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We take a dynamical-systems approach to study the qualitative dynamical aspects of the tidal locking of the
rotation of secondary celestial bodies with their orbital motion around the primary. We introduce a minimal
model including the essential features of gravitationally induced elastic deformation and tidal dissipation that
demonstrates the details of the energy transfer between the orbital and rotovibrational degrees of freedom.
Despite its simplicity, our model can account for both synchronization into the 1:1 spin-orbit resonance and the
circularization of the orbit as the only true asymptotic attractors, together with the existence of relatively
long-lived metastable orbits with the secondary in p :q synchronous rotation.
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I. INTRODUCTION

What is the dynamical origin of the fact that the Moon
presents the same hemisphere facing perpetually toward the
Earth? The other large moons of the solar system also have
their rotations synchronized with their orbits, and Pluto and
Charon are mutually locked in this way. All of these celestial
bodies are in 1:1 spin-orbit resonance. The rotation of one
planet, Mercury, is also synchronized with its orbit around
the Sun, but it performs three rotations every two orbits, and
thus, unlike the former instances, is locked not in 1:1, but
instead in 3:2 resonance �1�. Similar synchronization phe-
nomena are thought to occur too in solar systems with so-
called “hot Jupiters” or short-period planets �2�, and in sys-
tems of binary stars �3�, whose orbits also evolve to become
circular. All these instances are clearly a consequence of a
spin-orbit interaction brought about by the gravitational
torque exerted by the larger primary body on the smaller
secondary body elastically deformed by the differential grav-
ity combined with the corresponding tidal friction induced in
the secondary. The phenomenon has long been studied �4,5�,
but existing models �6–10� are designed for quantitative
analysis of a specific instance or a particular part of the prob-
lem, and are correspondingly complicated; the details ob-
scure the basic mathematical structure of the dynamical sys-
tem.

Here we take the opposite course: in this paper we study
the simplest possible system that displays tidal synchroniza-
tion and orbit circularization with a minimal model that takes
into account only the essential ingredients of tidal deforma-
tion and dissipation in the secondary body. In our qualitative
dynamical-systems approach, without including the full
panoply of details, we treat in a self-consistent way the tem-
poral evolution of the eccentricity and the energy flow from
orbital to rotational motion, important ingredients to under-
stand the long-term evolution of the orbit. Despite its sim-
plicity, our model can account for both synchronization into
the 1:1 spin-orbit resonance and the circularization of the

orbit as the only true asymptotic attractors, together with the
existence of relatively long-lived metastable orbits with the
secondary in p :q �coprime integers� synchronous rotation.

From the point of view of dynamical-systems theory, this
phenomenon of synchronization is of even broader interest
than its application to celestial dynamics because it belongs
to a relatively little studied class of dissipative systems that
contain an embedded submanifold of conservative motion.
Other examples, unrelated in physical origin but with this
same mathematics, are the dynamics of neutrally buoyant
particles in incompressible fluid flows �11�, the bailout em-
bedding of volume-preserving and Hamiltonian dynamics
�12�, and strategies to control Hamiltonian systems �13�.

II. METHODS

We model an extended secondary body of mass m by two
point masses of mass m /2 connected with a damped spring;
see Fig. 1�a�. This composite body moves in the gravitational
field of a primary of mass M �m located at the origin. In this

FIG. 1. �a� Instantaneous configuration of the system given by
the generalized coordinates r, �, l, and �. The relative angle �
=�−� is indicated. �b� Two conservative synchronized configura-
tions on a circular orbit of radius r*. That of the black circles,
corresponding to a solution of Eq. �3� with the spring stretched
�l*� l0�, is stable. The other of white circles and the spring relaxed
is unstable.
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simplest case oscillation and rotation of the secondary are
assumed to take place in the plane of the Keplerian orbit. We
use polar coordinates r,� for the center of mass of the sec-
ondary, with l as the instantaneous length of the spring and �
the rotational angle characterizing the orientation of the sec-
ondary. Both angles � and � are measured from the x axis in
an inertial reference frame. The spring is characterized by its
spring constant D and rest length L0. The gravitational inter-
actions of both point masses with the primary are taken into
account, but that between the point masses is neglected. To
describe the conservative part of the dynamics we construct a
dimensionless Lagrangian in terms of the generalized coor-
dinates q� = �r ,� , l ,��:

L =
ṙ2
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+
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2
+
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+
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8
+
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2r2
−

�2

8
�l − l0�2, �1�

where ri= �r2+ l2 /4+ �−1�irl cos��−���1/2 is the distance of
theu ith component of the secondary to the primary. L is
measured in units of �mL2� / �T2�, where the unit of length L
is chosen to be the major semiaxis a0 of the initial Keplerian
orbit, and the unit of time T= �a0

3 / fM�1/2 is 1 / �2�� times the
period of the Keplerian orbit. The dimensionless vibrational
frequency and natural spring length are �=�4D /mT and l0
=L0 /a0. The damping of the spring is introduced via a di-
mensionless Rayleigh dissipation function:

F�l̇� =
1

4
�l̇2,

where � is the dimensionless damping constant. The equa-
tions of motion are then given by the modified Euler-
Lagrange equations �14�

d

dt
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= −
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, k = 1, . . . ,4; �2�

the set of dimensionless parameters is �, l0, �, and the ec-
centricity of the initial Keplerian orbit, 	0. We take the initial
conditions at apapsis, the greatest distance of the center of
mass of the secondary from the primary on the initial
Keplerian ellipse: r�0�=1+	0, ṙ�0�=0, ��0�=0. This condi-
tion, along with the value of the eccentricity 	0, determines

�̇�0�. �̇�0� was chosen in the range �0,5� with ��0� typically

zero and l̇�0�=0, and l�0� was specified as the value corre-
sponding to a steady rotation with angular velocity �̇�0� in
the absence of any gravitational force. The numerical solu-
tion of the equations of motion was carried out with a fourth-
order Runge-Kutta method at fixed step size 
t=2� /1000.

Owing to the damping, the only energy-conserving trajec-
tories of the system are those that maintain the distance be-
tween the two point masses making up the secondary con-
stant. These trajectories can only be circular and just two
configurations for such orbits are possible: either the two
bodies travel along the same circular orbit at a constant dis-
tance r* from the primary or they occupy the same radial line
while traveling around two different concentric circular or-
bits; see Fig. 1�b�. In the latter case the radii of the two orbits
r
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*�r

2
* must satisfy the balance between the centrifugal,

elastic, and gravitational components of the force,
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where �a0 /r*�3/2 is the dimensionless orbital angular velocity
along the asymptotic circular orbit of radius r*. It is intu-
itively clear and readily verifiable by solving Eq. �3� that the
equilibrium size l*=r

2
*−r

1
* is greater than l0, so that the com-

posite secondary body is stretched in this state.

III. RESULTS AND DISCUSSION

Figure 2 shows a numerical computation of the angle �

and angular velocity �̇ of the secondary as a function of
time; the behavior seen is typical for all the parameters in-
vestigated for initially rapidly rotating secondaries. A strong
initial decay is followed by irregular �transiently chaotic� ro-
tation of the secondary. This may be interrupted by trapping
into different resonant states in which the ratio of the rota-
tional and orbital periods is a rational number. Although the
use of the term “resonant” is typically applied to Hamil-
tonian problems, we use it here in the context of a weakly
dissipative system since these states appear as attractors or
metastable attractors. Eventually, a roughly exponential de-
cay sets in toward a steady state. Two qualitatively different
regimes can be observed in the time dependence of the angle

FIG. 2. �a� Angle � vs time t. �b� Angular velocity �̇ vs time. The decay of the mechanical energy E �thin line� is also shown. Different
subregimes are separated by dashed vertical lines; note that the energy decay differs between them. �c� Energy of the different subsystems
�shifted by constants� vs time. Smooth line: total energy E�=E+1 /2, lower curve: center-of-mass energy E�=Ec+1 /2, and upper curve:
rotational and vibrational energy E�=Er+Ev+3.5�10−8 �cf. Eq. �4��. 	0=0.1, �=1.0, l0=10−4; the initial condition is ��0�=0, �̇�0�=5.
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� in Fig. 2�a�: regimes of rotation and of libration, the details
of which are exemplified in two insets. The first regime con-
sists of four different subregimes which can best be distin-
guished on an angular velocity versus time plot. These sub-
regimes are separated by dashed lines in Fig. 2�b�. After an
initial deceleration phase the angle dynamics is trapped into
resonance, a 5:2 resonance in this case. This is followed by
an irregular rotation which ends by a further approach to a
resonant state, the same one as before in this particular ex-
ample. The escape from this state occurs in the form of
damped oscillations. Figure 2�c� displays how the energy of
the different subsystems changes with time. The total dimen-
sionless energy E is split into a center-of-mass energy, a
rotational energy, and a vibrational energy E=Ec+Er+Ev as
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1
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1

r
,
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1

8
l2�̇2 −
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2r1
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1
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8
�l̇2 + �2�l − l0�2� . �4�

Figure 2�c� demonstrates that in spite of the overall initial
decay of energy, the center-of-mass energy increases, i.e.,
rotation and vibration pump energy into the Keplerian orbit.
In the chaotic stage, the subsystem energies Ec, Er, and Ev all
change irregularly, while the total energy decays smoothly,
and slower than originally. Around resonances the center-of-
mass motion pumps energy into the rotational and vibrational
degrees of freedom: a regular center-of-mass motion is an
efficient driving of the secondary’s internal dynamics. This
accumulated vibrational energy quickly dissipates in the last

phase. Since the total energy is dominated by the center-of-
mass motion, the total decrease of the major semiaxis can be
estimated via the Keplerian rule E* /E0=a0 /r*, where E0 and
E* denote the initial and asymptotic total energy.

On intermediate time scales metastable attractors may ap-
pear. In particular, the 3:2 resonance may be present for a
long period of time. It is, however, asymptotically unstable,
and the 1:1 state finally sets in. We see in Fig. 3, which
shows the average angular velocity between two successive
apapses, that the crossover between the two resonances is
rather abrupt, without any long-lasting transients. A change
in the parameters or the initial conditions can also lead to a
decay direct to 1:1 resonance without an appearance of the
metastable 3:2 attractor. Other resonant states can also ap-
pear as metastable attractors. Figure 4 presents a case with a
9:4 resonance. Here the transients are very long, with pro-
nounced chaos. Figure 4�a� shows angle � at apapsis versus
time; its appearance is that of a bifurcation diagram. A large
period-four window appears in the middle of the chaotic re-
gime, and a more detailed investigation reveals further win-
dows. The metastable chaotic and period-four attractors are
shown in the insets. Figure 4�b� presents the periapsis
precession—the change 
� of the angle between apsidal
points—as a function of time. There is a sudden decrease of
this quantity in the periodic windows, but the arrival at the
asymptotic 1:1 attractor is marked by a sudden jump upward
followed by a slow decrease toward zero.

FIG. 3. Average angular velocity �̄̇ vs time for 	0=0.2, �=�
=10, l0=10−4 shows the crossover from 3:2 to 1:1 resonance. The
initial condition is ��0�=1.2, �̇�0�=1.0. The insets show the meta-
stable 3:2 and asymptotic 1:1 attractors on the Poincaré map �̇ ,�
taken at apapsis. Time is measured in units of T. The transition
shown occurs after the system has spent a long time, t�4�107, in
the 3:2 resonance, and is very abrupt, lasting 300 time units, or
about 50 periods. The average angular velocity on the first plateau
is somewhat larger than 1.5 because the semiaxis has decreased by
a few percent by this time.
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FIG. 4. Long chaotic transients before arrival at 1:1 resonance:
�a� Angle � taken at apapsis points vs time and energy E vs time
�dashed line� for 	0=0.4, �=20 and initial condition ��0�=0,
�̇�0�=3.5. The insets show the chaotic and periodic quasi-attractors
on a Poincaré map. �b� Periapsis precession 
� vs time. Note the
sudden changes in the periodic windows.
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The long-term dynamics always leads to the 1:1 reso-
nance and the energy approaches a constant value; cf. Fig.
2�c�. This implies that the full dissipative dynamics con-
verges to a conservative asymptotic state in which the sec-
ondary no longer vibrates but behaves as a rigid body orbit-
ing in a circular Keplerian orbit. In order to characterize the
approach to this state, we may follow the eccentricity as a
function of time. The decay is exponential, but the decay rate
varies dramatically with the parameters. The different decay
curves, however, follow the same long-term exponential
form when plotted as a function of a rescaled dimensionless
time t�. In the range ��10, the scaled time is t�= t�l0

2�−4.
Figure 5 shows the collapse of a large number of data onto a
master curve in this representation. The characteristic relax-
ation time  is thus found to scale for ��10 as 
	�4 / ��l0

2� in the original dimensionless time. The
asymptotic state of 	=0 is approached to a good approxima-
tion after some 2–3 . For �=1, l0=10−4, and �=10, for
example, the relaxation time is on the order of 1010. The
scaling relation in dimensional form reads

dim 	
1
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42D2

m2

a0
6

f2M2

a0
2

L0
2 =

1

�dim
�Torb

Tosc
�4� a0

L0
�2

,

where Tosc is the period of oscillation and Torb the orbital
period of the secondary. For a given material composition of
the secondary, �dim and the speed of the elastic waves c
	L0 /Tosc are constants, and the despinning time depends
strongly on the size of the secondary and its distance to the
primary, which is why large moons are locked to their plan-
ets but most planets are not locked to the Sun. This scaling
illustrates an interesting feature of the tidal problem: the re-
laxation time �dim

−1 of the isolated oscillator is increased by
several orders of magnitude owing to the broad separation of
length scales and frequencies. In order to be dissipated by the
damping, the energy must be transferred from the orbital and
rotational Hamiltonian degrees of freedom to the vibrational
one, and this transfer, mediated by the tidal forces, is rather
inefficient if the secondary is small. This inefficiency sug-
gests the interesting idea of modeling the secondary in an
increasingly complex way as an ensemble of masses linked
with conservative—perhaps nonlinear—springs. This might
allow for the spontaneous appearance of tidal dissipation as
the energy injected by the orbit into the secondary as internal
energy thermalizes faster than the time it takes to be fed back
into the orbit, and could allow for tidal synchronization and
circularization even when no damping at all is present in the
secondary if the number of internal degrees of freedom were
large enough.

We have introduced here a minimal model that displays
the physics of tidal synchronization and orbit circularization
without the complexity of an extended body. As the simplest
member of a family of models, extensions could eventually
include the addition of a nonzero obliquity of the spin axis of
the secondary; a more complex secondary; and quasiperiodic
or chaotic forcing, as in the three-body problem. We shall
develop these ideas in future work.
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