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Abstract 14 

A Quartz Crystal Microbalance (QCM) is a highly sensitive device based on the 15 

measurement of the resonance parameters of a thickness-shear piezoelectric resonator, 16 

which classical application is the detection of attached mass per unit area. Although the 17 

most economical ways of driving these sensors make use of oscillator circuits, other 18 

electronic interfaces are also well-established, i.e., electrical impedance analysis and 19 

impulse excitation/decay methods. Impulse excitation and decay methods are founded 20 

on the same principle, but in practice only the latter has been exploited. The present 21 

work explores the suitability of a broadband spike excitation technique (up to 0.25 22 

GHz) as an interface electronic system for QCM sensors. The principles of 23 

measurement —including the processing of signals— are described in detail and 24 

illustrated for liquids with different mechanical shear impedances. The proposed mode 25 

of operation has proved some advantageous characteristics: both resonant frequency and 26 

energy dissipation can be simultaneously determined in a wide range of frequencies; it 27 

is appropriate for in-liquid sensing applications (including highly viscous liquids); it can 28 

be easily automated for continuous monitoring and integrated with other external 29 

circuitry (such as multiplexing for sensor arrays).  30 

Keywords: Quartz Crystal Microbalance; AT-cut quartz crystal; Thickness-Shear Mode 31 

resonator; Shear impedance spectroscopy; Impulse excitation method; Ultrasonic 32 

characterization 33 

34 
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1 Introduction 35 

Quartz Crystal Microbalances (QCM), sometimes referred to as Thickness-Shear 36 

Mode (TSM) sensors, are probably the most widespread and versatile ultrasound-based 37 

analytical technique. Typical applications include the measurement of deposition rate 38 

and film thickness, the investigation of surface reactions and the study of viscoelastic 39 

properties [1]. A very important aspect of these resonators is the interface circuitry, 40 

commonly divided into three broad categories: oscillators, network analyzers and 41 

impulse/decay methods [1-4]. In spite of some drawbacks, mostly related to the 42 

interference of the electronic components, oscillator circuits are habitually preferred in 43 

most cases because of their low price, integration capability, high resolution and fast 44 

response. Impedance network analyzers provide more complete information, but they 45 

are normally restricted to laboratory environments owing to their high cost and large 46 

dimensions. Impulse excitation and decay methods are based on the same principle and 47 

their main feature is that the resonance parameters are not much influenced by the 48 

electronic network, since the crystal is freely oscillating during the measurement. In 49 

practice, only the latter (decay method) is used, being at the root of the QCM with 50 

dissipation monitoring technique [5-7]. With the increasing QCM applications in liquid 51 

media, new advances in these excitation systems have been proposed (for instance, [8-52 

12]). However, apart from some brief references, the impulse excitation method, has not 53 

yet been studied or reported in depth. Some limitations occasionally attributed to this 54 

interface are: (1) high expenses for circuitry, (2) ideal pulse front slopes are difficult to 55 

achieve, (3) other harmonics different from that desired are excited and additional 56 

circuitry is necessary, (4) limited range for precise frequency and damping 57 

measurement, (5) not appropriate for in-liquid applications, and (6) complex signal 58 
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processing involved. The present work analyzes in detail the performance, limitations 59 

and measurement principles of a broadband spike (impulse) excitation method to 60 

interrogate thickness-shear piezoelectric crystals with application to liquid media. 61 

Experimental results of the resonant frequencies and bandwidths for diverse pure liquids 62 

(up to 0.25 GHz) are presented. 63 

64 
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2 Materials and methods 65 

2.1 Experimental setup 66 

The experimental setup is depicted in Fig. 1 and consisted of the following 67 

elements:  68 

− QCM cell made up of an AT-cut quartz crystal provided by CH Instruments Inc., 69 

USA (7.995 MHz fundamental frequency, 13.7 mm blank diameter, 5.1 mm 70 

electrode diameter, polished surface finish, 100 Å Ti & 1 000 Å Au electrode 71 

material, keyhole electrode pattern). 72 

− 200 MHz (-3 dB) Panametrics ultrasonic pulser/receiver, model 5900PR (P/R 73 

mode, 2 kHz PRF, 1 µJ energy, 50 Ω damping , 1 MHz HP filer, 200 MHz LP 74 

filter, 0 dB attenuators, 26 dB gain, 0º RF output phase). 75 

− 500 MHz, 500 MSa/s and 8 bits Tektronix TDS520 digitizing oscilloscope (15 76 

000 points record length, 50 ns/div delayed scale, 1 024 signals average rating). 77 

− Personal computer connected to the oscilloscope via an Agilent 82357A 78 

USB/GPIB interface.  79 

The measuring principle is similar to the previously described for thickness-80 

expansion mode (TEM) resonators [13]. The experimental cell was made up of a 1 mL 81 

screw top tube with the quartz disk silicone glued to the bottom (Fig. 2). The electrodes 82 

of the piezoelectric transducer were soldered to an RF coaxial cable using copper strips 83 

(the side in contact with the liquid was grounded). The active surface area of the quartz 84 

was left intact to ensure that the mounting elements did not significantly alter the 85 
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resonant parameters. The measuring cell was waterproofed and immersed into a Julabo 86 

FP45HE refrigerated/heating circulator bath set at 25.00±0.01 ºC. The programming 87 

environment LabVIEW has been used to record the output signals and process the 88 

collected data for visualization.     89 

2.2 Electrical equivalent circuit 90 

The ultrasonic pulser/receiver generates a voltage spike, by means of a capacitive 91 

discharge, driving the QCM sensor. Although the pulser is a complex electrical network 92 

that also amplifies and filters the electrical response, it can be converted into a Thévenin 93 

equivalent circuit —assuming linearity— comprising only one voltage source, VP, and 94 

one impedance, ZP. A circuit representation of a spike pulser and its characteristics can 95 

be found in [14]. In the vicinity of resonances, the behavior of an air-backed QCM 96 

sensor loaded with a liquid, L L LZ R j Lω= + , can be described by the extended 97 

Butterworth-van Dyke equivalent circuit, containing two parallel branches (Fig. 3). The 98 

left-hand branch corresponds to the static dielectric capacitance, CQ,0, and the right-hand 99 

one is related to the mechanical response of the piezocrystal. The expressions relating 100 

the electrical components of Fig. 3 to the mechanical properties of a loaded TSM 101 

resonator can be found elsewhere (for instance, [1, 4]).  102 

The output voltage, V, is given by:  103 

 eq
P

P eq

Z
V V

Z Z
=

+
, (1) 104 

where 105 
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Since the impedance of the ultrasonic pulser is around 30 Ω [14], and considering 107 

that near the resonances Zeq >> ZP [4], it follows that: 108 

 ( )1 1
1

P P P eq
P

eq

V V V Z YZ
Z

= ≈ −
+

, (3) 109 

where 1
eq

eq

Y
Z

=  is the  equivalent admittance of the loaded resonator. The maxima of 110 

the voltage peaks correspond to the maximal admittance values. 111 

In an ideal series RLC circuit, the quality factor is: 112 

 1 LQ
R C

= . (4) 113 

For typical values of an AT-cut quartz crystal (RQ=10 Ω, CQ,0=7 pF, LQ=6 mH, 114 

CQ=45 fF), the Q factor can be approximated by the expression:  115 

 ( )
1 Q L

QP Q L

L L
Q

CR R R
+

≈
+ +

, (5) 116 

and the bandwidth, 0
w

fB
Q

= , results in: 117 

 ( )0
Q

w Q P L
Q L

C
B f R R R

L L
≈ + +

+
. (6) 118 
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Given that LQ >> LL [1], then: 119 

 w LB R∆ ∝ ∆ . (7) 120 

Additionally, there are some considerations to be taken into account: 121 

− To a first approximation, the spectrum generated by the pulser/receiver can be 122 

assumed constant over narrow bandwidths (i.e., a Dirac delta function in the time 123 

domain), which might not hold for heavily damped resonators. An explicit and 124 

more accurate Fourier transform of VP can be found in [14].  125 

− In a typical spike pulser, the energy is stored in a capacitor and discharged at the 126 

repetition rate by closing a switch. In this sense, this interface differs from the 127 

traditional decay method, where the signal excitation is intermittently disconnected 128 

by opening a relay.  129 

− The configuration of a pulser has to be preserved over all the measurements, since 130 

the equivalent impedance of these electronic devices changes significantly in both 131 

amplitude and shape with the settings.  132 

− The imaginary part of the pulser impedance, coming from the storage capacitor, can 133 

slightly perturb the absolute value of the resonant frequency (although without 134 

significantly affecting the changes in frequency or bandwidth).  135 

2.3 Signal processing 136 

Fig. 4 depicts the waveform of the electrical signals displayed on the oscilloscope 137 

and its frequency spectrum. All the harmonics within the bandwidth of the electronic 138 

excitation can be clearly perceived. In a close view, the output signals significantly 139 
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differ from an ideal exponentially decaying sinusoidal function at all the frequency 140 

components due to the interference of spurious modes. These wave patterns, resulting 141 

from the superposition of different waves, make the extraction of the resonant 142 

parameters difficult. Hence, the signal processing chosen is detailed next (implemented 143 

in MATLAB):   144 

2.3.1 Resonant frequencies 145 

To determine the resonant frequencies, a temporal interval (1-30 µs) has been 146 

selected after analyzing the stability of the instantaneous frequency, calculated as the 147 

derivative of the phase of the complex time signal (analytic signal). The signals were 148 

multiplied by a ‘Hanning window’ that was zero-valued outside of the chosen interval. 149 

The resonant frequencies have been calculated from the maximum values of the zero-150 

padded Fast Fourier Transform (FFT). The accurate determination of these quantities 151 

was performed by using the second-order Goertzel algorithm, which computes more 152 

efficiently the discrete Fourier transform (DFT) for a subset of indices.  153 

2.3.2 Bandwidths 154 

The bandwidths, Bw, of each harmonic have been determined from the decay 155 

rates. Supposing a monochromatic sinusoidal signal, ( )u t , of maximum amplitude, u0, 156 

with an exponentially decaying envelope, 157 

 ( ) ( )0 0sin 2
t

u t u e f tτ π φ
−

= + , (8) 158 

the dissipation factor, D, and the half bandwidth, Γ , are inversely proportional to the 159 

decay time constant, τ: 160 
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0

1 1D
Q fπ τ

= = , (9) 161 

 1
2 2

wB
πτ

Γ = = . (10) 162 

After removing the DC offset, the output signals of each harmonic were separated 163 

applying a digital FFT bandpass filter centered at the corresponding resonant frequency 164 

and with a bandwidth of ~3-12 MHz depending on the overtone number. Then, the 165 

spectral data were converted back into the time domain via the inverse FFT. The 166 

envelopes of each ‘monochromatic’ signal were obtained from the amplitude of the 167 

resulting complex time signal. Since these envelopes were not subject to a pure 168 

exponential decay, only the beginnings of the curves were fitted to an exponential 169 

function (~1-60 µs).  170 

An important characteristic of the signal treatment described herein is that only a 171 

temporal interval has to be analyzed to determine both the resonant frequency and the 172 

quality factor. Working with a portion of the signals significantly diminishes the 173 

processing time and computing requirements.       174 

2.4 Impedance network analysis 175 

In addition, the resonant parameters of the QCM sensor, loaded with different 176 

liquids, have been measured using an Agilent 4294A Precision Impedance Analyzer, 177 

ranging from 40 Hz to 110 MHz. The resonant frequencies have been determined from 178 

the maxima of the conductance peaks, which correspond to the electrical series resonant 179 

frequencies (MSRF) of the equivalent Butterworth Van-Dyke circuit. The bandwidths 180 
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have been calculated as the difference between the two frequencies at which the 181 

amplitude was half of its maximum value.  182 

2.5 Liquid samples 183 

The following pure liquids have been measured: acetonitrile (Panreac Química, 184 

purity >99.9%), Baysilone® fluid M 10 (Momentive Specialty Chemicals, 100% 185 

polydimethylsiloxane), 1-butanol (Panreac Química, purity >98.5%), ethanol 186 

(Quimivita, purity >99.5%), glycerol (Panreac Química, purity >99.5%), lactic acid 187 

(Panreac Química, purity >95.0%), methanol (J.T.Baker, purity >99.8%) and 2-188 

propanol (Panreac Química, purity >99.5%). Tap water was purified with an ELGA 189 

Purelab UHQ distiller system (>18 MΩ·cm) and degassed in a vacuum chamber. The 190 

viscosities and densities of these liquids at 25 ºC have been collected from the literature 191 

[15] and are given in Table 1. Liquid samples were selected according to diverse 192 

criteria. Since liquid mixtures can lead to additional relaxation phenomena at high-193 

frequencies, only pure liquids with well-known properties were studied. Liquids with 194 

different viscosities (such as glycerol, lactic acid, baysilone and acetonitrile) were 195 

appropriate to test the validity range of the method, while liquids with low viscosities 196 

(such as methanol, water, ethanol and isopropanol) were useful to observe the response 197 

to small changes.  198 

199 
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3 Results and discussion 200 

The changes in the complex resonant frequency, 0*f f j∆ = ∆ + ∆Γ , of a TSM 201 

resonator when one face is in contact with a semi-infinite Newtonian liquid, with 202 

density ρL and viscosity ηL, are given by [16-18]: 203 

 ( ) 0

0

* 1 L L
Q Q

Nff j
f

η ρ
πρ µ

∆
= − + , (11) 204 

where 
2

wB
Γ = is half bandwidth, 0f  is the fundamental resonant frequency, Qρ  and µQ 205 

are the density and rigidity modulus of the quartz crystal (respectively), and 206 

1, 3, 5, 7...N = is the overtone number.  207 

 The fundamental resonant frequency (first harmonic), determined using the 208 

current spike excitation method, as a function of the square-root of the product of 209 

density and viscosity is plotted in Fig. 5 for different liquids with viscosities ranging 210 

from 0.3 to 1000 mPa·s. A clear linear dependence can be observed in agreement with 211 

previous Eq. (11). Deviations from this equation are comparable to other works (for 212 

instance, [17]) and are commonly attributed to the finite size of the piezoelectric 213 

element, the contribution of interfacial effects and the electrical/viscoelastic properties 214 

of the liquid. Significant changes in the viscosity of a liquid can also be caused by small 215 

fluctuations in temperature or impurities. In order to distinguish between the frequency 216 

shifts purely due to the liquid loading and other secondary effects, the resonant 217 

parameters resulting from the impulse excitation method have been compared to those 218 

obtained with an impedance network analyzer. In Fig. 6, it can be seen that both modes 219 

of operation give very similar results for the fundamental frequency and higher 220 
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harmonics (the slopes are 0.98 and 1.01 for the first and third harmonic, respectively). 221 

In this graph, the liquid glycerol has not been included because the electrical 222 

conductance peak was flattened and noisy, and its maximum could not be estimated 223 

with confidence.  224 

The factor ( )1 j− +  in Eq. (11) implies that the contributions of a pure viscous 225 

fluid to frequency and half bandwidth shifts are the same with opposite sign. These two 226 

parameters have been determined with the spike method and the results for the 227 

fundamental frequency are plotted in Fig. 7. Although these two quantities are not 228 

identical, a good correlation between them can be appreciated. In general, the 229 

measurement of the resonant frequency gave better results than the decay time constant, 230 

especially for highly viscous liquids, on account of the signal-to-noise ratio, 231 

computational efficiency and the interference of unwanted modes. For higher 232 

harmonics, the relationship between resonant frequency and bandwidth significantly 233 

deviates from linearity for several fluids (namely, 1-butanol, Baysilone® fluid M 10, 234 

lactic acid and glycerol), owing to their non-Newtonian behavior with increasing 235 

frequency [19].  236 

Due to the small penetration depth, L

L f
ηδ
πρ

= , of shear waves in liquids —for 237 

instance, the penetration depth in water at 250 MHz is less than 40 nm— measurements 238 

at high frequencies using techniques based on the propagation of travelling shear waves 239 

(such as through-transmission or pulse-echo) can be very difficult to achieve. The 240 

proposed method overcomes this limitation, allowing the simultaneous determination of 241 

resonance parameters in a wide range of frequencies and fluids. Fig. 8 shows the 242 
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changes in the resonant frequency (pure water as reference) of a QCM sensor loaded 243 

with several fluids at 25 ºC. The frequency shifts have been ‘normalized’ by dividing 244 

each value by the square root of the harmonic number (1, 3, 5, 7…). It can be noticed 245 

that low viscous liquids do not exhibit dispersion below 250 MHz. As the viscosity 246 

increases, the relaxation time increases and the shift in the ‘normalized’ resonant 247 

frequency decreases with frequency (this was the case for the above mentioned liquids). 248 

At enough high frequencies, the behavior of liquids is not Newtonian anymore.    249 

Generalizing to viscoelastic media, Eq. (11) becomes: 250 

 ( )
0

* 1*L L L
Q Q

f j Z X jR
f Z Zπ π

∆
= = − + , (12) 251 

where QZ  and *L L LZ R jX= +  are the complex mechanical shear impedance of the 252 

quartz crystal and the fluid, respectively:  253 

 
* * *

Q Q Q

L L L L L

Z

Z G j

ρ µ

ρ ρ ωη

=

= =
. (13) 254 

The real and imaginary parts of the shear modulus, * ' ''L L LG G jG= + , and the viscosity, 255 

* ' ''L L Ljη η η= − , are related as follows: 256 

 ( )* 1* '' 'L
L L L

Gj G jGη
ω ω

= − = + . (14) 257 

Hence, both the dynamic shear viscosity, 'Lη , and the out-of-phase viscosity 258 

(elasticity), ''Lη , can be estimated from the measurements of the resonant frequency and 259 

half bandwidth shifts:  260 
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2 2

' 2

''

L L
L

L

L L
L

L

R X

R X

η
ρ ω

η
ρ ω

=

−
=

. (15) 261 

It can be noted that these equations simplifies for a pure Newtonian liquid: 262 

 0' 0 ; '' 'L L

L L

G G
R X

ωη=
=



. (16) 263 

and a perfect Hookean solid (piezoelectric crystal): 264 

 
'' 0 ; '

0
S S S

S

G G
X

µ=
=



, (17) 265 

leading to Eq. (11). 266 

If we suppose a single relaxation time, ητ , and a limiting shear rigidity, G∞ , the 267 

complex shear modulus with increasing frequency can be expressed by the Maxwell 268 

model [20]:  269 

 
( )
( ) ( )

2

2 2* ' ''
1 1

L L L

G G
G G jG jη η

η η

ωτ ωτ

ωτ ωτ
∞ ∞= + = +
+ +

, (18) 270 

and substituting RL and XL in Eq. (15), we obtain:  271 

 

( )
( )

( )
( )

2

2
0 0

2 22 2

2
0 0

'
1 2

2
''

2 1 2

Q
L

L

Q
L

L

Z Gff
f f N f

Z G fff
f f N f

η

η

η

η

τπη
ρ π τ

π τπη
ρ π τ

∞

∞

  ∆ ∆Γ
= − = 

+ 

  ∆Γ −∆
= = − 

+ 

. (19) 272 
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These equations have been used to derive the real and imaginary parts of viscosity 273 

from the experimental data. The results obtained for the relaxation spectrum of liquid 274 

glycerol are illustrated in Fig. 9. The dashed lines represent the theoretical prediction 275 

resulting from a single (Maxwell) relaxation, where the viscous relaxation time, ητ , has 276 

been calculated using the expression [21]: 277 

 2

4
3

v
L L

L Lcη

η η
τ

ρ

+
= . (20) 278 

Lη  and v
Lη  are the shear and volume viscosities, and Lρ  and Lc  are the density and 279 

sound speed, respectively. This equation shows that the relaxation frequencies decrease 280 

with increasing viscosities. For glycerol, the theoretical relaxation time is around 0.5 ns. 281 

In Fig. 9, it can be observed that the results obtained clearly follow a relaxational 282 

behavior. Nevertheless, the theoretical relaxation time does not exactly fit the 283 

experimental data, probably due to the influence of other molecular relaxations not 284 

considered in the theoretical approach.  285 

Overall, these results contradict some drawbacks attributed to impulse excitation 286 

methods. Actually, it has been shown that not only the spike generation is appropriate 287 

for in-liquid applications, but it also offers some unique advantages. In particular, both 288 

the real and imaginary parts of the complex resonant frequency can be simultaneously 289 

obtained in a wide spectral range (up to 0.25 GHz), which opens the way for 290 

spectroscopic analysis. Since it has been seen that the output signals were influenced by 291 

unwanted modes, one of the keys to making progress in this area can simply consist in 292 

increasing the active surface area of the quartz crystal resonator. In addition, it has been 293 
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shown that the proposed technique performs better than electrical impedance analysis to 294 

characterize highly viscous liquids, such as glycerol, at high frequencies. Moreover, 295 

since only the beginning of the signals has to be analyzed, the technique potentially can 296 

also be applied in gaseous environments, where reverberation times can be very long.  297 

On the other hand, the experiments have been carried out using commercial and 298 

general-purpose equipment, and custom-made electronic systems are desirable to 299 

compete with oscillator circuits, especially with regard to price, fast response and 300 

portability. The advantages and disadvantages of the present excitation method are 301 

summarized in Table 2. 302 

303 
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4 Conclusions 304 

An electronic interface system for thickness-shear piezoelectric resonators 305 

(QCM sensors) consisting in a high voltage broadband spike excitation has been 306 

described. Contrary to previously assumed limitations, it has been shown that this mode 307 

of operation can be successfully applied to simultaneously determine both the resonant 308 

frequencies and half bandwidths in a wide spectral range and covering a wide range of 309 

liquids. A very good agreement with impedance analysis has been obtained for all the 310 

fluids analyzed. Furthermore, promising results at high frequencies open the possibility 311 

of developing shear impedance spectrometers based on this approach.  312 

 313 

314 
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List of figure captions 375 

Figure 1. Experimental setup. 376 

Figure 2. A schematic diagram of the experimental cell: (1) AT-cut quartz crystal, (2) 377 

electrical connections, (3) panel waterproof connector, (4) container of liquid 378 

samples with screw cap, and (5) watertight enclosure with (6) screw-type closure. 379 

Figure 3. Thévenin equivalent circuit for a pulser/receiver connected to a loaded TSM 380 

resonator. 381 

Figure 4. Wave pattern of output electrical signals: (a) time and (b) frequency domains. 382 

Figure 5. Linear dependence of the resonant frequency on the square root of the 383 

density-viscosity product for several fluids at 25 ºC (fundamental frequency). 384 

Figure 6. Comparison between the resonant frequencies determined by impedance 385 

analysis and spike excitation for several fluids at 25 ºC (fundamental frequency; 386 

inset: third harmonic). 387 

Figure 7. Relationship between the resonant frequencies and the half bandwidths 388 

obtained with the spike excitation method for several fluids at 25 ºC (fundamental 389 

frequency). 390 

Figure 8. Frequency dependence of the ‘normalized’ resonant frequency shifts for 391 

several fluids at 25 ºC (relative to pure water). Error bars represent the standard 392 

deviation of 5 consecutive signals. 393 

Figure 9. Variation with frequency of the normalized viscosity of glycerol at 25 ºC: 394 

experimental (symbols) and theoretical (dashed lines).  395 
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