otherwise

indicated.
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