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This article and its companion paper to follow aim at reviewing recent empirical and theoretical develop-
ments usually grouped under the term Econophysics. Since its name was coined in 1995 by merging the
words “Economics” and “Physics”, this new interdisciplinary field has grown in various directions: theo-
retical macroeconomics (wealth distributions), microstructure of financial markets (order book modelling),
econometrics of financial bubbles and crashes, etc. We discuss interactions between Physics, Mathematics,
Economics and Finance that led to the emergence of Econophysics. Then we present empirical studies reveal-
ing statistical properties of financial time series. We begin the presentation with the widely acknowledged
“stylized facts” which describe the returns of financial assets – fat tails, volatility clustering, autocorrelation,
etc. – and recall that some of these properties are directly linked to the way “time” is taken into account.
We continue with the statistical properties observed on order books in financial markets. For the sake of
illustrating this review, (nearly) all the stated facts are reproduced using our own high-frequency financial
database. Finally, contributions to the study of correlations of assets such as random matrix theory and
graph theory are presented. The following companion paper will review models in Econophysics through
the point of view of agent-based modelling.
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I. INTRODUCTION

What is Econophysics? Fifteen years after the word
“Econophysics” was coined by H. E. Stanley by a merg-
ing of the words ‘Economics’ and ‘Physics’, at an interna-
tional conference on Statistical Physics held in Kolkata
in 1995, this is still a commonly asked question. Many
still wonder how theories aimed at explaining the physical
world in terms of particles could be applied to understand
complex structures, such as those found in the social and
economic behaviour of human beings. In fact, physics as
a natural science is supposed to be precise or specific; its
predictive powers based on the use of a few but universal
properties of matter which are sufficient to explain many
physical phenomena. But in social sciences, are there
analogous precise universal properties known for human
beings, who, on the contrary of fundamental particles,
are certainly not identical to each other in any respect ?
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And what little amount of information would be suffi-
cient to infer some of their complex behaviours ? There
exists a positive strive in answering these questions. In
the 1940’s, Majorana had taken scientific interest in fi-
nancial and economic systems. He wrote a pioneering
paper on the essential analogy between statistical laws in
physics and in social sciences (di Ettore Majorana (1942);
Mantegna (2005, 2006)). However, during the follow-
ing decades, only few physicists like Kadanoff (1971) or
Montroll and Badger (1974) had an explicit interest for
research in social or economic systems. It was not until
the 1990’s that physicists started turning to this interdis-
ciplinary subject, and in the past years, they have made
many successful attempts to approach problems in vari-
ous fields of social sciences (e.g. de Oliveira et al. (1999);
Stauffer et al. (2006); Chakrabarti et al. (2006)). In par-
ticular, in Quantitative Economics and Finance, physics
research has begun to be complementary to the most tra-
ditional approaches such as mathematical (stochastic) fi-
nance. These various investigations, based on methods
imported from or also used in physics, are the subject of
the present paper.
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A. Bridging Physics and Economics

Economics deals with how societies efficiently use their
resources to produce valuable commodities and distribute
them among different people or economic agents (Samuel-
son (1998); Keynes (1973)). It is a discipline related to
almost everything around us, starting from the market-
place through the environment to the fate of nations. At
first sight this may seem a very different situation from
that of physics, whose birth as a well defined scientific
theory is usually associated with the study of particular
mechanical objects moving with negligible friction, such
as falling bodies and planets. However, a deeper compar-
ison shows many more analogies than differences. On a
general level, both economics and physics deal with “ev-
erything around us”, despite with different perspectives.
On a practical level, the goals of both disciplines can be
either purely theoretical in nature or strongly oriented
toward the improvement of the quality of life. On a more
technical side, analogies often become equivalences. Let
us give here some examples.
Statistical mechanics has been defined as the

“branch of physics that combines the prin-
ciples and procedures of statistics with the
laws of both classical and quantum mechan-
ics, particularly with respect to the field of
thermodynamics. It aims to predict and ex-
plain the measurable properties of macro-
scopic systems on the basis of the properties
and behaviour of the microscopic constituents
of those systems.”1

The tools of statistical mechanics or statistical physics
(Reif (1985); Pathria (1996); Landau (1965)), that in-
clude extracting the average properties of a macroscopic
system from the microscopic dynamics of the systems, are
believed to prove useful for an economic system. Indeed,
even though it is difficult or almost impossible to write
down the “microscopic equations of motion” for an eco-
nomic system with all the interacting entities, economic
systems may be investigated at various size scales. There-
fore, the understanding of the global behaviour of eco-
nomic systems seems to need concepts such as stochas-
tic dynamics, correlation effects, self-organization, self-
similarity and scaling, and for their application we do
not have to go into the detailed “microscopic” descrip-
tion of the economic system.
Chaos theory has had some impact in Economics mod-

elling, e.g. in the work by Brock and Hommes (1998) or
Chiarella et al. (2006). The theory of disordered systems
has also played a core role in Econophysics and study of
“complex systems”. The term “complex systems” was
coined to cover the great variety of such systems which

1 In Encyclopædia Britannica. Retrieved June 11, 2010, from En-
cyclopædia Britannica Online.

include examples from physics, chemistry, biology and
also social sciences. The concepts and methods of sta-
tistical physics turned out to be extremely useful in ap-
plication to these diverse complex systems including eco-
nomic systems. Many complex systems in natural and
social environments share the characteristics of compe-
tition among interacting agents for resources and their
adaptation to dynamically changing environment (Parisi
(1999); Arthur (1999)). Hence, the concept of disordered
systems helps for instance to go beyond the concept of
representative agent, an approach prevailing in much of
(macro)economics and criticized by many economists (see
e.g. Kirman (1992); Gallegati and Kirman (1999)). Mi-
nority games and their physical formulations have been
exemplary.

Physics models have also helped bringing new theories
explaining older observations in Economics. The Italian
social economist Pareto investigated a century ago the
wealth of individuals in a stable economy (Pareto (1897))
by modelling them with the distribution P (> x) ∼ x−α,
where P (> x) is the number of people having income
greater than or equal to x and α is an exponent (known
now as the Pareto exponent) which he estimated to be
1.5. To explain such empirical findings, physicists have
come up with some very elegant and intriguing kinetic
exchange models in recent times, and we will review
these developments in the companion article. Though
the economic activities of the agents are driven by various
considerations like “utility maximization”, the eventual
exchanges of money in any trade can be simply viewed
as money/wealth conserving two-body scatterings, as in
the entropy maximization based kinetic theory of gases.
This qualitative analogy seems to be quite old and both
economists and natural scientists have already noted
it in various contexts (Saha et al. (1950)). Recently,
an equivalence between the two maximization principles
have been quantitatively established (Chakrabarti and
Chakrabarti (2010)).

Let us discuss another example of the similarities of in-
terests and tools in Physics and Economics. The friction-
less systems which mark the early history of physics were
soon recognized to be rare cases: not only at microscopic
scale – where they obviously represent an exception due
to the unavoidable interactions with the environment –
but also at the macroscopic scale, where fluctuations of
internal or external origin make a prediction of their
time evolution impossible. Thus equilibrium and non-
equilibrium statistical mechanics, the theory of stochas-
tic processes, and the theory of chaos, became main tools
for studying real systems as well as an important part of
the theoretical framework of modern physics. Very inter-
estingly, the same mathematical tools have presided at
the growth of classic modelling in Economics and more
particularly in modern Finance. Following the works of
Mandelbrot, Fama of the 1960s, physicists from 1990 on-
wards have studied the fluctuation of prices and univer-
salities in context of scaling theories, etc. These links
open the way for the use of a physics approach in Fi-
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nance, complementary to the widespread mathematical
one.

B. Econophysics and Finance

Mathematical finance has benefited a lot in the past
thirty years from modern probability theory – Brownian
motion, martingale theory, etc. Financial mathemati-
cians are often proud to recall the most well-known source
of the interactions between Mathematics and Finance:
five years before Einstein’s seminal work, the theory of
the Brownian motion was first formulated by the French
mathematician Bachelier in his doctoral thesis (Bachelier
(1900); Boness (1967); Haberman and Sibbett (1995)), in
which he used this model to describe price fluctuations
at the Paris Bourse. Bachelier had even given a course
as a “free professor” at the Sorbonne University with the
title: “Probability calculus with applications to finan-
cial operations and analogies with certain questions from
physics” (see the historical articles in Courtault et al.

(2000); Taqqu (2001); Forfar (2002)).
Then Itō, following the works of Bachelier, Wiener,

and Kolmogorov among many, formulated the presently
known Itō calculus (Itō and McKean (1996)). The ge-
ometric Brownian motion, belonging to the class of Itō
processes, later became an important ingredient of mod-
els in Economics (Osborne (1959); Samuelson (1965)),
and in the well-known theory of option pricing (Black
and Scholes (1973); Merton (1973)). In fact, stochas-
tic calculus of diffusion processes combined with classi-
cal hypotheses in Economics led to the development of
the arbitrage pricing theory (Duffie (1996), Follmer and
Schied (2004)). The deregulation of financial markets
at the end of the 1980’s led to the exponential growth
of the financial industry. Mathematical finance followed
the trend: stochastic finance with diffusion processes and
exponential growth of financial derivatives have had in-
tertwined developments. Finally, this relationship was
carved in stone when the Nobel prize was given to M.S.
Scholes and R.C. Merton in 1997 (F. Black died in 1995)
for their contribution to the theory of option pricing and
their celebrated “Black-Scholes” formula.
However, this whole theory is closely linked to clas-

sical economics hypotheses and has not been grounded
enough with empirical studies of financial time series.
The Black-Scholes hypothesis of Gaussian log-returns of
prices is in strong disagreement with empirical evidence.
Mandelbrot (1960, 1963) was one of the firsts to observe
a clear departure from Gaussian behaviour for these fluc-
tuations. It is true that within the framework of stochas-
tic finance and martingale modelling, more complex pro-
cesses have been considered in order to take into ac-
count some empirical observations: jump processes (see
e.g. Cont and Tankov (2004) for a textbook treatment)
and stochastic volatility (e.g. Heston (1993); Gatheral
(2006)) in particular. But recent events on financial
markets and the succession of financial crashes (see e.g.

Kindleberger and Aliber (2005) for a historical perspec-
tive) should lead scientists to re-think basic concepts of
modelling. This is where Econophysics is expected to
come to play. During the past decades, the financial
landscape has been dramatically changing: deregulation
of markets, growing complexity of products. On a tech-
nical point of view, the ever rising speed and decreasing
costs of computational power and networks have lead to
the emergence of huge databases that record all trans-
actions and order book movements up to the millisec-
ond. The availability of these data should lead to mod-
els that are better empirically founded. Statistical facts
and empirical models will be reviewed in this article and
its companion paper. The recent turmoil on financial
markets and the 2008 crash seem to plead for new mod-
els and approaches. The Econophysics community thus
has an important role to play in future financial market
modelling, as suggested by contributions from Bouchaud
(2008), Lux and Westerhoff (2009) or Farmer and Foley
(2009).

C. A growing interdisciplinary field

The chronological development of Econophysics has
been well covered in the book of Roehner (2002). Here
it is worth mentioning a few landmarks. The first ar-
ticle on analysis of finance data which appeared in a
physics journal was that of Mantegna (1991). The first
conference in Econophysics was held in Budapest in 1997
and has been since followed by numerous schools, work-
shops and the regular series of meetings: APFA (Appli-
cation of Physics to Financial Analysis), WEHIA (Work-
shop on Economic Heterogeneous Interacting Agents),
and Econophys-Kolkata, amongst others. In the recent
years the number of papers has increased dramatically;
the community has grown rapidly and several new direc-
tions of research have opened. By now renowned physics
journals like the Reviews of Modern Physics, Physical
Review Letters, Physical Review E, Physica A, Euro-
physics Letters, European Physical Journal B, Interna-
tional Journal of Modern Physics C, etc. publish papers
in this interdisciplinary area. Economics and mathemat-
ical finance journals, especially Quantitative Finance, re-
ceive contributions from many physicists. The interested
reader can also follow the developments quite well from
the preprint server (www.arxiv.org). In fact, recently a
new section called quantitative finance has been added
to it. One could also visit the web sites of the Econo-
physics Forum (www.unifr.ch/econophysics) and Econo-

physics.Org (www.econophysics.org). Previous texts ad-
dressing Econophysics issues, such as Bouchaud and
Potters (2000); Mantegna and Stanley (2007); Gabaix
(2009), may be complementary to the present review.
The first textbook in Econophysics (Sinha et al. (2010))
is also in press.
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D. Organization of the review

This article aims at reviewing recent empirical and the-
oretical developments that use tools from Physics in the
fields of Economics and Finance. In section II of this
paper, empirical studies revealing statistical properties
of financial time series are reviewed. We present the
widely acknowledged “stylized facts” describing the dis-
tribution of the returns of financial assets. In section III
we continue with the statistical properties observed on
order books in financial markets. We reproduce most of
the stated facts using our own high-frequency financial
database. In the last part of this article (section IV),
we review contributions on correlation on financial mar-
kets, among which the computation of correlations using
high-frequency data, analyses based on random matrix
theory and the use of correlations to build economics
taxonomies. In the companion paper to follow, Econo-
physics models are reviewed through the point of view
of agent-based modelling. Using previous work origi-
nally presented in the fields of behavioural finance and
market microstructure theory, econophysicists have de-
veloped agent-based models of order-driven markets that
are extensively reviewed there. We then turn to models of
wealth distribution where an agent-based approach also
prevails. As mentioned above, Econophysics models help
bringing a new look on some Economics observations, and
advances based on kinetic theory models are presented.
Finally, a detailed review of game theory models and the
now classic minority games composes the final part.

II. STATISTICS OF FINANCIAL TIME SERIES: PRICE,

RETURNS, VOLUMES, VOLATILITY

Recording a sequence of prices of commodities or as-
sets produce what is called time series. Analysis of fi-
nancial time series has been of great interest not only
to the practitioners (an empirical discipline) but also to
the theoreticians for making inferences and predictions.
The inherent uncertainty in the financial time series and
its theory makes it specially interesting to economists,
statisticians and physicists (Tsay (2005)).
Different kinds of financial time series have been

recorded and studied for decades, but the scale changed
twenty years ago. The computerization of stock ex-
changes that took place all over the world in the mid
1980’s and early 1990’s has lead to the explosion of the
amount of data recorded. Nowadays, all transactions on
a financial market are recorded tick-by-tick, i.e. every
event on a stock is recorded with a timestamp defined up
to the millisecond, leading to huge amounts of data. For
example, as of today (2010), the Reuters Datascope Tick
History (RDTH) database records roughly 25 gigabytes
of data every trading day.
Prior to this improvement in recording market activ-

ity, statistics could be computed with daily data at best.
Now scientists can compute intraday statistics in high-

frequency. This allows to check known properties at new
time scales (see e.g. section II B below), but also implies
special care in the treatment (see e.g. the computation
of correlation on high-frequency in section IVA below).
It is a formidable task to make an exhaustive review

on this topic but we try to give a flavour of some of the
aspects in this section.

A. “Stylized facts” of financial time series

The concept of “stylized facts” was introduced in
macroeconomics around 1960 by Kaldor (1961), who ad-
vocated that a scientist studying a phenomenon “should
be free to start off with a stylized view of the facts”. In
his work, Kaldor isolated several statistical facts char-
acterizing macroeconomic growth over long periods and
in several countries, and took these robust patterns as a
starting point for theoretical modelling.
This expression has thus been adopted to describe em-

pirical facts that arose in statistical studies of financial
time series and that seem to be persistent across various
time periods, places, markets, assets, etc. One can find
many different lists of these facts in several reviews (e.g.
Bollerslev et al. (1994); Pagan (1996); Guillaume et al.
(1997); Cont (2001)). We choose in this article to present
a minimum set of facts now widely acknowledged, at least
for the prices of equities.

1. Fat-tailed empirical distribution of returns

Let pt be the price of a financial asset at time t. We
define its return over a period of time τ to be:

rτ (t) =
p(t+ τ) − p(t)

p(t)
≈ log(p(t+ τ))− log(p(t)) (1)

It has been largely observed – starting with Mandelbrot
(1963), see e.g. Gopikrishnan et al. (1999) for tests on
more recent data – and it is the first stylized fact, that
the empirical distributions of financial returns and log-
returns are fat-tailed. On figure 1 we reproduce the em-
pirical density function of normalized log-returns from
Gopikrishnan et al. (1999) computed on the S&P500 in-
dex. In addition, we plot similar distributions for unnor-
malized returns on a liquid French stock (BNP Paribas)
with τ = 5 minutes. This graph is computed by sampling
a set of tick-by-tick data from 9:05am till 5:20pm between
January 1st, 2007 and May 30th, 2008, i.e. 356 days of
trading. Except where mentioned otherwise in captions,
this data set will be used for all empirical graphs in this
section. On figure 2, cumulative distribution in log-log
scale from Gopikrishnan et al. (1999) is reproduced. We
also show the same distribution in linear-log scale com-
puted on our data for a larger time scale τ = 1 day,
showing similar behaviour.
Many studies obtain similar observations on different

sets of data. For example, using two years of data on
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FIG. 1. (Top) Empirical probability density function of the
normalized 1-minute S&P500 returns between 1984 and 1996.
Reproduced from Gopikrishnan et al. (1999). (Bottom) Em-
pirical probability density function of BNP Paribas unnor-
malized log-returns over a period of time τ = 5 minutes.

more than a thousand US stocks, Gopikrishnan et al.
(1998) finds that the cumulative distribution of returns

asymptotically follow a power law F (rτ ) ∼ |r|−α
with

α > 2 (α ≈ 2.8 − 3). With α > 2, the second mo-
ment (the variance) is well-defined, excluding stable laws
with infinite variance. There has been various sugges-
tions for the form of the distribution: Student’s-t, hyper-
bolic, normal inverse Gaussian, exponentially truncated
stable, and others, but no general consensus exists on the
exact form of the tails. Although being the most widely
acknowledged and the most elementary one, this stylized
fact is not easily met by all financial modelling. Gabaix
et al. (2006) or Wyart and Bouchaud (2007) recall that
efficient market theory have difficulties in explaining fat
tails. Lux and Sornette (2002) have shown that mod-
els known as “rational expectation bubbles”, popular in
economics, produced very fat-tailed distributions (α < 1)
that were in disagreement with the statistical evidence.
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FIG. 2. Empirical cumulative distributions of S&P 500 daily
returns. (Top) Reproduced from Gopikrishnan et al. (1999),
in log-log scale. (Bottom) Computed using official daily close
price between January 1st, 1950 and June 15th, 2009, i.e.
14956 values, in linear-log scale.

2. Absence of autocorrelations of returns

On figure 3, we plot the autocorrelation of log-returns
defined as ρ(T ) ∼ 〈rτ (t + T )rτ (t)〉 with τ =1 minute
and 5 minutes. We observe here, as it is widely known
(see e.g. Pagan (1996); Cont et al. (1997)), that there
is no evidence of correlation between successive returns,
which is the second “stylized-fact”. The autocorrelation
function decays very rapidly to zero, even for a few lags
of 1 minute.

3. Volatility clustering

The third “stylized-fact” that we present here is of pri-
mary importance. Absence of correlation between re-
turns must no be mistaken for a property of indepen-
dence and identical distribution: price fluctuations are
not identically distributed and the properties of the dis-
tribution change with time.
In particular, absolute returns or squared returns ex-

hibit a long-range slowly decaying auto correlation func-
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FIG. 3. Autocorrelation function of BNPP.PA returns.
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FIG. 4. Autocorrelation function of BNPP.PA absolute re-
turns.

tion. This phenomena is widely known as “volatility
clustering”, and was formulated by Mandelbrot (1963)
as “large changes tend to be followed by large changes –
of either sign – and small changes tend to be followed by
small changes”.

On figure 4, the autocorrelation function of absolute
returns is plotted for τ = 1 minute and 5 minutes. The
levels of autocorrelations at the first lags vary wildly with
the parameter τ . On our data, it is found to be maxi-
mum (more than 70% at the first lag) for a returns sam-
pled every five minutes. However, whatever the sampling
frequency, autocorrelation is still above 10% after several
hours of trading. On this data, we can grossly fit a power
law decay with exponent 0.4. Other empirical tests re-
port exponents between 0.1 and 0.3 (Cont et al. (1997);
Liu et al. (1997); Cizeau et al. (1997)).
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FIG. 5. Distribution of log-returns of S&P 500 daily, weekly
and monthly returns. Same data set as figure 2 bottom.

4. Aggregational normality

It has been observed that as one increases the time
scale over which the returns are calculated, the fat-tail
property becomes less pronounced, and their distribu-
tion approaches the Gaussian form, which is the fourth
“stylized-fact”. This cross-over phenomenon is docu-
mented in Kullmann et al. (1999) where the evolution
of the Pareto exponent of the distribution with the time
scale is studied. On figure 5, we plot these standardized
distributions for S&P 500 index between January 1st,
1950 and June 15th, 2009. It is clear that the larger the
time scale increases, the more Gaussian the distribution
is. The fact that the shape of the distribution changes
with τ makes it clear that the random process underlying
prices must have non-trivial temporal structure.

B. Getting the right “time”

1. Four ways to measure “time”

In the previous section, all “stylized facts” have been
presented in physical time, or calendar time, i.e. time
series were indexed, as we expect them to be, in hours,
minutes, seconds, milliseconds. Let us recall here that
tick-by-tick data available on financial markets all over
the world is time-stamped up to the millisecond, but the
order of magnitude of the guaranteed precision is much
larger, usually one second or a few hundreds of millisec-
onds.
Calendar time is the time usually used to compute sta-

tistical properties of financial time series. This means
that computing these statistics involves sampling, which
might be a delicate thing to do when dealing for example
with several stocks with different liquidity. Therefore,
three other ways to keep track of time may be used.
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Let us first introduce event time. Using this count,
time is increased by one unit each time one order is sub-
mitted to the observed market. This framework is nat-
ural when dealing with the simulation of financial mar-
kets, as it will be showed in the companion paper. The
main outcome of event time is its “smoothing” of data.
In event time, intraday seasonality (lunch break) or out-
burst of activity consequent to some news are smoothed
in the time series, since we always have one event per
time unit.
Now, when dealing with time series of prices, another

count of time might be relevant, and we call it trade time

or transaction time. Using this count, time is increased
by one unit each time a transaction happens. The advan-
tage of this count is that limit orders submitted far away
in the order book, and may thus be of lesser importance
with respect to the price series, do not increase the clock
by one unit.
Finally, going on with focusing on important events to

increase the clock, we can use tick time. Using this count,
time is increased by one unit each time the price changes.
Thus consecutive market orders that progressively “eat”
liquidity until the first best limit is removed in an order
book are counted as one unit time.
Let us finish by noting that with these definitions,

when dealing with mid prices, or bid and ask prices, a
time series in event time can easily be extracted from a
time series in calendar time. Furthermore, one can al-
ways extract a time series in trade time or in price time
from a time series in event time. However, one cannot
extract a series in price time from a series in trade time,
as the latter ignores limit orders that are submitted in-
side the spread, and thus change mid, bid or ask prices
without any transaction taking place.

2. Revisiting “stylized facts” with a new clock

Now, using the right clock might be of primary impor-
tance when dealing with statistical properties and esti-
mators. For example, Griffin and Oomen (2008) investi-
gates the standard realized variance estimator (see sec-
tion IVA) in trade time and tick time. Muni Toke (2010)
also recalls that the differences observed on a spread dis-
tribution in trade time and physical time are meaning-
ful. In this section we compute some statistics comple-
mentary to the ones we have presented in the previous
section IIA and show the role of the clock in the studied
properties.
a. Aggregational normality in trade time We have

seen above that when the sampling size increases, the dis-
tribution of the log-returns tends to be more Gaussian.
This property is much better seen using trade time. On
figure 6, we plot the distributions of the log-returns for
BNP Paribas stock using 2-month-long data in calendar
time and trade time. Over this period, the average num-
ber of trade per day is 8562, so that 17 trades (resp. 1049
trades) corresponds to an average calendar time step of
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1 minute (resp. 1 hour). We observe that the distribu-
tion of returns sampled every 1049 trades is much more
Gaussian than the one sampled every 17 trades (aggre-
gational normality), and that it is also more Gaussian
that the one sampled every 1 hour (quicker convergence
in trade time).
Note that this property appears to be valid in a mul-

tidimensional setting, see Huth and Abergel (2009).
b. Autocorrelation of trade signs in tick time It is

well-known that the series of the signs of the trades on
a given stock (usual convention: +1 for a transaction at
the ask price, −1 for a transaction at the bid price) ex-
hibit large autocorrelation. It has been observed in Lillo
and Farmer (2004) for example that the autocorrelation
function of the signs of trades (ǫn) was a slowly decaying
function in n−α, with α ≈ 0.5. We compute this statistics
for the trades on BNP Paribas stock from 2007, January
1st until 2008, May 31st. We plot the result in figure 7.
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We find that the first values for short lags are about 0.3,
and that the log-log plot clearly shows some power-law
decay with roughly α ≈ 0.7.
A very plausible explanation of this phenomenon re-

lies on the execution strategies of some major brokers on
a given markets. These brokers have large transaction
to execute on the account of some clients. In order to
avoid market making move because of an inconsiderably
large order (see below section III F on market impact),
they tend to split large orders into small ones. We think
that these strategies explain, at least partly, the large
autocorrelation observed. Using data on markets where
orders are publicly identified and linked to a given bro-
ker, it can be shown that the autocorrelation function
of the order signs of a given broker, is even higher. See
Bouchaud et al. (2009) for a review of these facts and
some associated theories.
We present here another evidence supporting this ex-

planation. We compute the autocorrelation function of
order signs in tick time, i.e. taking only into account
transactions that make the price change. Results are
plotted on figure 7. We find that the first values for short
lags are about 0.10, which is much smaller than the val-
ues observed with the previous time series. This supports
the idea that many small transactions progressively “eat”
the available liquidity at the best quotes. Note however
that even in tick time, the correlation remains positive
for large lags also.

3. Correlation between volume and volatility

Investigating time series of cotton prices, Clark (1973)
noted that “trading volume and price change variance
seem to have a curvilinear relationship”. Trade time al-
lows us to have a better view on this property: Plerou
et al. (2000) and Silva and Yakovenko (2007) among oth-
ers, show that the variance of log-returns after N trades,
i.e. over a time period of N in trade time, is proprtional
to N . We confirm this observation by plotting the second
moment of the distribution of log-returns after N trades
as a function of N for our data, as well as the average
number of trades and the average volatility on a given
time interval. The results are shown on figure 8 and 9.
This results are to be put in relation to the one pre-

sented in Gopikrishnan et al. (2000b), where the sta-
tistical properties of the number of shares traded Q∆t

for a given stock in a fixed time interval ∆t is stud-
ied. They analyzed transaction data for the largest 1000
stocks for the two-year period 1994-95, using a database
that recorded every transaction for all securities in three
major US stock markets. They found that the distri-
bution P (Q∆t) displayed a power-law decay as shown
in Fig. 10, and that the time correlations in Q∆t dis-
played long-range persistence. Further, they investigated
the relation between Q∆t and the number of transactions
N∆t in a time interval ∆t, and found that the long-range
correlations in Q∆t were largely due to those of N∆t.
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Their results are consistent with the interpretation that
the large equal-time correlation previously found between
Q∆t and the absolute value of price change |G∆t| (related
to volatility) were largely due to N∆t.
Therefore, studying variance of price changer in trade

time suggests that the number of trade is a good proxy
for the unobserved volatility.

4. A link with stochastic processes: subordination

These empirical facts (aggregational normality in trade
time, relationship between volume and volatility) rein-
force the interest for models based on the subordination
of stochastic processes, which had been introduced in fi-
nancial modeling by Clark (1973).
Let us introduce it here. Assuming the proportionality

between the variance 〈x〉2τ of the centred returns x and



9

10
−1

10
0

10
1

10
2

10
3

10
4

Normalized Q∆t

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y 

de
ns

ity
  P

(Q
∆t

 )

 I
 II
 III
 IV
 V
 VI

1+λ = 2.7

(c) 1000 stocks
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the number of trades Nτ over a time period τ , we can
write:

〈x〉2τ = αNτ . (2)

Therefore, assuming the normality in trade time, we can
write the density function of log-returns after N trades
as

fN (x) =
e

−x2

2αN√
2παN

, (3)

Finally, denoting Kτ (N) the probability density function
of having N trades in a time period τ , the distribution
of log returns in calendar time can be written

Pτ (x) =

∫ ∞

0

e
−x2

2αN√
2παN

Kτ (N)dN. (4)

This is the subordination of the Gaussian process xN

using the number of trades Nτ as the directing process,
i.e. as the new clock. With this kind of modelization,
it is expected, since PN is gaussian, the observed non-
gaussian behavior will come from Kτ (N). For example,
some specific choice of directing processes may lead to a
symmetric stable distribution (see Feller (1968)). Clark
(1973) tests empirically a log-normal subordination with
time series of prices of cotton. In a similar way, Silva and
Yakovenko (2007) find that an exponential subordination
with a kernel:

Kτ (N) =
1

ητ
e−

N
ητ . (5)

is in good agreement with empirical data. If the orders
were submitted to the market in a independent way and

at a constant rate η, then the distribution of the number
of trade per time period τ should be a Poisson process
with intensity ητ . Therefore, the empirical fit of equa-
tion (5) is inconsistent with such a simplistic hypothesis
of distribution of time of arrivals of orders. We will sug-
gest in the next section some possible distributions that
fit our empirical data.

III. STATISTICS OF ORDER BOOKS

The computerization of financial markets in the sec-
ond half of the 1980’s provided the empirical scientists
with easier access to extensive data on order books. Bi-
ais et al. (1995) is an early study of the new data flows
on the newly (at that time) computerized Paris Bourse.
Variables crucial to a fine modeling of order flows and
dynamics of order books are studied: time of arrival of
orders, placement of orders, size of orders, shape of order
book, etc. Many subsequent papers offer complemen-
tary empirical findings and modeling, e.g. Gopikrishnan
et al. (2000a), Challet and Stinchcombe (2001), Maslov
and Mills (2001), Bouchaud et al. (2002), Potters and
Bouchaud (2003). Before going further in our review of
available models, we try to summarize some of these em-
pirical facts.
For each of the enumerated properties, we present new

empirical plots. We use Reuters tick-by-tick data on the
Paris Bourse. We select four stocks: France Telecom
(FTE.PA) , BNP Paribas (BNPP.PA), Societe Générale
(SOGN.PA) and Renault (RENA.PA). For any given
stocks, the data displays time-stamps, traded quantities,
traded prices, the first five best-bid limits and the first
five best-ask limits. From now on, we will denote ai(t)
(resp. (bj(t)) the price of the i-th limit at ask (resp. j-
th limit at bid). Except when mentioned otherwise, all
statistics are computed using all trading days from Oct,
1st 2007 to May, 30th 2008, i.e. 168 trading days. On a
given day, orders submitted between 9:05am and 5:20pm
are taken into account, i.e. first and last minutes of each
trading days are removed.
Note that we do not deal in this section with the cor-

relations of the signs of trades, since statistical results on
this fact have already been treated in section II B 2. Note
also that although most of these facts are widely acknowl-
edged, we will not describe them as new “stylized facts
for order books” since their ranges of validity are still
to be checked among various products/stocks, markets
and epochs, and strong properties need to be properly
extracted and formalized from these observations. How-
ever, we will keep them in mind as we go through the
new trend of “empirical modeling” of order books.
Finally, let us recall that the markets we are dealing

with are electronic order books with no official market
maker, in which orders are submitted in a double auc-
tion and executions follow price/time priority. This type
of exchange is now adopted nearly all over the world, but
this was not obvious as long as computerization was not
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FIG. 11. Distribution of interarrival times for stock BNPP.PA
in log-scale.

complete. Different market mechanisms have been widely
studied in the microstructure literature, see e.g. Garman
(1976); Kyle (1985); Glosten (1994); O’Hara (1997); Bi-
ais et al. (1997); Hasbrouck (2007). We will not review
this literature here (except Garman (1976) in our com-
panion paper), as this would be too large a digression.
However, such a literature is linked in many aspects to
the problems reviewed in this paper.

A. Time of arrivals of orders

As explained in the previous section, the choice of the
time count might be of prime importance when dealing
with “stylized facts” of empirical financial time series.
When reviewing the subordination of stochastic processes
(Clark (1973); Silva and Yakovenko (2007)), we have seen
that the Poisson hypothesis for the arrival times of orders
is not empirically verified.
We compute the empirical distribution for interarrival

times – or durations – of market orders on the stock BNP
Paribas using our data set described in the previous sec-
tion. The results are plotted in figures 11 and 12, both in
linear and log scale. It is clearly observed that the expo-
nential fit is not a good one. We check however that the
Weibull distribution fit is potentially a very good one.
Weibull distributions have been suggested for example in
Ivanov et al. (2004). Politi and Scalas (2008) also obtain
good fits with q-exponential distributions.
In the Econometrics literature, these observations of

non-Poissonian arrival times have given rise to a large
trend of modelling of irregular financial data. Engle and
Russell (1997) and Engle (2000) have introduced autore-
gressive condition duration or intensity models that may
help modelling these processes of orders’ submission. See
Hautsch (2004) for a textbook treatment.
Using the same data, we compute the empirical dis-
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tribution of the number of transactions in a given time
period τ . Results are plotted in figure 13. It seems that
the log-normal and the gamma distributions are both
good candidates, however none of them really describes
the empirical result, suggesting a complex structure of
arrival of orders. A similar result on Russian stocks was
presented in Dremin and Leonidov (2005).

B. Volume of orders

Empirical studies show that the unconditional dis-
tribution of order size is very complex to character-
ize. Gopikrishnan et al. (2000a) and Maslov and Mills
(2001) observe a power law decay with an exponent
1 + µ ≈ 2.3− 2.7 for market orders and 1 + µ ≈ 2.0 for
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limit orders. Challet and Stinchcombe (2001) empha-
size on a clustering property: orders tend to have a
“round” size in packages of shares, and clusters are ob-
served around 100’s and 1000’s. As of today, no consen-
sus emerges in proposed models, and it is plausible that
such a distribution varies very wildly with products and
markets.
In figure 14, we plot the distribution of volume of mar-

ket orders for the four stocks composing our benchmark.
Quantities are normalized by their mean. Power-law co-
efficient is estimated by a Hill estimator (see e.g. Hill
(1975); de Haan et al. (2000)). We find a power law with
exponent 1 + µ ≈ 2.7 which confirms studies previously
cited. Figure 15 displays the same distribution for limit
orders (of all available limits). We find an average value
of 1 + µ ≈ 2.1, consistent with previous studies. How-
ever, we note that the power law is a poorer fit in the
case of limit orders: data normalized by their mean col-
lapse badly on a single curve, and computed coefficients
vary with stocks.
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FIG. 14. Distribution of volumes of market orders. Quantities
are normalized by their mean.

C. Placement of orders

a. Placement of arriving limit orders Bouchaud
et al. (2002) observe a broad power-law placement around
the best quotes on French stocks, confirmed in Potters
and Bouchaud (2003) on US stocks. Observed exponents
are quite stable across stocks, but exchange dependent:
1 + µ ≈ 1.6 on the Paris Bourse, 1 + µ ≈ 2.0 on the New
York Stock Exchange, 1 + µ ≈ 2.5 on the London Stock
Exchange. Mike and Farmer (2008) propose to fit the
empirical distribution with a Student distribution with
1.3 degree of freedom.
We plot the distribution of the following quantity

computed on our data set, i.e. using only the first
five limits of the order book: ∆p = b0(t−)− b(t) (resp.
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FIG. 15. Distribution of normalized volumes of limit orders.
Quantities are normalized by their mean.

a(t)− a0(t−)) if an bid (resp. ask) order arrives at price
b(t) (resp. a(t)), where b0(t−) (resp.a0(t−)) is the best
bid (resp. ask) before the arrival of this order. Results
are plotted on figures 16 (in semilog scale) and 17 (in
linear scale). These graphs being computed with in-
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FIG. 16. Placement of limit orders using the same best quote
reference in semilog scale. Data used for this computation
is BNP Paribas order book from September 1st, 2007, until
May 31st, 2008.

complete data (five best limits), we do not observe a
placement as broad as in Bouchaud et al. (2002). How-
ever, our data makes it clear that fat tails are observed.
We also observe an asymmetry in the empirical distribu-
tion: the left side is less broad than the right side. Since
the left side represent limit orders submitted inside the
spread, this is expected. Thus, the empirical distribution
of the placement of arriving limit orders is maximum at
zero (same best quote). We then ask the question: How
is it translated in terms of shape of the order book ?
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b. Average shape of the order book Contrary to what
one might expect, it seems that the maximum of the av-
erage offered volume in an order book is located away
from the best quotes (see e.g. Bouchaud et al. (2002)).
Our data confirms this observation: the average quantity
offered on the five best quotes grows with the level. This
result is presented in figure 18. We also compute the av-
erage price of these levels in order to plot a cross-sectional
graph similar to the ones presented in Biais et al. (1995).
Our result is presented for stock BNP.PA in figure 19 and
displays the expected shape. Results for other stocks are
similar. We find that the average gap between two levels
is constant among the five best bids and asks (less than
one tick for FTE.PA, 1.5 tick for BNPP.PA, 2.0 ticks for
SOGN.PA, 2.5 ticks for RENA.PA). We also find that
the average spread is roughly twice as large the aver-
age gap (factor 1.5 for FTE.PA, 2 for BNPP.PA, 2.2 for
SOGN.PA, 2.4 for RENA.PA).

D. Cancelation of orders

Challet and Stinchcombe (2001) show that the distri-
bution of the average lifetime of limit orders fits a power
law with exponent 1 + µ ≈ 2.1 for cancelled limit orders,
and 1 + µ ≈ 1.5 for executed limit orders. Mike and
Farmer (2008) find that in either case the exponential
hypothesis (Poisson process) is not satisfied on the mar-
ket.
We compute the average lifetime of cancelled and exe-

cuted orders on our dataset. Since our data does not in-
clude a unique identifier of a given order, we reconstruct
life time orders as follows: each time a cancellation is
detected, we go back through the history of limit order
submission and look for a matching order with same price
and same quantity. If an order is not matched, we discard
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the cancellation from our lifetime data. Results are pre-
sented in figure 20 and 21. We observe a power law decay
with coefficients 1 + µ ≈ 1.3− 1.6 for both cancelled and
executed limit orders, with little variations among stocks.
These results are a bit different than the ones presented
in previous studies: similar for executed limit orders, but
our data exhibits a lower decay as for cancelled orders.
Note that the observed cut-off in the distribution for life-
times above 20000 seconds is due to the fact that we do
not take into account execution or cancellation of orders
submitted on a previous day.

E. Intraday seasonality

Activity on financial markets is of course not constant
throughout the day. Figure 22 (resp. 23) plots the (nor-
malized) number of market (resp. limit) orders arriving
in a 5-minute interval. It is clear that a U-shape is ob-



13

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1  20  400  8000

P
ro

b
a

b
il

it
y 

fu
n

ct
io

n
s

Lifetime for cancelled limit orders

Power law ∝ x-1.4

BNPP.PA
FTE.PA

RENA.PA
SOGN.PA

FIG. 20. Distribution of estimated lifetime of cancelled limit
orders.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1  20  400  8000

P
ro

b
a

b
il

it
y 

fu
n

ct
io

n
s

Lifetime for executed limit orders

Power law ∝ x-1.5

BNPP.PA
FTE.PA

RENA.PA
SOGN.PA

FIG. 21. Distribution of estimated lifetime of executed limit
orders.

served (an ordinary least-square quadratic fit is plotted):
the observed market activity is larger at the beginning
and the end of the day, and more quiet around mid-day.
Such a U-shaped curve is well-known, see Biais et al.

(1995), for example. On our data, we observe that the
number of orders on a 5-minute interval can vary with a
factor 10 throughout the day.

Challet and Stinchcombe (2001) note that the average
number of orders submitted to the market in a period
∆T vary wildly during the day. The authors also observe
that these quantities for market orders and limit orders
are highly correlated. Such a type of intraday variation
of the global market activity is a well-known fact, already
observed in Biais et al. (1995), for example.
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F. Market impact

The statistics we have presented may help to under-
stand a phenomenon of primary importance for any fi-
nancial market practitioner: the market impact, i.e. the
relationship between the volume traded and the expected
price shift once the order has been executed. On a first
approximation, one understands that it is closely linked
with many items described above: the volume of mar-
ket orders submitted, the shape of the order book (how
much pending limit orders are hit by one large market
orders), the correlation of trade signs (one may assume
that large orders are splitted in order to avoid a large
market impact), etc.
Many empirical studies are available. An empirical

study on the price impact of individual transactions on
1000 stocks on the NYSE is conducted in Lillo et al.
(2003). It is found that proper rescaling make all the
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curve collapse onto a single concave master curve. This
function increases as a power that is the order of 1/2 for
small volumes, but then increases more slowly for large
volumes. They obtain similar results in each year for the
period 1995 to 1998.
We will not review any further the large literature of

market impact, but rather refer the reader to the recent
exhaustive synthesis proposed in Bouchaud et al. (2009),
where different types of impacts, as well as some theoret-
ical models are discussed.

IV. CORRELATIONS OF ASSETS

The word “correlation” is defined as “a relation exist-
ing between phenomena or things or between mathemat-
ical or statistical variables which tend to vary, be associ-
ated, or occur together in a way not expected on the basis
of chance alone”2. When we talk about correlations in
stock prices, what we are really interested in are relations
between variables such as stock prices, order signs, trans-
action volumes, etc. and more importantly how these
relations affect the nature of the statistical distributions
and laws which govern the price time series. This sec-
tion deals with several topics concerning linear correla-
tion observed in financial data. The first part deals with
the important issue of computing correlations in high-
frequency. As mentioned earlier, the computerization of
financial exchanges has lead to the availability of huge
amount of tick-by-tick data, and computing correlation
using these intraday data raises lots of issues concern-
ing usual estimators. The second and third parts deals
with the use of correlation in order to cluster assets with
potential applications in risk management problems.

A. Estimating covariance on high-frequency data

Let us assume that we observe d time series of
prices or log-prices pi, i = 1, . . . , d, observed at times
tm,m = 0, . . . ,M . The usual estimator of the covari-
ance of prices i and j is the realized covariance estimator,
which is computed as:

Σ̂RV
ij (t) =

M
∑

m=1

(pi(tm)− pi(tm−1))(pj(tm)− pj(tm−1)).

(6)
The problem is that high-frequency tick-by-tick data

record changes of prices when they happen, i.e. at ran-
dom times. Tick-by-tick data is thus asynchronous, con-
trary to daily close prices for example, that are recorded
at the same time for all the assets on a given exchange.
Using standard estimators without caution, could be one

2 In Merriam-Webster Online Dictionary. Retrieved June 14, 2010,
from http://www.merriam-webster.com/dictionary/correlations

cause for the “Epps effect”, first observed in Epps (1979),
which stated that “[c]orrelations among price changes in
common stocks of companies in one industry are found
to decrease with the length of the interval for which
the price changes are measured.” This has largely been
verified since, e.g. in Bonanno et al. (2001) or Reno
(2003). Hayashi and Yoshida (2005) shows that non-
synchronicity of tick-by-tick data and necessary sampling
of time series in order to compute the usual realized co-
variance estimator partially explain this phenomenon.
We very briefly review here two covariance estimators
that do not need any synchronicity (hence, sampling) in
order to be computed.

1. The Fourier estimator

The Fourier estimator has been introduced by Malli-
avin and Mancino (2002). Let us assume that we have d
time series of log-prices that are observations of Brownian
semi-martingales pi:

dpi =
K
∑

j=1

σijdWj + µidt, i = 1, . . . , d. (7)

The coefficient of the covariance matrix are then writ-
ten Σij(t) =

∑K

k=1 σik(t)σjk(t). Malliavin and Mancino
(2002) show that the Fourier coefficient of Σij(t) are, with
n0 a given integer:

ak(Σij) = lim
N→∞

π

N + 1− n0

N
∑

s=n0

1

2
[as(dpi)as+k(dpj)

+bs+k(dpi)bs(dpj)] , (8)

bk(Σij) = lim
N→∞

π

N + 1− n0

N
∑

s=n0

1

2
[as(dpi)bs+k(dpj)

−bs(dpi)as+k(dpj)] , (9)

where the Fourier coefficients ak(dpi) and bk(dpi) of dpi
can be directly computed on the time series. Indeed,
rescaling the time window on [0, 2π] and using integration
by parts, we have:

ak(dpi) =
p(2π)− p(0)

π
− k

π

∫ 2π

0

sin(kt)pi(t)dt. (10)

This last integral can be discretized and approximately
computed using the times tim of observations of the pro-
cess pi. Therefore, fixing a sufficiently large N , one can
compute an estimator ΣF

ij of the covariance of the pro-
cesses i and j. See Reno (2003) or Iori and Precup (2007),
for examples of empirical studies using this estimator.

2. The Hayashi-Yoshida estimator

Hayashi and Yoshida (2005) have proposed a simple es-
timator in order to compute covariance/correlation with-
out any need for synchronicity of time series. As in the
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Fourier estimator, it is assumed that the observed pro-
cess is a Brownian semi-martingale. The time window
of observation is easily partitioned into d family of inter-
vals Πi = (U i

m), i = 1, . . . , d, where tim = inf{U i
m+1} is

the time of the m-th observation of the process i. Let
us denote ∆pi(U

i
m) = pi(t

i
m) − pi(t

i
m−1). The cumula-

tive covariance estimator as the authors named it, or the
Hayashi-Yoshida estimator as it has been largely refered
to, is then built as follows:

Σ̂HY
ij (t) =

∑

m,n

∆pi(U
i
m)∆pj(U

j
n)1{Ui

m∩U
j
n 6=∅}. (11)

There is a large literature in Econometrics that tack-
les the new challenges posed by high-frequency data. We
refer the reader, wishing to go beyond this brief presen-
tation, to the econometrics reviews by Barndorff-Nielsen
and Shephard (2007) or McAleer and Medeiros (2008),
for example.

B. Correlation matrix and Random Matrix Theory

The stock market data being essentially a multivari-

ate time series data, we construct correlation matrix to
study its spectra and contrast it with the random multi-
variate data from coupled map lattice. It is known from
previous studies that the empirical spectra of correlation
matrices drawn from time series data, for most part, fol-
low random matrix theory (RMT, see e.g. Gopikrishnan
et al. (2001)).

1. Correlation matrix and Eigenvalue density

a. Correlation matrix If there are N assets with
price Pi(t) for asset i at time t, then the logarithmic re-
turn of stock i is ri(t) = lnPi(t)− lnPi(t− 1), which for
a certain consecutive sequence of trading days forms the
return vector ri. In order to characterize the synchronous
time evolution of stocks, the equal time correlation coef-
ficients between stocks i and j is defined as

ρij =
〈rirj〉 − 〈ri〉〈rj〉

√

[〈r2i 〉 − 〈ri〉2][〈r2j 〉 − 〈rj〉2]
, (12)

where 〈...〉 indicates a time average over the trading days
included in the return vectors. These correlation coef-
ficients form an N × N matrix with −1 ≤ ρij ≤ 1. If
ρij = 1, the stock price changes are completely corre-
lated; if ρij = 0, the stock price changes are uncorre-
lated, and if ρij = −1, then the stock price changes are
completely anti-correlated.
b. Correlation matrix of spatio-temporal series from

coupled map lattices Consider a time series of the form
z′(x, t), where x = 1, 2, ...n and t = 1, 2....p denote the
discrete space and time, respectively. In this, the time

series at every spatial point is treated as a different vari-
able. We define the normalised variable as

z(x, t) =
z′(x, t)− 〈z′(x)〉

σ(x)
, (13)

where the brackets 〈.〉 represent temporal averages and
σ(x) the standard deviation of z′ at position x. Then,
the equal-time cross-correlation matrix that represents
the spatial correlations can be written as

Sx,x′ = 〈z(x, t) z(x′, t)〉 , x, x′ = 1, 2, . . . , n . (14)

The correlation matrix is symmetric by construction. In
addition, a large class of processes are translation invari-
ant and the correlation matrix can contain that addi-
tional symmetry too. We will use this property for our
correlation models in the context of coupled map lat-
tice. In time series analysis, the averages 〈.〉 have to
be replaced by estimates obtained from finite samples.
As usual, we will use the maximum likelihood estimates,
〈a(t)〉 ≈ 1

p

∑p

t=1 a(t). These estimates contain statisti-

cal uncertainties, which disappears for p → ∞. Ideally,
one requires p ≫ n to have reasonably correct correla-
tion estimates. See Chakraborti et al. (2007) for details
of parameters.
c. Eigenvalue Density The interpretation of the

spectra of empirical correlation matrices should be done
carefully if one wants to be able to distinguish between
system specific signatures and universal features. The
former express themselves in the smoothed level den-
sity, whereas the latter usually are represented by the
fluctuations on top of this smooth curve. In time series
analysis, the matrix elements are not only prone to un-
certainty such as measurement noise on the time series
data, but also statistical fluctuations due to finite sam-
ple effects. When characterizing time series data in terms
of random matrix theory, one is not interested in these
trivial sources of fluctuations which are present on every
data set, but one would like to identify the significant fea-
tures which would be shared, in principle, by an “infinite”
amount of data without measurement noise. The eigen-
functions of the correlation matrices constructed from
such empirical time series carry the information con-
tained in the original time series data in a “graded” man-
ner and they also provide a compact representation for it.
Thus, by applying an approach based on random matrix
theory, one tries to identify non-random components of
the correlation matrix spectra as deviations from random
matrix theory predictions (Gopikrishnan et al. (2001)).
We will look at the eigenvalue density that has been

studied in the context of applying random matrix the-
ory methods to time series correlations. Let N (λ) be the
integrated eigenvalue density which gives the number of
eigenvalues less than a given value λ. Then, the eigen-

value or level density is given by ρ(λ) = dN (λ)
dλ

. This can
be obtained assuming random correlation matrix and is
found to be in good agreement with the empirical time se-
ries data from stock market fluctuations. From Random
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Matrix Theory considerations, the eigenvalue density for
random correlations is given by

ρrmt(λ) =
Q

2πλ

√

(λmax − λ)(λ − λmin) , (15)

where Q = N/T is the ratio of the number of variables
to the length of each time series. Here, λmax and λmin,
representing the maximum and minimum eigenvalues of
the random correlation matrix respectively, are given by
λmax,min = 1+1/Q±2

√

1/Q. However, due to presence
of correlations in the empirical correlation matrix, this
eigenvalue density is often violated for a certain number
of dominant eigenvalues. They often correspond to sys-
tem specific information in the data. In Fig. 24 we show
the eigenvalue density for S&P500 data and also for the
chaotic data from coupled map lattice. Clearly, both
curves are qualitatively different. Thus, presence or ab-
sence of correlations in data is manifest in the spectrum
of the corresponding correlation matrices.
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FIG. 24. The upper panel shows spectral density for multi-
variate spatio-temporal time series drawn from coupled map
lattices. The lower panel shows the eigenvalue density for the
return time series of the S&P500 stock market data (8938
time steps).

2. Earlier estimates and studies using Random Matrix

Theory

Laloux et al. (1999) showed that results from the ran-
dom matrix theory were useful to understand the statis-
tical structure of the empirical correlation matrices ap-
pearing in the study of price fluctuations. The empirical

FIG. 25. Eigenvalue spectrum of the correlation matrices.
Adapted from Laloux et al. (1999).

determination of a correlation matrix is a difficult task.
If one considers N assets, the correlation matrix con-
tains N(N − 1)/2 mathematically independent elements,
which must be determined from N time series of length
T . If T is not very large compared to N , then gener-
ally the determination of the covariances is noisy, and
therefore the empirical correlation matrix is to a large
extent random. The smallest eigenvalues of the matrix
are the most sensitive to this ‘noise’. But the eigenvec-
tors corresponding to these smallest eigenvalues deter-
mine the minimum risk portfolios in Markowitz theory.
It is thus important to distinguish “signal” from “noise”
or, in other words, to extract the eigenvectors and eigen-
values of the correlation matrix containing real informa-
tion (those important for risk control), from those which
do not contain any useful information and are unstable in
time. It is useful to compare the properties of an empiri-
cal correlation matrix to a “null hypothesis”— a random
matrix which arises for example from a finite time se-
ries of strictly uncorrelated assets. Deviations from the
random matrix case might then suggest the presence of
true information. The main result of their study was the
remarkable agreement between the theoretical prediction
(based on the assumption that the correlation matrix is
random) and empirical data concerning the density of
eigenvalues (shown in Fig. 25) associated to the time
series of the different stocks of the S&P 500 (or other
stock markets). Cross-correlations in financial data were
also studied by Plerou et al. (1999, 2002). They anal-
ysed cross-correlations between price fluctuations of dif-
ferent stocks using methods of RMT. Using two large
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databases, they calculated cross-correlation matrices of
returns constructed from (i) 30-min returns of 1000 US
stocks for the 2-yr period 1994–95, (ii) 30-min returns
of 881 US stocks for the 2-yr period 1996–97, and (iii)
1-day returns of 422 US stocks for the 35-yr period 1962–
96. They also tested the statistics of the eigenvalues
λi of cross-correlation matrices against a “null hypoth-
esis”. They found that a majority of the eigenvalues
of the cross-correlation matrices were within the RMT
bounds [λmin, λmax], as defined above, for the eigenval-
ues of random correlation matrices. They also tested the
eigenvalues of the cross-correlation matrices within the
RMT bounds for universal properties of random matrices
and found good agreement with the results for the Gaus-
sian orthogonal ensemble (GOE) of random matrices —
implying a large degree of randomness in the measured
cross-correlation coefficients. Furthermore, they found
that the distribution of eigenvector components for the
eigenvectors corresponding to the eigenvalues outside the
RMT bounds displayed systematic deviations from the
RMT prediction and that these “deviating eigenvectors”
were stable in time. They analysed the components of the
deviating eigenvectors and found that the largest eigen-
value corresponded to an influence common to all stocks.
Their analysis of the remaining deviating eigenvectors
showed distinct groups, whose identities corresponded to
conventionally-identified business sectors.

C. Analyses of correlations and economic taxonomy

1. Models and theoretical studies of financial correlations

Podobnik et al. (2000) studied how the presence of cor-
relations in physical variables contributes to the form of
probability distributions. They investigated a process
with correlations in the variance generated by a Gaus-
sian or a truncated Levy distribution. For both Gaus-
sian and truncated Levy distributions, they found that
due to the correlations in the variance, the process “dy-
namically” generated power-law tails in the distributions,
whose exponents could be controlled through the way the
correlations in the variance were introduced. For a trun-
cated Levy distribution, the process could extend a trun-
cated distribution beyond the truncation cutoff, leading
to a crossover between a Levy stable power law and their
“dynamically-generated” power law. It was also shown
that the process could explain the crossover behavior ob-
served in the S&P 500 stock index.
Noh (2000) proposed a model for correlations in stock

markets in which the markets were composed of several
groups, within which the stock price fluctuations were
correlated. The spectral properties of empirical correla-
tion matrices (Plerou et al. (1999); Laloux et al. (1999))
were studied in relation to this model and the connection
between the spectral properties of the empirical corre-
lation matrix and the structure of correlations in stock
markets was established.

The correlation structure of extreme stock returns were
studied by Cizeau et al. (2001). It has been commonly
believed that the correlations between stock returns in-
creased in high volatility periods. They investigated how
much of these correlations could be explained within a
simple non-Gaussian one-factor description with time in-
dependent correlations. Using surrogate data with the
true market return as the dominant factor, it was shown
that most of these correlations, measured by a variety of
different indicators, could be accounted for. In partic-
ular, their one-factor model could explain the level and
asymmetry of empirical exceeding correlations. However,
more subtle effects required an extension of the one factor
model, where the variance and skewness of the residuals
also depended on the market return.
Burda et al. (2001) provided a statistical analysis of

three S&P 500 covariances with evidence for raw tail
distributions. They studied the stability of these tails
against reshuffling for the S&P 500 data and showed that
the covariance with the strongest tails was robust, with
a spectral density in remarkable agreement with random
Levy matrix theory. They also studied the inverse par-
ticipation ratio for the three covariances. The strong
localization observed at both ends of the spectral den-
sity was analogous to the localization exhibited in the
random Levy matrix ensemble. They showed that the
stocks with the largest scattering were the least suscepti-
ble to correlations and were the likely candidates for the
localized states.

2. Analyses using graph theory and economic taxonomy

Mantegna (1999) introduced a method for finding a hi-
erarchical arrangement of stocks traded in financial mar-
ket, through studying the clustering of companies by us-
ing correlations of asset returns. With an appropriate
metric – based on the earlier explained correlation ma-
trix coefficients ρij ’s between all pairs of stocks i and
j of the portfolio, computed in Eq. 12 by considering
the synchronous time evolution of the difference of the
logarithm of daily stock price – a fully connected graph
was defined in which the nodes are companies, or stocks,
and the “distances” between them were obtained from
the corresponding correlation coefficients. The minimum
spanning tree (MST) was generated from the graph by
selecting the most important correlations and it was used
to identify clusters of companies. The hierarchical tree
of the sub-dominant ultrametric space associated with
the graph provided information useful to investigate the
number and nature of the common economic factors af-
fecting the time evolution of logarithm of price of well
defined groups of stocks. Several other attempts have
been made to obtain clustering from the huge correlation
matrix.
Bonanno et al. (2001) studied the high-frequency cross-

correlation existing between pairs of stocks traded in a
financial market in a set of 100 stocks traded in US equity
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FIG. 26. The hierarchical structure of clusters of the S&P
500 companies in the ferromagnetic case. In the boxes the
number of elements of the cluster are indicated. The clusters
consisting of single companies are not indicated. Adapted
from Kullmann et al. (2000).

markets. A hierarchical organization of the investigated
stocks was obtained by determining a metric distance be-
tween stocks and by investigating the properties of the
sub-dominant ultrametric associated with it. A clear
modification of the hierarchical organization of the set
of stocks investigated was detected when the time hori-
zon used to determine stock returns was changed. The
hierarchical location of stocks of the energy sector was
investigated as a function of the time horizon. The hi-
erarchical structure explored by the minimum spanning
tree also seemed to give information about the influential
power of the companies.

It also turned out that the hierarchical structure of
the financial market could be identified in accordance
with the results obtained by an independent cluster-
ing method, based on Potts super-paramagnetic tran-
sitions as studied by Kullmann et al. (2000), where
the spins correspond to companies and the interactions
are functions of the correlation coefficients determined
from the time dependence of the companies’ individ-
ual stock prices. The method is a generalization of the
clustering algorithm by Blatt et al. (1996) to the case
of anti-ferromagnetic interactions corresponding to anti-
correlations. For the Dow Jones Industrial Average, no
anti-correlations were observed in the investigated time
period and the previous results obtained by different tools
were well reproduced. For the S&P 500, where anti-
correlations occur, repulsion between stocks modified the
cluster structure of the N = 443 companies studied, as
shown in Fig. 26. The efficiency of the method is repre-
sented by the fact that the figure matches well with the
corresponding result obtained by the minimal spanning
tree method, including the specific composition of the
clusters. For example, at the lowest level of the hierarchy
(highest temperature in the super-paramagnetic phase)
the different industrial branches can be clearly identi-
fied: Oil, electricity, gold mining, etc. companies build
separate clusters. The network of influence was investi-
gated by means of a time-dependent correlation method

by Kullmann et al. (2000). They studied the correla-
tions as the function of the time shift between pairs of
stock return time series of tick-by-tick data of the NYSE.
They investigated whether any “pulling effect” between
stocks existed or not, i.e. whether at any given time
the return value of one stock influenced that of another
stock at a different time or not. They found that, in
general, two types of mechanisms generated significant
correlation between any two given stocks. One was some
kind of external effect (say, economic or political news)
that influenced both stock prices simultaneously, and the
change for both prices appeared at the same time, such
that the maximum of the correlation was at zero time
shift. The second effect was that, one of the companies
had an influence on the other company indicating that
one company’s operation depended on the other, so that
the price change of the influenced stock appeared latter
because it required some time to react on the price change
of the first stock displaying a “pulling effect”. A weak
but significant effect with the real data set was found,
showing that in many cases the maximum correlation
was at non-zero time shift indicating directions of influ-
ence between the companies, and the characteristic time
was of the order of a few minutes, which was compatible
with efficient market hypothesis. In the pulling effect,
they found that in general, more important companies
(which were traded more) pulled the relatively smaller
companies.

The time dependent properties of the minimum span-
ning tree (introduced by Mantegna), called a ‘dynamic
asset tree’, were studied by Onnela et al. (2003b). The
nodes of the tree were identified with stocks and the dis-
tance between them was a unique function of the corre-
sponding element of the correlation matrix. By using the
concept of a central vertex, chosen as the most strongly
connected node of the tree, the mean occupation layer
was defined, which was an important characteristic of
the tree. During crashes the strong global correlation in
the market manifested itself by a low value of the mean
occupation layer. The tree seemed to have a scale free
structure where the scaling exponent of the degree dis-
tribution was different for ‘business as usual’ and ‘crash’
periods. The basic structure of the tree topology was
very robust with respect to time. Let us discuss in more
details how the dynamic asset tree was applied to studies
of economic taxonomy.

a. Financial Correlation matrix and constructing As-
set Trees Two different sets of financial data were used.
The first set from the Standard & Poor’s 500 index
(S&P500) of the New York Stock Exchange (NYSE)
from July 2, 1962 to December 31, 1997 contained 8939
daily closing values. The second set recorded the split-
adjusted daily closure prices for a total of N = 477 stocks
traded at the New York Stock Exchange (NYSE) over
the period of 20 years, from 02-Jan-1980 to 31-Dec-1999.
This amounted a total of 5056 prices per stock, indexed
by time variable τ = 1, 2, . . . , 5056. For analysis and
smoothing purposes, the data was divided time-wise into
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M windows t = 1, 2, ..., M of width T , where T corre-
sponded to the number of daily returns included in the
window. Note that several consecutive windows over-
lap with each other, the extent of which is dictated by
the window step length parameter δT , which describes
the displacement of the window and is also measured in
trading days. The choice of window width is a trade-off
between too noisy and too smoothed data for small and
large window widths, respectively. The results presented
here were calculated frommonthly stepped four-year win-
dows, i.e. δT = 250/12 ≈ 21 days and T = 1000 days.
A large scale of different values for both parameters were
explored, and the cited values were found optimal(Onnela
(2000)). With these choices, the overall number of win-
dows is M = 195.

The earlier definition of correlation matrix, given by
Eq. 12 is used. These correlation coefficients form an
N×N correlation matrixCt, which serves as the basis for
trees discussed below. An asset tree is then constructed
according to the methodology by Mantegna (1999). For
the purpose of constructing asset trees, a distance is de-
fined between a pair of stocks. This distance is associated
with the edge connecting the stocks and it is expected to
reflect the level at which the stocks are correlated. A

simple non-linear transformation dtij =
√

2(1− ρtij) is

used to obtain distances with the property 2 ≥ dij ≥ 0,
forming an N × N symmetric distance matrix Dt. So,
if dij = 0, the stock price changes are completely cor-
related; if dij = 2, the stock price changes are com-
pletely anti-uncorrelated. The trees for different time
windows are not independent of each other, but form
a series through time. Consequently, this multitude of
trees is interpreted as a sequence of evolutionary steps
of a single dynamic asset tree. An additional hypothe-
sis is required about the topology of the metric space:
the ultrametricity hypothesis. In practice, it leads to
determining the minimum spanning tree (MST) of the
distances, denoted Tt. The spanning tree is a simply
connected acyclic (no cycles) graph that connects all N
nodes (stocks) with N − 1 edges such that the sum of
all edge weights,

∑

dt
ij
∈Tt dtij , is minimum. We refer to

the minimum spanning tree at time t by the notation
Tt = (V,Et), where V is a set of vertices and Et is a cor-
responding set of unordered pairs of vertices, or edges.
Since the spanning tree criterion requires all N nodes to
be always present, the set of vertices V is time indepen-
dent, which is why the time superscript has been dropped
from notation. The set of edges Et, however, does de-
pend on time, as it is expected that edge lengths in the
matrix Dt evolve over time, and thus different edges get
selected in the tree at different times.

b. Market characterization We plot the distribution
of (i) distance elements dtij contained in the distance ma-

trix Dt (Fig. 27), (ii) distance elements dij contained
in the asset (minimum spanning) tree Tt (Fig. 28). In
both plots, but most prominently in Fig. 27, there ap-
pears to be a discontinuity in the distribution between

roughly 1986 and 1990. The part that has been cut out,
pushed to the left and made flatter, is a manifestation of
Black Monday (October 19, 1987), and its length along
the time axis is related to the choice of window width
T Onnela et al. (2003a,b). Also, note that in the dis-

FIG. 27. Distribution of all N(N−1)/2 distance elements dij
contained in the distance matrix D

t as a function of time.

FIG. 28. Distribution of the (N−1) distance elements dij con-
tained in the asset (minimum spanning) tree T

t as a function
of time.

tribution of tree edges in Fig. 28 most edges included in
the tree seem to come from the area to the right of the
value 1.1 in Fig. 27, and the largest distance element is
dmax = 1.3549.
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Tree occupation and central vertex Let us focus
on characterizing the spread of nodes on the tree, by
introducing the quantity of mean occupation layer

l(t, vc) =
1

N

N
∑

i=1

lev(vti) , (16)

where lev(vi) denotes the level of vertex vi. The levels,
not to be confused with the distances dij between nodes,
are measured in natural numbers in relation to the central
vertex vc, whose level is taken to be zero. Here the mean
occupation layer indicates the layer on which the mass
of the tree, on average, is conceived to be located. The
central vertex is considered to be the parent of all other
nodes in the tree, and is also known as the root of the
tree. It is used as the reference point in the tree, against
which the locations of all other nodes are relative. Thus
all other nodes in the tree are children of the central
vertex. Although there is an arbitrariness in the choice
of the central vertex, it is proposed that the vertex is
central, in the sense that any change in its price strongly
affects the course of events in the market on the whole.
Three alternative definitions for the central vertex were
proposed in the studies, all yielding similar and, in most
cases, identical outcomes. The idea is to find the node
that is most strongly connected to its nearest neighbors.
For example, according to one definition, the central node
is the one with the highest vertex degree, i.e. the number
of edges which are incident with (neighbor of) the vertex.
Also, one may have either (i) static (fixed at all times) or
(ii) dynamic (updated at each time step) central vertex,
but again the results do not seem to vary significantly.
The study of the variation of the topological properties
and nature of the trees, with time were done.

Economic taxonomy Mantegna’s idea of linking
stocks in an ultrametric space was motivated a posteriori

by the property of such a space to provide a meaningful
economic taxonomy (Onnela et al. (2002)). Mantegna
examined the meaningfulness of the taxonomy, by com-
paring the grouping of stocks in the tree with a third
party reference grouping of stocks e.g. by their industry
classifications (Mantegna (1999)). In this case, the ref-
erence was provided by Forbes (www.forbes.com), which
uses its own classification system, assigning each stock
with a sector (higher level) and industry (lower level)
category. In order to visualize the grouping of stocks,
a sample asset tree is constructed for a smaller dataset
(shown in Fig. 29), which consists of 116 S&P 500 stocks,
extending from the beginning of 1982 to the end of 2000,
resulting in a total of 4787 price quotes per stock (On-
nela et al. (2003b)). The window width was set at
T = 1000, and the shown sample tree is located time-
wise at t = t∗, corresponding to 1.1.1998. The stocks in
this dataset fall into 12 sectors, which are Basic Materi-
als, Capital Goods, Conglomerates, Consumer/Cyclical,
Consumer/Non-Cyclical, Energy, Financial, Healthcare,
Services, Technology, Transportation and Utilities. The

FIG. 29. Snapshot of a dynamic asset tree connecting the
examined 116 stocks of the S&P 500 index. The tree was
produced using four-year window width and it is centered on
January 1, 1998. Business sectors are indicated according
to Forbes (www.forbes.com). In this tree, General Electric
(GE) was used as the central vertex and eight layers can be
identified.

sectors are indicated in the tree (see Fig. 29) with differ-
ent markers, while the industry classifications are omit-
ted for reasons of clarity. The term sector is used ex-
clusively to refer to the given third party classification
system of stocks. The term branch refers to a subset of
the tree, to all the nodes that share the specified com-
mon parent. In addition to the parent, it is needed to
have a reference point to indicate the generational direc-
tion (i.e. who is who’s parent) in order for a branch to
be well defined. Without this reference there is abso-
lutely no way to determine where one branch ends and
the other begins. In this case, the reference is the central
node. There are some branches in the tree, in which most
of the stocks belong to just one sector, indicating that
the branch is fairly homogeneous with respect to busi-
ness sectors. This finding is in accordance with those of
Mantegna (1999) , although there are branches that are
fairly heterogeneous, such as the one extending directly
downwards from the central vertex (see Fig. 29).

V. PARTIAL CONCLUSION

This first part of our review has shown statistical prop-
erties of financial data (time series of prices, order book
structure, assets correlations). Some of these properties,
such as fat tails of returns or volatility clustering, are
widely known and acknowledged as “financial stylized
facts”. They are now largely cited in order to compare
financial models, and reveal the lacks of many classical
stochastic models of financial assets. Some other prop-
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erties are newer findings that are obtained by studying
high-frequency data of the whole order book structure.
Volume of orders, interval time between orders, intra-
day seasonality, etc. are essential phenomenons to be
understood when working in financial modelling. The
important role of studies of correlations has been em-
phasized. Beside the technical challenges raised by high-
frequency, many studies based for example on random
matrix theory or clustering algorithms help getting a bet-
ter grasp on some Economics problems. It is our belief
that future modelling in finance will have to be partly
based on Econophysics work on agent-based models in
order to incorporate these “stylized facts” in a compre-
hensive way. Agent-based reasoning for order book mod-
els, wealth exchange models and game theoretic models
will be reviewed in the following part of the review, to
appear in a following companion paper.
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