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ABSTRACT

p-Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of 

hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the 

biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely 

unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC 

from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened ββββ-barrel 

surrounding an internal cavity. Crystallographic and functional analyses of single-point mutants of 

residues located within this cavity have permitted identifying a potential substrate-binding pocket 

and also to provide structural evidences for rearrangements of surface loops so that they can 

modulate the accessibility to the active site. Finally, combination of the structural and functional 

data with in silico results enables us to propose a two-step catalytic mechanism for decarboxylation 

of p-coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are 

involved in the proper substrate orientation and in the release of the CO2 product. 
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INTRODUCTION 

Phenolic acids, mainly p-coumaric and ferulic acids, are covalently bound to polysaccharides in 

cell walls of higher plants.1,2 Here, they act as crosslinkers between the lignins polymers and the 

hemicellulose and cellulose, probably contributing to the decrease in cell wall biodegradability3 and 

regulating cell growth.4 In this regard, lignins, the nature´s second most abundant organic plant 

substances in the terrestrial environment,5 are mainly derived from the so called three classical 

monolignols,6 namely, p-coumaric, coniferyl and sinapyl alcohols whose biosynthetic pathway involves 

the formation of p-coumaric acid from the amino acid phenylalanine.7 As expected from the lignins 

composition, degradation of these two types of polymers by hemicellulases8 and cinnamic acid esterases9

releases a wide variety of phenolic acids, relevant molecules from biological10 or biotechnological 

viewpoints.11 In particular, lignins have attracted significant research attention because they represent a 

major obstacle in chemical pulping, forage digestibility, and processing of plant biomass to biofuels.7 In 

this regard, it has been shown that phenolic acid catabolism is essential in the biodegradation of plant 

wastes11 with the bacteria able to grow in this substrate as the sole source of carbon (Pseudomonas spp. 

and Acinetobacter calcoaceticus) metabolizing the phenolic acids ferulic and p-coumaric acids into 

vanillic and p-hydroxybenzoic acids, respectively.12,13 Other microorganisms, such as Saccharomyces 

cerevisiae,14
Bacillus pumilus,15

Bacillus subtilis,16 or Lactobacillus plantarum,17 catalyze the 

nonoxidative decarboxylation of phenolic acids to produce 4-vinyl derivatives by means of phenolic acid 

decarboxylases (PADs). 

Lactobacillus plantarum is a ubiquitous lactic acid bacterium in the plant kingdom that is 

frequently used as starter in the production of wine and many vegetable fermentations.17,18 Expression of 

LpPDC by L. plantarum is highly regulated by phenolic acids such as caffeic, ferulic and p-coumaric 

acids,17 which are effectively decarboxylated by the enzyme to their vinyl derivatives. Despite these 

volatile compounds are critical in providing the organoleptic properties of the wine and other fermented 

foods,19 the structural basis of the catalytic mechanism of decarboxylation by LpPDC is largely unknown.  

In this work, we provide insights into the structural basis of catalysis for LpPDC as a 

representative member of the PAD family of enzymes. With this aim, we present the crystal structure of 

wild-type LpPDC at 1.38 Å resolution, and also those from three single-point mutants whose activity is 
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either dramatically decreased (Y20F, R48Q) or completely lost (E71S). Analysis of the latter high 

resolution crystal structures has permitted identifying a substrate-binding pocket within the unique 

amphipathic cavity of LpPDC and also has revealed reorganizations of surface loops which may modulate 

the access to the internal cavity. Finally, a catalytic mechanism is proposed based on the presented 

structural, functional and in silico results. 
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MATERIALS AND METHODS  

Protein mutagenesis, purification and crystallization  

Wild-type his-tagged p-coumaric acid decarboxylase from L. plantarum (LpPDC) was produced 

recombinantly in E. coli as described previously.20 Briefly, single point LpPDC mutants were constructed 

by a site-directed mutagenesis PCR technique using the plasmid pURI3-PDC as template. The mutagenic 

primers used to introduce the amino acid changes were: Y18F-5 (5´- CACACACTTTAT 

CTTTACTTATGATAAC) and Y18F-3 (5´- GTTATCATAAGTAAAGATAAAG TGTGTG) for the 

Y18F change; Y20F-5 (5´-CACTTTATCTACACTTTTGATAACGGCTG) and Y20F-3 (5´-

CAGCCGTTATCAAAAGTGTAGATAAAGTG) for Y20F change; Y20I-5 (5´-CACTTTAT 

CTACACTATTGATAACGGCTG) and Y20I-3 (5´-CAGCCGTTATCAATAGTGTAGATAAAGTG) 

for Y20I; Y20V-5 (5´-CACTTTATCTACACTGTTGATAACGGCTG) and Y20V-3 (5´-

CAGCCGTTATCAACAGTGTAGATAAAGTG) for Y20V; primers R48Q-5 (5´-GATGGTTGCCGG 

TCAGTGGGTCACTGATC) and R48Q-3 (5´-GATCAGTGACCCACTGACCGGCAACCATC) for 

R48Q change, and finally, E71S-5 (5´-TCTTGGACTAGCCCAACTGGG) and E71S-3 (5´-

CCCAGTTGGGCTAGTCCAAGA) for the E71S change (the nucleotide changes used to introduce the 

mutation are written in bold). The mutated LpPDC genes were sequenced to verify the expected 

nucleotide changes. All proteins were expressed and purified according to protocols described previously 

for the wild-type enzyme.20 The mutant enzymes were crystallized at 291 K using the hanging-drop 

vapour diffusion method employing identical crystallization conditions as for the wild-type enzyme, 

namely, 20% (w/v) PEG4000, 12% (v/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris-HCl pH 8.0 with 

0.1 M barium chloride as additive.20 Drops were prepared using 2 l of protein solution (8-10 mg/ml), 2 

l of reservoir solution and 1 l of additive. 

Enzyme assay

PDC activity was assayed by the previously described high-performance liquid chromatography 

assay,21 monitoring the formation of 4-vinyl-phenol from p-coumaric acid. Typically, the enzyme was 
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diluted with 25 mM phosphate buffer, pH 6.5, containing 4 mM p-coumaric acid, to a final concentration 

of 0.1 g/ml. The reaction mixture was incubated at 30ºC for 20 min. when ethyl acetate was added for 

reagents extraction.   

Analytical ultracentrifugation 

Equilibrium velocity ultracentrifugation experiments were performed at 10,500 rpm, 20ºC, using 

a Beckman XL-A ultracentrifuge with an An-50Ti rotor and standard double sector centerpiece cells. 

Solvent density (1.005 mg/ml) and the partial specific volume of LpPDC (0.744) were calculated from the 

buffer composition (0.1 M NaCl, 20 mM Tris-HCl) and from the predicted amino acid composition, 

respectively, with SEDNTERP.22 Centrifugation data were analyzed with the Beckman-Origin software. 

Data collection, structure determination and refinement 

Complete diffraction datasets were collected at the European Synchrotron Radiation Facility 

(ESRF; Grenoble, France) in beamlines ID23-1, ID29 and BM16 for native, Y20F and R48Q LpPDCs, 

respectively; dataset for E71S mutant was collected in-house on a Microstar rotating anode generator 

(Bruker). All crystals were cryoprotected by a quick soak in optimized reservoir solution containing 15% 

(v/v) MPD, and subsequently flash-cooled in a stream of liquid nitrogen at 100 K. Data were collected 

using ADSC Q315 (ID23-1), ADSC Q315R (ID29) ADSC Q21R (BM16), and imaging plate mar345dtb 

(in-house) detectors. Crystals of native and Y20F LpPDCs belong to the primitive tetragonal space group 

P43 (unit cell parameters: a = b = 43.18 Å, c = 232.49 Å), those from R48Q mutant to the primitive 

monoclinic space group P21 (unit cell parameters: a = 39.24 Å, b = 94.92 Å, c = 106.72 Å; β = 100.51), 

and those from E71S mutant to the monoclinic space group C2 (unit cell parameters: a = 108.81, b = 

52.75, c = 82.09; β = 122.44). Two protein molecules are found in the asymmetric unit of the tetragonal 

crystals (53.2% (v/v) solvent content; VM = 2.63 Å3 Da-1), four molecules for the R48Q monoclinic 

crystals (47.1% (v/v) solvent content; VM = 2.33 Å3 Da-1), and two molecules for the E71S monoclinic 

crystals (52.9% (v/v) solvent content; VM = 2.61 Å3 Da-1). Data collection and processing statistics are 

shown in Table I.
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Diffraction images were indexed and integrated with MOSFLM23 and the data were scaled and 

truncated using SCALA and TRUNCATE from the CCP4 software suite.24

 The structure of wild-type LpPDC was solved by molecular replacement (MR) using the atomic 

coordinates of the structure deposited under PDC entry 2GC925 as search model using the program 

MOLREP.26 These last coordinates together with those of phenolic acid decarboxylase from Bacillus 

subtilis (PDB entry 2P8G27; see below) have been deposited in the PDB by the JCSG. In turn, the 

structures of single point mutants were solved by MR using the atomic coordinates of wild-type LpPDC. 

The models were refined with REFMAC528 applying non-crystallographic symmetry constraints. Atomic 

displacement parameters were refined in REFMAC by the TLS (translation, libration, screw) method. 

Automatic water molecule placement was done with ARP/wARP.29 Manual rebuilding of the model was 

performed with the program O.30 Data refinement statistics are shown in Table I. Stereochemical 

validation of the final models was checked using the program PROCHECK31 or MOLPROBITY32 for 

E71S mutant. Ramachandran plots were of good quality. Figures were prepared using PyMOL.33

The atomic coordinates and structure factors have been deposited at the Protein Data Bank under 

accession codes 2W2A (new crystal form of wild-type LpPDC), 2W2B (Y20F LpPDC), 2WSJ (E71S 

LpPDC), and 2W2F (R48Q LpPDC). 

Docking studies

All calculations were performed on a Silicon Graphics Octane workstation (R12000, 300MHz) 

using the SYBYL 7.2 program suite.34 The docking studies were achieved using the FlexiDock module of 

the SYBYL 7.2 suite of programs.34

We have used the crystal structure of R48Q LpPDC for docking studies since it adopts a closed 

conformational state (see below). For this purpose, this structure was edited (Gln48 was substituted by 

Arg48), protein hydrogen atoms were added, and partial charges were calculated using AMBER 

procedure. Positions of the hydrogen atoms were refined with the use of AMBER force field. To build the 

LpPDC:o-coumaric acid and LpPDC:p-coumaric acid complexes, the ligands were first manually 

positioned within the cavity close to the Tyr20 side chain taking into account the mutational studies. 

Subsequent energy minimization was performed using the AMBER99 force field and charges Gasteiger-
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Hückel with geometry optimization of the ligands and the side chains of the enzyme. Energy 

minimizations were carried out using the conjugate gradient procedure until a gradient deviation of 0.01 

kcal ml-1 Å-1 was attained. A distance-dependent dielectric constant was used in all the calculations. 

These initial complexes were the input structure for docking studies using FlexiDock program 

that uses genetic algorithm35 as quick method to generate conformations. This module analyses all 

possible ligand conformations within the active site and it takes into account both the receptor side chains 

and the ligand conformations. During the docking analysis, the protein was considered rigid except the 

residues involved in the putative binding site and the ligands which were considered flexible. The 

docking procedure consists of two steps: definition and refinement of a putative binding site, respectively. 

To achieve the first goal, four runs of FlexiDock were performed and the solutions were analysed and 

clustered into families. The representative conformer (with lower score of FlexiDock) from each family 

was minimized using the above mentioned conditions. For the second step, each complex obtained 

previously from the first step was subjected to four additional runs of FlexiDock. During this step 

possible hydrogen bonds were considered, defining donors and acceptor in the enzyme and in the ligand. 

The final solutions were analysed and clustered yielding different families. The representative conformer 

from each family was re-optimized. Analysis of the enzyme:ligand complex models generated after 

docking was based on the distances from the ligands to Tyr18, Tyr20, Arg48 and Glu71, hydrogen bond 

interactions, aromatic and hydrophobic interactions calculated with LPC program36 and energy of binding 

and the difference accessible surface area (ASA) obtained with Structural Thermodynamics Calculations 

version 4.3.37

RESULTS AND DISCUSSION

Overall protein fold 

p-Coumaric acid decarboxylase from Lactobacillus plantarum (LpPDC) is a cofactor-less 

homodimeric enzyme, with single-domain subunits composed of 178 amino acid residues. The atomic 

coordinates of LpPDC deposited in the Protein Data Bank by the JCSG (PDB code 2GC925; unpublished 

results) have been used as search model for the resolution of a novel crystal form of LpPDC20 which 
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permitted us to determine the structure of the enzyme at 1.38 Å resolution. The final model includes 

residues 2-176 from each subunit (350 residues) and 566 water molecules (Table I). The approximate 

dimensions of the dimeric assembly making up the asymmetric unit of the tetragonal crystal are 65 x 45 x 

35 Å3. Subunits within the dimer are virtually identical (rmsd, 0.07 Å for 175 Cα atoms).  

The global structure of a single subunit of LpPDC is depicted in Fig. 1. The central folding motif 

is based on a β-sandwich composed of two twisted and orthogonally stacked four-stranded anti-parallel β-

sheets plus one additional β-strand composed of 14 amino acid residues (β9; residues 129-142). This last 

β-strand hydrogen bonds to both sheets, thereby making the sheets to be five-stranded de facto (Fig. 1a). 

The final strand order is 9C, 1, 2, 3, 4 for sheet 1 and, 5, 6, 7, 8, 9N for sheet 2 (9N: residues 129-135; 9C: 

residues 136-142), respectively (Fig. 1b). The three dimensional arrangement of this highly bent β9 strand 

is such that it closes one of the ends of the β-sandwich to form a continuously hydrogen-bonded β-barrel. 

The opposite side of the barrel is capped by the connecting loops β2-β3 (residues 33-34) and β4-β5 

(residues 51-55), respectively. Alternatively, the end of the β-barrel herein defined as the “top end”, is 

closed by the first 12 residue stretch of the polypeptide chain, which contains the single-turn helix α1 

(residues 7-11), and also by the short loops β5-β6 (residues 62-63) and β7-β8 (residues 81-85). 

Conversely, the “base” of the β-barrel is not closed in wild-type LpPDC but open to the external solvent, 

with this opening providing the entrance to the internal cavity of the protein. The entrance to this cavity is 

flanked by the loops β1-β2 (residues 21-22) and β3-β4 (residues 41-46) and by the short helix α2 

(residues 96-100), and the N-terminal end of strand β9, and has rough dimensions of 8 Å by 8 Å.  

The electron density of the 2Fo-Fc map is of excellent quality for all of the side chains of the two 

subunits of the asymmetric unit, with the exception of the sequence stretch comprising the residues Tyr20 

to Trp24. Here, the electron density is poor in both subunits, suggesting that this region is flexible. As 

above indicated, this region is located at the entrance of the cavity what would indicate that may be 

functionally relevant. In fact, the analysis of the LpPDC mutants herein presented (see below) reveals that 

the cavity can be completely shielded from the solvent as a result of structural rearrangements of this 

sequence stretch in conjunction with the β3-β4 loop. These conformations permit defining open and 

closed states in LpPDC which figuratively provide snapshots of two stages in the LpPDC catalytic 
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mechanism. Obviously, in this scenario both the entrance region and the internal cavity would be 

functionally relevant. 

Comparison of the overall LpPDC protein structure  

Analysis of multiple sequence alignments reveals that LpPDC exhibits high sequence similarity 

to several decarboxylases from bacterial sources and also to feruloyl decarboxylase from the protozoan 

Trichomonas vaginalis, the only close homolog from eukaryotic organisms. ClustalW2 sequence 

alignments of LpPDC with these proteins are reported in Fig. 1c. The level of sequence identity falls 

within the range of 88% (93% similarity) with phenolic acid decarboxylase (PAD) from Lactobacillus 

brevis (LbPAD), to 43% (61% similarity) with PAD from Methylocella silvestris (MsPAD), indicating 

that this group of proteins forms a distinct family of homologous enzymes (herein referred as PAD 

family). The highest level of sequence conservation corresponds to the β-strands that make up the β-

barrel, in particular strands β1, β2, β3 and β4, with the highest variability being observed in helices α3 

and α5, the connecting loop β9-α5 and the N- and C-terminal ends. This pattern of sequence conservation 

indicates that the β-barrel core is highly preserved within the PAD family. In this regard, the only 

members of the PAD family whose atomic coordinates have been deposited are LpPDC (PDB entry: 

2GC925) and PAD from Bacillus subtilis (BsPAD; PDB entry: 2P8G27). Both structures superpose almost 

perfectly with Cα rmsd of 1.0 Å over 162 aligned atoms, with the only significant differences being 

located at the N- and C-termini.  

Not surprisingly, a structure-based similarity search with the DALI server38 revealed BsPAD as 

the closest structural relative to LpPDC (Z-score= 29.6). Additionally, modest structural similarity is also 

detected with various β-barrel-containing proteins which bind hydrophobic ligands in an internal cavity 

located inside the β-barrel. Among these proteins, the most significant homologs are fatty acid-binding 

protein from toad liver (FABP, PDB entry 1P6P; Z-score= 7.2)39 and cellular retinoic acid-binding 

protein 2 (CRABP-2, PDB entry 2G7B; Z-score= 6.7)40 with rmsd of 1.7 and 1.9 Å for 73 and 63 Cα

atoms, respectively (Fig.2). These two proteins are members of the fatty acid-binding proteins (FABP) 

family, which in turn belong to a superfamily of lipid-binding proteins.41 All members of the FABP 
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family whose structure has been determined at high resolution show similar structural features:42,43 they 

are composed of ten antiparallel β-strands that form a β-barrel, surrounding a central internal water-filled 

cavity which is the lipid binding site.44 The structural similarity found with LpPDC together with its 

substrate specificity and the side chains that determine the interior of its cavity (see below) strongly 

supports that the substrate binding site of LpPDC is located within the internal cavity. 

Quaternary structure 

A dimeric assembly is identified within the asymmetric unit of the LpPDC tetragonal crystal (Fig. 

3a). This dimer is maintained through interactions between residues that mainly belong to the β-sheet 2 of 

both subunits. The average value of the buried surface area at the interface between the subunits 

calculated by the PISA server45 is large (~1170 Å2) and contains both polar and apolar residues. The 

interactions identified involving hydrogen bonds and salt bridges are listed in Table II. Noteworthy, 

whereas polar side chains are mainly localized at the centre of the contacting interface, the apolar ones are 

preferentially found at the borders of this interface forming a species of “hydrophobic zipper” that would 

be highly conserved within the PAD family as indicated by the above sequence alignments.  

In addition, the hydrodynamic behaviour of LpPDC has been analyzed by analytical 

ultracentrifugation techniques and gel-filtration chromatography. Results from sedimentation equilibrium 

experiments indicate that LpPDC exists in solution as a molecular species of 46.0 ± 2.0 kDa (Fig. 3b), 

which compares well with the theoretical mass expected for a dimer of the recombinantly expressed 

LpPDC (45.6 kDa). Additionally, results obtained from analytical gel-filtration chromatography on 

Superdex 200 10/300 GL, in conjunction with SDS-PAGE results (not shown) indicate that LpPDC 

behaves as a species of 45.2 ± 2.0 kDa (n=3) with subunits of 22 kDa. In summary, these results together 

with the crystallographic analysis demonstrate that LpPDC is a dimeric assembly both in solution and in 

the crystal state. 

The relative orientation of the subunits within the dimer suggests that the accessibility of each 

cavity to the external solvent is not prima facie directly constrained by the accompanying subunit. In fact, 

the two openings are situated at opposing sides of the dimeric assembly (Fig. 3a) with the loops flanking 

the entrances not participating in intersubunit contacts.  
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Internal cavity of LpPDC

The β-barrel fold of the LpPDC subunits results in a large internal cavity which has an estimated 

solvent accessible volume of ~ 615 Å3 using a probe radius of 1.4 Å with the CASTp algorithm.46 The 

cavity has rough dimensions of 11 Å x 8 Å x 8 Å and a somewhat irregular surface. It has a unique 

connection to the external solvent flanked by the short loops β1-β2 and β3-β4, together with the single-

turn helix α2 and the N-terminal end of strand β9. We define the entrance region as consisting of the 

above structural elements, and in particular, the region delimited by the amino acid side chains Asn22, 

Trp24, Met44, Glu99, Pro102, Leu129, Val131, and Glu133. According to the electron density map of 

wild-type LpPDC, the region comprising residues Tyr20 to Trp24 would be the one exhibiting the highest 

flexibility, what is consistent with a region of dynamic motion through which the substrate enters to the 

binding site.  

The interior of the cavity is mainly determined by hydrophobic side chains contributed by the β-

strands of the β-barrel (excluding strand β5), which are aromatic (Tyr18, Tyr20, Trp24, Tyr26, Trp28, 

Tyr38, Trp69, Phe94) (Fig. 4a) or aliphatic (Ile40, Val45, Val77, Leu79, Ile92, Val98) (Fig. 4b). 

Aromatic side chains are mainly clustered in one of the walls of the cavity and the aliphatic residues are 

mostly located in the opposite wall. Conversely, internal polar residues (Arg48, Glu71, Thr73, Thr75, 

Thr105) are also observed (Fig. 4c). They occupy a portion of the cavity that can be defined as polar 

because of the presence of an extensive network of polar interactions (Fig. 5). The carboxyl group of 

Glu71 makes a salt bridge with Arg48 (2.9 Å), and is at hydrogen bond distance to the hydroxyl group of 

Tyr38 (2.6 Å) and to the indole nitrogen of Trp69 (2.8 Å). In turn, the guanidinium moiety of the Arg48 

side chain also participates in other polar interactions: the Nε atom forms a hydrogen bond with the 

hydroxyl group of Tyr38 (2.9 Å), and the NH1 and NH2 atoms are at hydrogen bond distances to the 

carbonyl oxygen atom of Thr105 (2.9 Å), and to the Oε1 atom of the Gln109 side chain (2.7 Å), 

respectively. Likewise, the hydroxyl group of Thr105 makes hydrogen bonds with the carbonyl oxygen 

atom of Pro102 (2.8 Å) and with an ordered water molecule (2.9 Å).  Finally, another solvent molecule is 

at hydrogen bond distance to the hydroxyl groups of Thr73 and Thr75 (2.7 Å). Obviously, the formation 
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of this extensive network of polar interactions within an internal, predominantly hydrophobic cavity, 

contributes to the stabilization of these residues in such an environment. In this sense, it is worth to 

mention that the specific stabilizing role of solvent molecules within the cavity cannot be reliably 

deduced from the crystal structure since the inspection of the 2Fo-Fc electron density map of wild-type 

LpPDC indicates the presence of one molecule, whose precise identity remains undetermined. Here, it is 

observed a large and discontinuous stretch of poorly defined electron density which starts at the side 

chain hydroxyl group of Tyr20, located close to the entrance of the cavity, and penetrates deeply into this 

structure (Fig. 1 in Suplemental data). None of the components of the crystallization mother liquor or the 

optimized cryoprotectant solution properly fits into this electron density. Related to this, the UV-VIS 

absorbance spectrum of purified LpPDC exhibits a local maximum centred at 355 nm (not shown) 

revealing the presence of a non-dialyzable ligand tightly bound to LpPDC. As highly purified LpPDC is 

fully active against p-coumaric acid in our experimental conditions, it is probable that LpPDC with the 

bound molecule constitutes a minor fraction of the total crystallized protein. 

As shown below, single point mutants of LpPDC affecting the two unique internal charged 

residues of the enzyme, namely, Arg48 and Glu71, and also the Tyr20, reveal a dramatic (Y20F; R48Q) 

or complete (E71S) loss of enzymatic activity without perturbing the structure of the protein. These 

results support the participation of the latter residues in the catalytic mechanism of LpPDC and thus 

indicate that both the polar portion of the cavity and the entrance region are functionally relevant. In other 

words, these residues form part of the substrate-binding pocket which would be located within the 

internal cavity of the β-barrel. 

Mutational analysis of residues in the internal cavity and entrance loop 

Currently the structural basis of the catalytic mechanism for members of the PAD family is 

poorly understood, and therefore our mutational analysis was initially based solely on the high resolution 

crystal structure of wild type LpPDC. In particular, we focused our attention on prominent features of the 

cavity, namely, the unique internal charged residues and also the putative flexible region at the entrance. 

Thus, our selected target residues were: Tyr20, Arg48 and Glu71. In particular, we prepared the following 

Page 13 of 40

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14

mutants: Y20F, Y20I, Y20V, R48Q, and E71S. The catalytic activity against p-coumaric acid of these 

proteins was evaluated, and also they were subjected to crystallization trials. 

Decarboxylase activity data against p-coumaric acid reveals that none of the designed point 

mutants is active in standard experiments (15 min. incubation at 37ºC), in conditions where 100% activity 

is observed for wild-type LpPDC. Longer incubation assays of 4 h. show 25% relative activity for Y20F 

and R48Q, 4% for Y20I and no activity for Y20V and E71S. Hence, it is evident that substitution of 

either Tyr20, Arg48 or Glu71 determines a dramatic or complete loss of decarboxylase activity which 

strongly supports the involvement of these residues in the catalytic mechanism of LpPDC.  

To gain further insights into the structural basis of the decarboxylation mechanism of LpPDC we 

analyzed the structural consequences of the mutations. Suitable crystals could be prepared for three 

mutant variants: Y20F, R48Q and E71S. The structures have been refined to an Rfac/Rfree of 19.7%/21.8% 

and 19.2%/21.0%, and 17.7%/25.9%, respectively (Table I). Three dimensional comparisons with wild-

type LpPDC show that the three proteins are properly folded (rmsd values of 0.16, 0.70 Å, and 0.60 Å for 

175 aligned Cα atoms for Y20F, R48Q and E71S, respectively), what reinforces the functional relevance 

of the mutated residues.  

Markedly, the structures of the R48Q and E71S mutants revealed that the entrance region, 

particularly the β1-β2 and β3-β4 loops, adopt a distinct conformation which decreases the opening of the 

cavity dramatically (Fig. 6). In fact, this conformation indicates that the internal cavity of the enzyme is 

not readily accessible to any ligand, and therefore it can be operatively defined as “closed” (Fig. 6a) in 

contrast to the “open” conformation identified in wild-type LpPDC and Y20F mutant (Fig. 6b). In this 

sense, the crystal structure of the E71S mutant reveals conformational compatibility between subunits 

within the dimeric assembly since one E71S subunit is open and other subunit is closed. The putative 

switch between the open and closed conformations of LpPDC should involve important displacements of 

the Asn22, Trp24 and Met44 side chains, which would be the direct responsible for the closure of the 

entrance, together with minor rearrangements of the internal side chains Tyr20 and Tyr26. On the 

contrary, no significant changes are observed within the polar portion of the cavity. Not surprisingly, this 

conformational transition determines a significant decrease in the solvent accessible volume of the 

internal cavity from an initial estimated value of ~580 Å3 (average value between wild-type and Y20F) to 
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a final value of ~290 Å3 (average value between R48Q and E71S), which is similar to the value for the 

van der Waals volume for p-coumaric acid (278 Å3) as estimated with the program HOLES47. 

 Three dimensional comparison of the polypeptide backbone of open (wild-type or Y20F) and 

closed (R48Q or E71S) states of LpPDC reveals that the putative transition between them not only 

involves movements of the β1-β2 and β3-β4 loops but also the entire molecule: the closure of the 

entrance is accompanied by a subtle but global rearrangement of the polypeptide backbone which can be 

interpreted as a contraction of the β-barrel, indicating some degree of plasticity of the LpPDC 

architecture.    

There are three important aspects of this conformational change that we have observed in the 

crystalline state. First, the entrance regions of the mutant subunits are perfectly defined in the electron 

density maps in contrast to the wild-type protein. Secondly, we can assume that the crystal packing 

interactions do not affect the conformation of the entrance region as they are not engaged in crystal 

contacts. In fact, the only exception to this is a crystal contact between subunits A within the monoclinic 

crystal of the E71S mutant which has no significant structural consequences as deduced from the three 

dimensional comparison with the subunit B where the entrance region does not participate in packing 

interactions. In both cases, an identical closed state is observed which in turn perfectly superpose with the 

closed state of the R48Q mutant. Thirdly, the crystallographic closed state of the enzyme is not a 

sufficient condition for explaining the loss of decarboxylase activity in LpPDC since the R48Q mutant 

shows some activity. Therefore, the most plausible interpretation of the two conformational states present 

in our crystals is that they represent snapshots of two stages in the LpPDC catalytic mechanism.  

Finally, the flexibility in the entrance loops suggests that the enzyme might undergo a 

conformational change upon substrate binding. Similarly to the decarboxylation mechanisms proposed for 

arylmalonate decarboxylase from Bordetella bronchiseptica
48 and α-amino-β-carboxymuconate-ε-

semialdehyde decarboxylase from Pseudomonas aeruginosa,
49 we assume that the entrance region closes 

upon substrate binding to form a catalytically competent arrangement and also to exclude water 

molecules from the substrate-binding pocket (see below). 

Page 15 of 40

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16

Modeling of engaged p-coumaric acid 

The presence of water molecules and also of some components of the mother liquor within the 

internal cavity of LpPDC in the crystal state (both wild-type and mutant variants) suggests that this 

structure is highly hydrated in vivo. It is probable that some water molecules must be displaced to 

accommodate the incoming p-coumaric acid. This assumption agrees well with the comparable estimated 

average values for the solvent accessible volume of the cavity in the closed sate of the enzyme (~290 Å3) 

and the van der Waals volume of p-coumaric acid (~278 Å3). Conversely, the side chains Tyr20, Arg48, 

and Glu71 are critical for the decarboxylation catalytic mechanism which reveals that the substrate 

binding pocket is located at the internal cavity. In this context, and considering that attempts to produce 

cocrystals of LpPDC (either native or mutant variants) with substrate analogues were unsuccessful, to 

determine the potential binding mode of p-coumaric acid to LpPDC we carried out modeling studies of 

docked p-coumaric acid into the cavity of the closed state of wild-type LpPDC, the most probable 

conformation for the substrate-bound enzyme according to the scenarios determined for arylmalonate 

decarboxylase from B. bronchiseptica
48 and α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase 

from P. aeruginosa.
49 Therefore, we used the closed structure of the R48Q mutant (mutated back to the 

wild-type sequence) as the starting point for modeling studies. 

With this aim, initial in silico complexes were built based on the above assumptions and 

subsequently used as input for the docking studies. The binding mode suggested by the lowest energy 

model suggests key contacts with putative active-site residues. We observe that the p-hydroxyl group of 

the substrate, which is a strictly required structural determinant for decarboxylation,21,50 penetrates deeply 

into the cavity, reaching the polar portion (Fig. 7). Here, this group interacts with the functionally relevant 

residues Arg48 and Glu71; in particular, is at hydrogen bond distance to the NH1 (3.4 Å) and NH2 (2.9 

Å) atoms of Arg48 and to the Oε1 (3.3 Å) atom of Glu71. On the other hand, the carboxyl moiety of the 

substrate can potentially form hydrogen bonds with the Tyr18 (3.2 Å) and Tyr20 (3.5 Å) side chain 

hydroxyl groups what may support the participation of the β1-β2 loop of LpPDC in the productive 

binding of the substrate, and therefore it is probable that the dynamic motion of this region would be 

necessary for catalysis. In addition, we also observe major hydrophobic contacts between the non-polar 
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regions of the substrate and the aliphatic/aromatic side chains of Tyr26, Tyr38, Ile40, Val45, Val77, 

Trp69 and Phe94 which would constitute an extended hydrophobic substrate binding pocket. In other 

words, the substrate binding pocket can be operatively described as formed by three distinct regions: a 

central hydrophobic pocket which contact both the aromatic ring and the aliphatic chain of the substrate, 

and two flanking regions participating in polar interactions, one involved in the specific recognition of the 

p-hydroxyl group, and the second one involved in interactions with the leaving carboxyl moiety of the 

substrate. 

This binding mode reveals three important aspects. First, it suggests that the accessibility of the 

hydroxyl group of the substrate to the polar portion of the cavity where the functionally relevant residues 

Arg48 and Glu71 are located is crucial for the substrate specificity of the enzyme. In this sense, parallel in 

silico analyses with o-coumaric acid, which is not decarboxylated by LpPDC17, suggested a similar 

binding mode, although in this case the o-hydroxyl group does not interact with Glu71 or Arg48. This 

result agrees with the observed interactions between the p-hydroxyl group and Arg48 and Glu71 being 

critical for the decarboxylation catalytic mechanism. Secondly, the hydrophobic pocket imposes a severe 

steric hindrance which restricts the maximum size of chemical groups present in the aromatic ring of 

potential substrates,50 and therefore this region becomes a potential mutational target for the rational 

design of LpPDC variants with novel substrate specificities. Thirdly, Tyr18 directly interacts with the 

carboxyl group of p-coumaric acid, similarly to Tyr20. Based on this result, we generated the single point 

mutant Y18F and characterized its decarboxylase activity against p-coumaric acid. The obtained results 

indicated that Y18F behaves as the Y20F mutant, which agrees with the proposed binding mode, and also 

provides additional clues about potential catalytic mechanisms for LpPDC.  

Proposed catalytic mechanism 

Currently, the only available information on the chemistry employed by members of the PAD 

family proceeds from a previous work by Hashidoko and Tahara carried out on PAD from Klebsiella 

oxytoca
51 (KoPAD). Here, the authors proposed a chemical mechanism by KoPAD based upon the 

analysis of the stereochemical specificity of the proton transfer involved in the decarboxylation of p-

coumaric acid.51 On the other hand, in considering the potential mechanisms for members of the PAD 
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family one must take into account that the substrate must bear a p-hydroxyl group, a double bond between 

C7 and C8 atoms, and obviously the leaving carboxyl group. The relatively small size and rigidity of the 

p-coumaric acid, together with the structural and functional analysis herein presented for wild-type 

LpPDC and several mutant variants, has permitted reliable docking of the substrate into the cavity of the 

enzyme. These results indicate a substrate-binding mode where the p-hydroxyl group of the substrate 

must reach the polar portion of the cavity where it is engaged in a network of polar interactions with 

functionally essential residues and the leaving carboxyl group would interact with the side chain hydroxyl 

groups of Tyr18 Tyr20. In this scenario, it is remarkable that important features of the chemical 

mechanism proposed by Hashidoko and Tahara for decarboxylation of p-coumaric acid51 are easily 

integrated in this binding mode suggesting a consistent two-step catalytic mechanism (Fig. 8) in which 

Glu71 would act as the catalytic acid-base, and Tyr18 and Tyr20 would play critical roles in proper 

orientation of the substrate and in the release of CO2. 

 We have considered two assumptions in the proposed catalytic mechanism. First, the substrate 

binds the internal cavity of LpPDC with the carboxyl group in an unprotonated state, which agrees with 

the pH-dependence of the LpPDC decarboxylase activity,21 and the recently estimated pKa value of the 

carboxyl group of p-coumaric acid in aqueous solution52 (~4.3). Secondly, the side chain carboxylic 

group of Glu71 is also unprotonated. Consequently, the negative charge on the Glu71 carboxylate group 

would be stabilized by the positively charged guanidinium moiety of the internal residue Arg48. 

 In the first step of the catalytic mechanism (Fig. 8), the phenolic p-hydroxyl group is 

deprotonated by the carboxylate anion of Glu71, promoting a first electron flow along the cinnamate 

structure. Subsequently, the C8 carbon appearing as the nucleophilic center on the quinone form accepts a 

proton from a proton donor to form a para-quinone methide intermediate. As pointed out previously52, the 

requirement of a free p-hydroxyl group in the substrate suggests a mechanism involving this quinone 

intermediate rather than a 1,2-addition pathway.53 Our structural results indicate that the most probable 

proton donor is a water molecule as no other potential donor from the enzyme is in the vicinity of the C8 

carbon atom within the enzyme:substrate complex. Interestingly, ordered water molecules are identified 

in this region of the internal cavity of the closed state of R48Q, the only closed structure containing solely 

water molecules within the cavity. In this mechanism, Trp69 and Arg48 would interact with the Glu71 
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side chain and help to orientate it in the active site. In the second step, the para-quinone methide 

intermediate would promote a second electron flow from the carboxylate, liberating CO2 and forming the 

C8/C9 double bond and the subsequent vinyl group. In this process, the hydroxyl groups of the Tyr18 and 

Tyr20 side chains would interact with the leaving carboxylate group, maintaining it in a fixed position, 

possibly contributing to the stereochemical specificity of the electron transfer that has been shown 

unambiguously for KoPAD.52

 Finally, it should be pointed out that some aspects of the catalytic mechanism need to be further 

investigated, namely, the exact roles for the hydrophobic pocket protein residues and importantly the 

relation between the conformational switch between open and closed states of LpPDC and the chemical 

mechanism for decarboxylation. Clearly, trapping the substrate- and/or structural analogues-bound 

enzyme intermediates and characterizing their structures will be most informative with regard to the 

mechanism of LpPDC.  

 In summary, the results presented here provide insights into the structural basis for the catalytic 

mechanism of decarboxylation of phenolic acids by phenolic acid decarboxylases. As these enzymes have 

important biotechnological applications in food industry as catalysts for the production of vinyl-

derivatives, our results open up novel biotechnological possibilities for the rational approach of designing 

enzymes ad hoc with altered specificities. The elucidation of the crystal structures of native and mutant 

LpPDCs allowed for the identification of the substrate-binding site located inside the β−barrel of the 

enzyme and revealed different conformations of flexible loops at the entrance of this cavity. This is 

consistent with a catalytic mechanism involving a conformational transition between open (substrate-free) 

and closed (substrate-bound) states. As according to the proposed catalytic mechanism, the hydrophobic 

pocket of the binding site harbors determinants of substrate specificity, novel specificities may likely be 

engineered by altering this region. In turn, the presence of flexible structural elements participating in the 

catalytic mechanism, which are known to provide de basis for functional diversity and enzyme 

evolvability.54
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FIGURE LEGENDS

Figure 1. Overall structure of LpPDC and amino acid sequence alignments. (a) Ribbon diagrams of a 

subunit of LpPDC (residues 2-176). Two orthogonal close-up views are shown. Strands making up the β-

barrel are shown in blue, helices in yellow and loops in red. (b) Topology plot of a subunit of LpPDC. β-

sheet 1 is indicated in blue and β-sheet 2 in red; helices are depicted as yellow circles. Numbers indicate 

the first and the last residues of the secondary structure element. (c) Amino acid sequence alignments of 

LpPDC and other phenolic acid decarboxylases. The regular secondary structure elements in L. plantarum 

LpPDC are indicated by green boxes (α-helix) and orange arrows (β-strand). LpPDC: Lactobacillus 

plantarum PDC (Q88RY7); LbPAD: Lactobacillus brevis PAD (Q03TU3); PpPAD: Pediococcus 

pentosaceus PAD (Q9F3X2); LsPDC: Lactobacillus sakei PDC (Q38UX6); EfPDC: Enterococcus 

faecium PDC (Q3Y2T7); BcPAD: Bacillus coagulans PAD (A2U705); BlPAD: Bacillus licheniformis 

PAD (Q65FC9); BaPAD: Bacillus amyloliquefaciens PAD (A7Z928); BsPAD: Bacillus subtilis PAD 

(007006); BPAD: Bacillus sp. PAD (Q8KNX7); BpFDC: Bacillus pumilus FDC (Q45361); BpPAD: 

Bacillus pumilus PAD (A8FAY2); BmPAD: Bacillus mesentericus PAD (Q9EXR7); SePAD: 

Saccharopolyspora erythraea PAD (A4FMV0); CmPAD: Clavibacter michiganensis PAD (A5CN25); 

MpPUP: Mycobacterium paratuberculosis Putative Uncharacterized Protein (Q743A0); MaPAD: 

Mycobacterium avium PAD (A0QB49); MPAD: Methylobacterium sp. PAD (B0UN01); MsPAD: 

Methylocella silvestris PAD (B1THI6); KpPAD: Klebsiella pneumoniae PAD (A6TFA1); KoPAD: 

Klebsiella oxytoca PAD (A6BMM9); TvFED: Tricomonas vaginalis Ferulate decarboxylase (A2F476); 

EsPUP: Enterobacter sakazakii Putative Uncharacterized Protein (A7MLR8); EcPAD: Erwinia catovora 

PAD (Q6DB32); VcPAD: Vibrio cholerae PAD (Q9KPX2); LlPAD: Lactococcus lactis PAD (A2RN76). 

In the alignment, positions identical in all sequences are marked with a blue background and white 

characters, and highly conserved positions are marked with a yellow background. Red characters in the 

LpPDC sequence correspond to residues facing the internal cavity of the enzyme. 
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Figure 2. Superposition of the LpPDC subunit with FABPs. The β-barrel of the wild-type LpPDC subunit 

is shown in blue as ribbon model and superimposed with: (a) the β-barrel of fatty-acid binding protein 

from toad liver (ribbon model in green; PDB entry 1P6P; Z-score= 7.2); and (b) the β-barrel of cellular 

retinoic acid-binding protein 2 (ribbon model in orange; PDB entry 2G7B; Z-score= 6.7). 

Figure 3. Quaternary structure of LpPDC in the crystal and in solution. (a) Dimeric assembly of LpPDC. 

Each subunit is coloured according to secondary structure. Two orthogonal views are shown and the 

dimensions are indicated. The loop β1-β2 at the entrance of the internal cavity is indicated with a red 

circle. This loop is disordered in the electron density of the native LpPDC. (b) Analytical 

ultracentrifugation sedimentation equilibrium analysis of LpPDC (11.35 M) at 16,000 rpm. Absorbance 

at 280 nm is plotted against the radial position from the centre of the rotor. The best fit to the data set 

(solid line curve) is a unique species of weight molecular mass of 46.0 kDa. Residuals from this fit are 

shown in the top panel. 

Figure 4. Structural analysis of the internal cavity of LpPDC. The amino acid residues facing the internal 

cavity of LpPDC determined by the CASTp server46 have been classified as aromatic (a), aliphatic (b), 

and polar (c). In the three panels, amino acid side chains are shown in ball-and-stick representation; green 

for aromatic, yellow for aliphatic and grey for polar residues, respectively.  

Figure 5. Interactions between polar residues within the wild-type LpPDC cavity. Stereo view 

representation of the polar region of the LpPDC cavity. Representative side chains are shown as sticks; 

oxygen atoms are red and nitrogen atoms are blue. A water molecule is shown as a red ball. An Fo – Fc

omit map contoured at the 3σ level is shown in blue. Potential hydrogen bonds are depicted as dotted 

lines. The map has been calculated with the CNS55 suite. 
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Figure 6. Open and closed conformational states of LpPDC. The entrance region of wild-type LpPDC is 

shown in yellow as ribbon model and superimposed with: (a) the R48Q mutant LpPDC structure (blue) 

and (b) the Y20F mutant LpPDC structure (green). The right panels show close-up views of the molecular 

surfaces of the R48Q (upper panel) and Y20F (lower panel), respectively. The same orientation is shown 

in the panels. Side chains of residues that constitute the entrance regions are shown as sticks (color code 

is as in the ribbon models).  

Figure 7. In silico model for the complex of LpPDC and p-coumaric acid. Stereo view representation of 

the p-coumaric acid binding site of LpPDC (see text for further details). Residues potentially involved in 

hydrogen bonding interactions with p-coumaric acid (Tyr18, Tyr20, Arg48, and Glu71) are displayed in 

yellow as stick model. Potential hydrogen bonds (black broken lines) include interactions between the p-

hydroxyl group of the substrate and functionally relevant residues Glu71 and Arg48, and also between the 

carboxyl moiety and hydroxyl groups from Tyr18 and Tyr20. Van der Waals interactions are significant 

in the binding of the substrate. Residues forming the hydrophobic pocket (Tyr26, Tyr38, Ile40, Val45, 

Trp69, V77 and Phe94) are depicted in grey.  

Figure 8. Proposed catalytic mechanism of decarboxylation by LpPDC. The mechanistic proposal is 

based on inferences drawn from the crystallographic, functional and in silico results presented here and 

by analogy to the proposed chemical mechanism previously proposed for PAD from Klebsiella oxytoca.51 
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Table I. Data collection and refinement statistics.
Wild-type  Y20F  R48Q  E71S  

PDB code 2W2A  2W2B  2W2F  2WSJ  
Data collection 
Beamline ID23.1 (ESRF)  ID29 (ESRF)  BM16 (ESRF)  ------------  
Wavelength (Å) 0.976  0.978  0.979  1.5418  
Space group P43 P43 P21 C2  
Unit cell parameters         

a, b, c (Å) 43.2, 43.2, 232.5  43.2, 43.2, 232.5  39.2, 94.9, 106.7  108.8, 52.75, 
82.09 

     α, β, γ (º) 90.0, 90.0, 90.0   90.0, 90.0, 90.0  90.0, 100.5, 90.0  90.0, 122.4, 90.0  
VM (Å3/Da) 2.6  2.6  2.3  2.6  
Solvent content (% v/v) 53.2  53.2  47.1  52.9  
Resolution range (Å) 46-1.40 (1.48-1.40)  58-1.40 (1.48-1.40)  52-1.70 (1.79-1.70)  34-2.21 (2.33-2.21)  
Completeness (%) 100 (100)  91.5 (91.5)  97.9 (97.9)  65.0 (65.0)  
Unique reflections 83204  76941  81732  12774  
Multiplicity 7.2 (7.2)  6.7 (2.8)  2.8 (2.3)  4.6 (4.6)  
Rmerge (%) 11.2 (50.0)  9.0 (39.1)  4.9 (11.6)  6.6 (21.6)  
Average I/σ(I) 13.3 (3.0)  15.6 (1.6)  16.7 (6.8)  17.5 (6.9)  
Molecules per asymmetric unit 2  2  4  2  
Wilson B-factor ( Å2) 10.4  13.5  13.0  29  
Refinement 
Resolution range (Å) 40-1.40  58-1.40  45-1.70  23-2.24  
Rfac (%) 19.0  19.9  19.2  17.7  
Rfree (%) 20.9  22.0  21.0  25.9  
Number of atoms         
Protein  2918  2950  5800  2912  
Water molecules 566  500  500  194  
Ba2+     2  1  
Isopropanol   2    5  
Acetate   2      
Geometry statistics         
r.m.s.d., bonds (Å) 0.006  0.006  0.007  0.009  
r.m.s.d., angles (º) 1.02  1.07  1.051  1.20  
Ramachandran plot         
Most favored  89.3  90.1  97.5  97.1  
Allowed 10.7  9.9  2.5  2.9  
Values in parentheses are for the highest resolution shell. 
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Table II 

Table II. Hydrogen bonding interactions and salt bridges identified in the 
interface between monomers. 
Atoms subunit A Atoms subunit B Distance (Å) 
Asp56 OD2 His89 NE2b  3.99 (4.00)c

Thr61 OG1a Glu85 OE1 2.75 (2.70) 
Lys66 NZa Asp80 OD1 2.86 (2.85) 
Lys66 NZ a  His89 O 3.18 (3.15) 
Lys66 NZ a  Ala78 O 3.02 (3.00) 
Ser 68 OG Thr91 OG1a  2.78 (2.78) 
Gly74 O Lys128 NZa  3.51 (3.55) 
Asp76 OD1 Lys128 NZb 3.30 (3.35) 
Asp76 OD2 Lys128 NZb 2.85 (2.92) 
aHydrogen bond donor. 
bThe cation of the salt bridge. 
cDistance between the symmetry-related residues is indicated in parenthesis. 
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Figure 1. Overall structure of LpPDC and amino acid sequence alignments. (a) Ribbon diagrams of a 
subunit of LpPDC (residues 2176). Two orthogonal closeup views are shown. Strands making up 
the βbarrel are shown in blue, helices in yellow and loops in red. (b) Topology plot of a subunit of 
LpPDC. βsheet 1 is indicated in blue and βsheet 2 in red; helices are depicted as yellow circles. 

Numbers indicate the first and the last residues of the secondary structure element. (c) Amino acid 
sequence alignments of LpPDC and other phenolic acid decarboxylases. The regular secondary 

structure elements in L. plantarum LpPDC are indicated by green boxes (αhelix) and orange arrows 
(βstrand). LpPDC: Lactobacillus plantarum PDC (Q88RY7); LbPAD: Lactobacillus brevis PAD 
(Q03TU3); PpPAD: Pediococcus pentosaceus PAD (Q9F3X2); LsPDC: Lactobacillus sakei PDC 

(Q38UX6); EfPDC: Enterococcus faecium PDC (Q3Y2T7); BcPAD: Bacillus coagulans PAD (A2U705); 
BlPAD: Bacillus licheniformis PAD (Q65FC9); BaPAD: Bacillus amyloliquefaciens PAD (A7Z928); 

BsPAD: Bacillus subtilis PAD (007006); BPAD: Bacillus sp. PAD (Q8KNX7); BpFDC: Bacillus pumilus 
FDC (Q45361); BpPAD: Bacillus pumilus PAD (A8FAY2); BmPAD: Bacillus mesentericus PAD 
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(Q9EXR7); SePAD: Saccharopolyspora erythraea PAD (A4FMV0); CmPAD: Clavibacter michiganensis 
PAD (A5CN25); MpPUP: Mycobacterium paratuberculosis Putative Uncharacterized Protein 

(Q743A0); MaPAD: Mycobacterium avium PAD (A0QB49); MPAD: Methylobacterium sp. PAD 
(B0UN01); MsPAD: Methylocella silvestris PAD (B1THI6); KpPAD: Klebsiella pneumoniae PAD 
(A6TFA1); KoPAD: Klebsiella oxytoca PAD (A6BMM9); TvFED: Tricomonas vaginalis Ferulate 
decarboxylase (A2F476); EsPUP: Enterobacter sakazakii Putative Uncharacterized Protein 

(A7MLR8); EcPAD: Erwinia catovora PAD (Q6DB32); VcPAD: Vibrio cholerae PAD (Q9KPX2); LlPAD: 
Lactococcus lactis PAD (A2RN76). In the alignment, positions identical in all sequences are marked 

with a blue background and white characters, and highly conserved positions are marked with a 
yellow background. Red characters in the LpPDC sequence correspond to residues facing the 

internal cavity of the enzyme.  
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Figure 2. Superposition of the LpPDC subunit with FABPs. The ßbarrel of the wildtype LpPDC 
subunit is shown in blue as ribbon model and superimposed with: (a) the ßbarrel of fattyacid 

binding protein from toad liver (ribbon model in green; PDB entry 1P6P; Zscore= 7.2); and (b) the 
ßbarrel of cellular retinoic acidbinding protein 2 (ribbon model in orange; PDB entry 2G7B; Z

score= 6.7).  
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Figure 3. Quaternary structure of LpPDC in the crystal and in solution. (a) Dimeric assembly of 
LpPDC. Each subunit is coloured according to secondary structure. Two orthogonal views are shown 
and the dimensions are indicated. The loop ß1ß2 at the entrance of the internal cavity is indicated 
with a red circle. This loop is disordered in the electron density of the native LpPDC. (b) Analytical 

ultracentrifugation sedimentation equilibrium analysis of LpPDC (11.35 M) at 16,000 rpm. 
Absorbance at 280 nm is plotted against the radial position from the centre of the rotor. The best fit 

to the data set (solid line curve) is a unique species of weight molecular mass of 46.0 kDa. 
Residuals from this fit are shown in the top panel.  
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Figure 4. Structural analysis of the internal cavity of LpPDC. The amino acid residues facing the 
internal cavity of LpPDC determined by the CASTp server46 have been classified as aromatic (a), 
aliphatic (b), and polar (c). In the three panels, amino acid side chains are shown in ballandstick 
representation; green for aromatic, yellow for aliphatic and grey for polar residues, respectively.  
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Figure 5. Interactions between polar residues within the wildtype LpPDC cavity. Stereo view 
representation of the polar region of the LpPDC cavity. Representative side chains are shown as 

sticks; oxygen atoms are red and nitrogen atoms are blue. A water molecule is shown as a red ball. 
An Fo – Fc omit map contoured at the 3σ level is shown in blue. Potential hydrogen bonds are 

depicted as dotted lines. The map has been calculated with the CNS55 suite.  
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Figure 6. Open and closed conformational states of LpPDC. The entrance region of wildtype LpPDC 
is shown in yellow as ribbon model and superimposed with: (a) the R48Q mutant LpPDC structure 
(blue) and (b) the Y20F mutant LpPDC structure (green). The right panels show closeup views of 
the molecular surfaces of the R48Q (upper panel) and Y20F (lower panel), respectively. The same 
orientation is shown in the panels. Side chains of residues that constitute the entrance regions are 

shown as sticks (color code is as in the ribbon models).  
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Figure 7. In silico model for the complex of LpPDC and pcoumaric acid. Stereo view representation 
of the pcoumaric acid binding site of LpPDC (see text for further details). Residues potentially 

involved in hydrogen bonding interactions with pcoumaric acid (Tyr18, Tyr20, Arg48, and Glu71) 
are displayed in yellow as stick model. Potential hydrogen bonds (black broken lines) include 

interactions between the phydroxyl group of the substrate and functionally relevant residues Glu71 
and Arg48, and also between the carboxyl moiety and hydroxyl groups from Tyr18 and Tyr20. Van 

der Waals interactions are significant in the binding of the substrate. Residues forming the 
hydrophobic pocket (Tyr26, Tyr38, Ile40, Val45, Trp69, V77 and Phe94) are depicted in grey.  
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Figure 8. Proposed catalytic mechanism of decarboxylation by LpPDC. The mechanistic proposal is 
based on inferences drawn from the crystallographic, functional and in silico results presented here 
and by analogy to the proposed chemical mechanism previously proposed for PAD from Klebsiella 

oxytoca.51  
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