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ABSTRACT 

Oligonucleotide conjugates containing acridine and quindoline derivatives linked through a 

threoninol molecule were synthesized. We showed that these conjugates formed duplexes and 

quadruplexes with higher thermal stability than the corresponding unmodified oligonucleotides. 

When acridine is located in the middle of the sequence, DNA duplexes have a similar stability 

independently of the natural base present in front of acridine. Self-complementary oligonucleotides 

and thrombin binding aptamers (TBA) carrying the acridine and quindoline molecules are studied 

by NMR.       

 

  

1. Introduction 

There is a current interest in conjugation of oligonucleotides with DNA-binding drugs that provides 

an addition binding energy without perturbing the specific recognition with the complementary 

sequences. It has been shown that oligonucleotide conjugates with intercalating molecules may be 

accomplished by linking oligonucleotides via linker arms to intercalating agents at the 3’ or 5’ 

terminal positions, in the nucleobases or in the internucleotide backbone [1].  

Oligonucleotide conjugates carrying DNA-binding drugs have been applied to different purposes. 

For example they have been used to specifically inhibit the expression of a gene through binding 

with mRNA (the antisense approach) or DNA (the antigene approach). Oligonucleotides carrying 

DNA-binding drugs have demonstrated to stabilized the duplex structure, improve nuclease 

resistance and improve cellular uptake [1, 2] so that they may be considered good candidates for 

therapeutic uses. It is quite common to link intercalating agents to one or both ends of an 

oligonucleotide to form triplex forming oligonucleotides with higher binding affinity [3]. Acridine 

derivatives have also been introduced in peptide nucleic acids (PNA) yielding PNA derivatives with 

enhanced cellular uptake properties [4]. Finally, oligonucleotide primers functionalized with minor 

groove binding molecules are being used in PCR reactions [5].   

Besides interaction with double strand DNA, intercalating agents may also interact with G-

quadruplex [6]. This secondary structure formed by four nucleic acids strands in which guanine 

bases forms stacked planar tetrads stabilized by hydrogen bonds. Sequences with a high propensity 

to form quadruplexes are more likely to be found in gene promoters, protooncogenes or telomeres. 

Quadruplex binding ligands have medicinal interest because they can regulate gene expression.        

Intercalating units conjugated to oligonucleotides are also used to stabilize quadruplex structures [7] 

providing a stacking interaction between guanine tetrads and the aromatic moieties of the 

intercalating molecule. 



Several strategies for the incorporation of intercalating agents in oligonucleotides have been 

described. This includes: 1) Incorporation of reactive groups (such as terminal phosphate,  

thiophosphate, amino, carboxylic or diol groups) into oligonucleotides and subsequent coupling 

with intercalating agents carrying the appropriate reactive groups, and 2) Use of a derivative of the 

intercalating agent compatible with oligonucleotide synthesis conditions. Recently we have 

described a method for the preparation of oligomeric molecules by linking several DNA-binding 

drugs [8, 9]. To this end, the preparation of several types of DNA-intercalating units having 

functional units as well as specific protecting groups for the stepwise assembly of several DNA-

intercalating units using solid-phase synthesis protocols was described [8, 9]. Of special interest are 

the threoninol derivatives of acridine and quindoline (Act and Qut, figure 1A) because they are 

fluorescent, they have affinity to duplex DNA and they are compatible with oligonucleotide 

synthesis conditions [8]. For these reasons they are ideal for the rapid preparation of 

oligonucleotides carrying one or several DNA-intercalating units (Figure 1B). 

 

Figure 1 

 

 

In this paper we present the synthesis and the structural properties of oligonucleotides linked to one 

or several acridine and/or quindoline molecules using the threoninol backbone [10]. The presence of 

the DNA-intercalating unit at the 3’-end of the oligonucleotides induce a strong stabilization of 

duplex and quadruplex structures. When acridine is located in the middle of the sequence, duplexes 

have a similar stability independently of the natural base present in front of acridine. NMR data 

indicate that quindoline derivatives show a selective interaction for A-T base pairs in duplex DNA, 

whereas interactions with the TGT loop of the quadruplex structure of the thrombin-binding 

aptamer (TBA) are observed. A model of the structure of TBA conjugated to quindoline is reported. 

These results demonstrate that linking DNA-binding drugs to oligonucleotide may produce new 

DNA derivatives with tailored structural properties.  

 

    

2. Results and discussion 

    

2.1. Oligonucleotide synthesis. 

L-threoninol was selected to conjugate molecules to DNA. Threoninol has been used to introduce 

several units of Methyl Red moieties [10], photoactive azobenzenes [11, 12], acridine [13], pyrene 



and perylene [14], tetrathiofulvalene [15] and DNA-binding drugs [8, 9] in oligonucleotides. This 

compound can be obtained enantiomerically pure from commercial sources and have two hydroxyl 

groups (one primary and one secondary) and one amino group. The amino group position can be 

used for attaching the DNA-intercalating drug. Then, the primary hydroxyl group can be protected 

with the 4,4’-dimethoxytrityl (DMT) group. Finally the secondary alcohol was used to prepare the 

phosphoramidite or the hemisuccinate derivatives needed for the assembly of oligomers using solid-

phase methods [8]. 

These compounds were used for the preparation of solid supports carrying monomers (Act and Qut) 

and the corresponding dimers (Act-p-Act, Act-p-Qut, Qut-p-Act and Qut-p-Qut, Figure 1). The 

solid supports functionalized with monomers and dimers were used to prepare a series of DNA 

sequences including two self-complementary octamers (OCT1: 5’-TTCCGGAA-3’ and OCT2: 5’-

CCAATTGG-3’), the thrombin binding aptamer [16] (TBA: 5’-GGTTGGTGTGGTTGG-3’) and 

the two DNA sequences containing an acridine molecule in the middle of the sequence (9mer: 

TTCC-Act-p-GGAA and 15mer: 5’-GCAATGGA-Act-p-CCTCTA-3’). Moreover, two octamers 

and one TBA derivative carrying a tetraethyleneglycol (EG)4 spacer between the oligonucleotide 

and the quindoline derivative were prepared to allow more conformational freedom to the DNA-

binding molecule in order to find the optimal position for DNA-binding.  The assembly of the 

oligonucleotides was performed on a DNA synthesizer and oligonucleotides were assembled using 

standard protocols. After the assembly of the desired DNA sequence, supports were treated with 

concentrated ammonia at 55ºC yielding oligonucleotides carrying DNA-binding molecules either at 

the 3’-end or at internal positions (see Table 1 and Table 2). In all cases a major peak was obtained 

that was isolated and characterized by mass spectrometry (Table 1). 

 

2.2. Thermal denaturation studies. 

The effect of the presence of the oligomeric intercalators on DNA duplex stability was measured by 

melting experiments. Results are shown in Table 1. In general the presence of the intercalating drug 

on the 3’-end of the oligonucleotide increases the melting temperature up to 14.7ºC (7.3 ºC per 

modification) of the duplex indicating an interaction of the drug with the duplex structure of DNA. 

The increase on melting temperatures was higher on OCT1 (∆Tm 8.9-14.7 ºC) than on OCT2 (∆Tm 

1.1-11.7 ºC). In most of the cases the presence of two intercalating (acridine or quindoline) 

molecules led to a slight increase on melting temperatures. The highest melting temperatures were 

observed for the octamers carrying a quindoline molecule tethered with a tetraethyleneglycol 

molecule.  When acridine was incorporated in the middle of a self-complementary sequence, the 



resulting duplex with an acridine-acridine pair had a lower melting temperature (∆Tm -3 ºC) than 

the unmodified octamer 1 duplex (Table 1). 

Melting temperatures of duplexes containing an acridine in the middle of the sequence paired with 

the four natural bases are shown in Table 2. The most stable duplex is the duplex that contains an 

acridine in front of thymine (53.9 ºC). This melting temperature is similar (∆Tm 0.6 ºC) than the 

Tm of a duplex carrying an A-T base pair (53.3ºC) but lower than the duplex carrying a G-C base 

pair (54.7 ºC).  It is important to mention than the melting temperatures of the duplexes of acridine 

paired with all the four natural bases have very small differences between them (Tm 51.3-53.9). 

This tendency to similar melting temperatures may be beneficial in the design of degenerate primers 

or probes. The spread on melting temperatures when acridine is paired with natural bases (2.6 ºC) 

compared well with Tm data reported for other candidates for universal bases (3ºC for nitropyrrole 

[17], 5-nitroindole [18] and 8-aminohypoxanthine [19]; 2ºC for acyclic 5-nitroindazole [20] and 8-

aza-7-deaza-dA [21]). The stabilizing effect of acridine is in agreement with previous results 

obtained with insertion of 1-O-(1-pyrenemethyl)glycerol in dsDNA [22]. 

Melting curves of thrombin binding aptamers carrying acridine and quindoline derivatives were 

performed by UV spectroscopy and compared with the unmodified sequences. The results, 

summarized in Table 1, indicate that all TBA aptamers considered show a weak stabilization of the 

quadruplex structure (∆Tm 3.5°C-7.5°C). Moreover, the CD spectra of native TBA and of TBA-

complexes are characterized by a positive band at 248 nm, a negative maximum at 265 nm together 

with a positive maximum at 295 nm typical of an antiparallel quadruplex structure (see 

supplementary data, figure 1S).                                     

 

2.3. NMR studies on TBA derivatives.  

The observation of the imino proton region of NMR spectra at 5°C of selected modified TBA 

sequences (TBA-p-Act, TBA-p-Qut, and TBA-(EG)4-p-Qut) confirm the formation of a quadruplex 

structure, however spectrum changes compared to the unmodified  aptamer are observed (Fig. 2). 

TBA-p-Act and TBA-(EG)4-p-Qut  show sharp and disperse signals, according with the presence of 

a unique G quadruplex structure whereas TBA-p-Qut presents broad signals characteristic of 

solution conformational equilibria. 

  

Figure 2 

  



The examination of the imino proton region of TBA-(EG)4-p-Qut as a function of temperature 

showed that the signals disappear around 55°-65°C (the melting temperature of the unmodified 

TBA is about 46°C) confirming the thermal stabilization (Fig. 3).                                               

                                      

Figure 3 

 

A set of 2D NMR spectra, performed at 5°C of TBA aptamers, were analyzed. Specifically, we 

identified, in the aromatic region of TBA-(EG)4-p-Qut, 15 signals belonging to nine H8 of G and 

six thymine H6 protons. The pattern of NOEs observed indicates that the global backbone 

conformation is similar to that of the native aptamer. The strong intensities of intraresidue NOE 

cross peaks between H8 of G and H1’ confirm the syn glycosidic conformation for G1, G5, G10 

and G14. We detected NOE connectivities between non adjacent residues such as H8G2 and 

H8G11 with the methyl and H2’ and H2’’ of T4 and T13 respectively, and interactions between 

H8G8 and H2’, H2’’ and H1’ of G6 and between H8G15 with H1’T9. The chemical shift of 

exchangeable and non exchangeable protons of the unmodified aptamer was compared with those 

of the TBA-(EG)4-p-Qut. Only little differences ∆δ<0.1 ppm were observed, except for the H8G6 

(∆δ=0.12 ppm downfield), H6 of T7 and T9 (∆δ=0.15 ppm and 0.21 upfield, respectively), H8G14 

and G15 (∆δ=0.12 and 0.11 ppm upfield, respectively). 

Quindoline resonances were also assigned: H9 proton was assigned by a strong NOE cross peak 

with the indolic NH which shows a typical chemical shift (10.55 ppm). This led to the assignment 

of its vicinal proton H8 and then H7 and H6. Moreover, the NH amidic proton (8.90 ppm) showed a 

strong and a medium NOE cross peak with two aromatic protons, allowing the assignment H1 and 

H2 respectively (Fig. 4). This scheme of intramolecular NOE interactions for quindoline moiety 

shows that the peptidic bond is in trans conformation further confirmed by NOEs interactions 

between indolic NH and Hα, Hβ and Me. The chemical shifts of all resonances of TBA-(EG)4-p-

Qut are reported in Table 3.  

Figure 4 

 

The NOE experiments, allowing the detection of specific interactions between protons of the ligand 

and protons of the DNA, were analyzed in order to recognize possible preferred interaction sites. In 

particular, two well separated resonances at 1.28 ppm and at 1.43 ppm were attributed to the methyl 

β of quindoline moiety. Each methyl group shows interactions NOE with TBA, attributed to T9, G8 

and G6 residues, respectively i.e one set of interactions involves T9 and G8 located in the lateral 



loop, whereas the second one, characterized by a lower number of NOEs, involve G6 residue (Table 

4) (Fig. 5A) 

 

Figure 5 

 

We conclude that there are in solution two modes of binding, differing for the position of the 

quindoline moiety. There were no interactions between the Qut moiety and the G quadruplex tetrads 

but with the TGT loop (Fig. 6).  

The same experiments were performed on TBA-p-Qut and TBA-p-Act complexes which show a 

quadruplex architecture with a Tm=50.7°C and Tm=49.7°C respectively. TBA-p-Qut 2D spectra are 

characterized by broad signal indicating that the scheme of chemical equilibria present in solution 

should be much more complicated than that one depicted for TBA-(EG)4-p-Qut (Fig. 5B). 

On the contrary, the general appearance of the NOESY spectra of TBA-p-Act was better compared 

to that of the TBA-p-Qut (Fig. 5C). The signals are sharper and well resolved thus allowing an 

almost complete assignment (see Table 1 in Supplementary Material). In this case only few contacts 

points were detected at the level of G15 and G11 (H1, H2, and H6 of Act with H2’ and H2” of G15, 

Hα with H8G11) indicating that the acridine moiety is located near the G quartet plane. 

    

Figure 6 

 

2.4. NMR studies on self-complementary octamers.  

The Tm data reported in Table 1 relatively to octamers indicate that the presence of the ligand 

induces a stabilization of the double helix. On this basis some octamer adducts were selected for 

NMR studies.  

The extensive overlapping of quindoline aromatic protons of OCT1-p-Qut adduct made the analysis 

quite difficult (see Table 2 in Supplementary Material), nevertheless few NOEs interactions (H2 

A8, H1’ T1 and/or T2 and H2’ T2 with quindoline aromatics protons) indicate the interaction with 

the AT base pairs. These findings were confirmed by an up field shift (∆δ 0.2- 0.3 ppm) of aromatic 

protons of the oligonucleotide at the level of A8T1 units in comparison with the unmodified 

octamer. The same type of interactions were found for OCT1-(EG)4-pQut, containing tetraethylene 

glycol as a spacer between DNA and ligand. For both complexes the chromophore moiety is located 

and interacts at the A8T1 terminal 3’ end of the double helix suggesting the formation of a CAP-

complex by stacking the aromatic rings with the adenine and thymine units. A generalized line 

broadening of the NMR spectra suggest the presence of multiple equilibria in this case. Chemical 



shift assignments for OCT1-(EG)4-pQut at 10°C and 25°C are reported in Table 5 and Table 3S 

respectively.   

In addition, we also studied the OCT2-(EG)4-p-Qut,  where the AT base pairs are in the middle of 

the sequence. Contacts of the quindoline aromatic protons  and Hβ of  the threoninol with H6 T5, 

Me T5, Me T6, H1’T5 and  with H1’ A4 were found confirming an intercalation at the level of 

A4T5 base pairs as preferred binding site. Moreover some intramolecular NOEs cross peaks 

(H6T5/H1’A4, H8A4/H3’A4 and H8A4/H3’A3) resulted weaker in comparison with the same in 

the unmodified OCT2. The signals of H8, H1’, H2’, H2” of A4 and Me of T5 are found split (Table 

6). The observed split could be attributed to the loss of the symmetry of the double helix due to a 

non symmetric interaction of the quindoline moiety. This result agrees with the data reported in 

Table 1, where ∆Tm is only 1.1°C for OCT2-p-Qut increasing to 11.7°C when the spacer was 

inserted, allowing the interaction with the internal AT base pairs. 

 

                                                        

3. Conclusions 

In conclusion we have shown that oligonucleotides carrying one or two acridine and quindoline 

derivatives linked through a threoninol molecule can be synthesized with high efficiency using 

solid-phase protocols. DNA duplexes and quadruplexes carrying acridine and quindoline 

derivatives have higher thermal stability compared with the corresponding unmodified 

oligonucleotides. When acridine is located in the middle of the sequence, duplexes have a similar 

stability independently of the natural base present in front of acridine. NMR studies show that the 

quindoline moiety is capable to interact onto the A-T base pair of DNA duplexes.  Moreover the 

quindoline moiety of TBA-(EG)4-p-Qut interacts with the TGT loop of the aptamer. These results 

reveal that DNA-binding molecules linked to different structures could be used for the stabilization 

of these structures and this information may be used in the design of oligonucleotide-based drugs 

with improved biological properties. Moreover the hydrophobicity and fluorescent properties of the 

acridine and quindoline derivative may found utility of the design of new oligonucleotide 

derivatives with better cellular uptake properties. Work in these directions is currently being done 

and results will be presented in due course.   

 

4. Experimental section 

 

5.1. Materials. All the standard phosphoroamidites and reagents for DNA synthesis were purchased 

from Applied Biosystems and from Link Technologies. L-threoninol, tetraethylene glycol, acridine-



9-carboxylic acid and the rest of chemicals were purchased from Sigma-Aldrich and Fluka. 10H-

Indolo[3,2b]quinoline-11-carboxylic acid and the threoninol derivatives of acridine and quindoline 

were prepared as described [8]. The O-2-cyanoethyl-N,N-diisopropyl phosphoramidite of 

tetraethyleneglycol was prepared as described [23].  

 

5.2. Oligonucleotide synthesis and purification: The synthesis of the oligonucleotides was 

performed at 1 µmol scale on an Applied Biosystems DNA/RNA 3400 synthesizer by solid-phase 

2-cyanoethylphosphoroamidite chemistry. The following sequences were prepared: OCT1: d(5’-

TTCCGGAA-3’), OCT1-p-Qut:  d(5’-TTCCGGAA-3’-p-Qut), OCT1-p-Qut-p-Qut:  d(5’-

TTCCGGAA-3’-p-Qut-p-Qut), OCT1-p-Act:  d(5’-TTCCGGAA-3’-p-Act), OCT1-p-Act-p-Act:  

d(5’-TTCCGGAA-3’-p-Act-p-Act), OCT1-p-Act-p-Qut:  d(5’-TTCCGGAA-3’-p-Act-p-Qut),  

OCT1-(EG)4-p-Qut: d(5’-TTCCGGAA-3’-(EG)4-p-Qut), d(5’-TTCC-Act-p-GGAA-3’), OCT2: 

d(5’-CCAATTGG-3’), OCT2-p-Qut: d(5’-CCAATTGG-3’-p-Qut), OCT2-p-Qut-p-Qut: d(5’-

CCAATTGG-3’-p-Qut-p-Qut), OCT2- p-Act-p-Qut: d(5’-CCAATTGG-3’-p-Act-p-Qut), OCT2-p-

Act: d(5’-CCAATTGG-3’-p-Act), OCT2-(EG)4-p-Qut: d(5’-CCAATTGG-3’-(EG)4-p-Qut), TBA: 

d(5’-GGT TGG TGT GGT TGG-3’); TBA-p-Act: d(5’-GGT TGG TGT GGT TGG-3’-p-Act), 

TBA-p-Qut: d(5’-GGT TGG TGT GGT TGG-3’-p-Qut), TBA-p-Qut-p-Act: d(5’-GGT TGG TGT 

GGT TGG-3’-p-Qut-p-Act) , TBA- p-Act-p-Qut: d(5’-GGT TGG TGT GGT TGG-3’-p-Act-p-Qut), 

TBA-p-Act-p-Act: d(5’-GGT TGG TGT GGT TGG-3’-p-Act-p-Act), TBA-(EG)4- p-Qut: d(5’-

GGT TGG TGT GGT TGG-3’-(EG)4-p-Qut), 15mer: d(5’-GCA ATG GA-Act-p-CCT CTA-3’). 

The threoninol derivatives (Act and Qut) were prepared as previously described [8]. The DMT 

derivatives were coupled to CPG supports by the succinyl linker or reacted with O-2-cyanoethyl-

N,N-diisopropyl-chlorophosphine to yield the corresponding phoshoramidite [8]. The resulting CPG 

solid supports functionalized with Act and Qut [8] were incorporated directly in the DNA 

synthesizer to perform the synthesis of the corresponding oligonucleotide sequences. The same 

strategy was used to prepare oligomers carrying two chromophore units (-p-Act-p-Act, p-Qut-p-

Qut, -p-Act-p-Qut and –p-Qut-p-Act) linked by phosphorodiester backbone [8]. The resulting solid 

supports containing the dimers were used as start point for the synthesis of the 

oligodeoxynucleotides. Step-coupling yields of the threoninol phosphoramidites were similar to 

standard phosphoroamidites. After the assembly of the desired sequences, ammonia treatment was 

performed at 55°C for 6 h. Oligodeoxynucleotides were purified using a reversed-phase HPLC 

(DMT off method).  Solvent A: 5% MeCN in 100 mM triethylammonium acetate (pH 6.5) and 

solvent B: 70% MeCN in 100 mM triethylammonium acetate (pH 6.5). Column: Nucleosil120C18 



(10µm, 200 x 10mm). Flow rate: 3 ml/min. Conditions A: 20 min linear gradient from 0-50% B. In 

all cases a major peak was obtained that was isolated and characterized by mass spectrometry. 

The resulting oligonucleotides were desalted in a Sephadex (NAP-10) G25 column. 

Oligonucleotides used for NMR studies were prepared on 1-2 micromol scale (OCT1, OCT1-p-Qut, 

OCT1-(EG)4-p-Qut, OCT2, OCT2-(EG)4-p-Qut, TBA, TBA-p-Act,TBA-p-Qut, TBA-(EG)4-p-Qut) 

were passed through a DOWEX (Na+) resin to exchange triethylammonium to sodium cations. 

Yields: OCT1-p-Qut: 59 OD units, OCT1-(EG)4-p-Qut: 78 OD units, OCT2-(EG)4-p-Qut: 73 OD 

units, TBA-p-Act: 86 OD units, TBA-p-Qut: 64 OD units, TBA-(EG)4-p-Qut: 70 OD units. The rest 

of the oligonucleotides were prepared on 200 nmol scale obtaining around 10-20 OD units.  

Oligonucleotides were characterized by mass spectrometry. MS (MALDI-TOF): see Table 1; 

15mer: d(5’-GCA ATG GA-Act-p-CCT CTA-3’): found: 4624.5; expected 4621.7.   

 

5.3. Thermal denaturation experiments of oligonucleotides using UV spectroscopy.  

The thermal melting curves were performed following the absorption change at 295 nm for TBA 

aptamers and at 260 nm for octamers from a temperature of 20°C till 80°C,  with a linear 

temperature ramp of 0.5°/min on a JASCO V-650 spectrophotometer equipped with a Peltier 

temperature control. All the measurements were repeated three times, conducted in 10 mM sodium 

cacodylate buffer, 100 mM NaCl and 10 mM KCl (pH 7.0) for TBA derivatives;  in 100mM sodium 

phosphate buffer and 1M NaCl (pH 7.0) for the octamers and in 10mM sodium phosphate buffer 

and 50mM NaCl (pH 7.0) for the pentadecamers. The concentration of the samples were around 4- 

6 µM.   

 

5.4. Thermal denaturation experiments of oligonucleotides using circular dichroism.  

CD spectra for TBA and TBA-(EG)4-p-Qut were obtained following the change of ellipticity from 

220 nm to 320 nm at different temperatures on a Jasco spectropolarimeter equipped with a Peltier 

temperature control used to set the temperature between 5°C and 75°C. The changes in ellipticity 

versus temperatures at λmax were plotted and used to obtain the melting temperature. All 

measurements were conducted in 10 mM potassium phosphate buffer and 5 mM KCl (pH 6.9) for 

the aptamers. The concentration of the samples was 80 µM. 

 
5.5. NMR Spectroscopy: The samples for NMR measurements were dissolved in 500 µl H2O/D2O 

(9:1) or D2O containing 10 mM potassium phosphate buffer and  NaCl 100 mM (pH 6.7) or 5 mM 

KCl (pH 6.9) for octamers and TBA aptamers, respectively. The final concentrations of the 

oligonuclotides were 0.8mM-1.2 mM. 1H NMR spectra were performed at temperatures ranging 



between 5°C and 65°C on a Bruker AV-600 spectrometer, equipped with a z-gradient triple 

resonance TXI and processed with TOPSPIN v. 1.3. 1D and 2D spectra were recorded, in the case 

of D2O solutions, with water suppression obtained by presaturation pulse sequences, while, in the 

case of H2O/D2O solutions using a gradient-based solvent suppression.   
   Chemical shifts (δ) were measured in ppm. 1H spectra were referenced respectively to external 

DSS (2,2-dimethyl-2-silapentane-5-sulfonate sodium salt) set at 0.00 ppm.  

   Standard homonuclear 2D-NMR experiments were performed to assign the resonances of the 

complexes, including DQF-COSY, TOCSY and NOESY [24]. The mixing times were set at 150ms 

and 300ms for NOESY and 60 ms for TOCSY. Typically, 2048 x 1024 data points were acquired 

using TPPI [25] and transformed to a final 4K×4K real data matrix after apodisation with a 90° and 

90°-shifted sine-bell squared function in f2- and f1-domain, respectively. Baseline correction was 

achieved by a 5th-degree polynomial function. The program Sparky [26] was used to assign the 

NOESY cross-peaks. The unmodified TBA was previously assigned [27-29].  

 

5.6. Molecular Modelling: Molecular models of the complexes were built with Insight II & 

Discover (version 97.0 MSI, San Diego, CA) on a Silicon Graphics O2 workstation, using standard 

fragments from the Silicon Graphics library for the octamers and the drugs and starting from the 

solution structure for thrombin binding aptamer [29].  The AMBER [30] as force-field was utilized 

without explicit inclusion of solvent molecules, setting a distance-dependent relative permittivity ε 

= 4.0 r and scaling the 1-4 non bond interactions by a factor of 0.5.  For drugs, the potentials were 

set by similarity with the DNA aromatic and sugar atoms. The models were energy minimized with 

a steepest-descendent followed by conjugate gradient algorithm. The drug-DNA complexes were 

then constructed following the NOE interactions. Restraints were defined as quadratic well 

potentials with upper and lower limits on the basis of the above reported classes of NOE intensities 

with a force constant of 50 Kcal mol-1 Å-2. The models were energy minimized and then a 100 ps of 

restrained MD simulation was performed at a constant temperature of 300K. The average structure 

was subjected to a further minimization and taken as the starting structure for a subsequent 100 ps 

MD simulation at 300K, sampling the trajectory every picosecond.  
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Table 1. Mass spectra and UV melting temperaturesa for OCT1, OCT2 and TBA derivatives 
carrying acridine and quindoline molecules. 
 
Oligomers M (Found) M (Expected) Tm (°C) ∆Tm (°C) ∆Tm/modification 

(°C) 
OCT1 2406.2 2408.5 35.0 -- -- 
OCT1-p-Qut 2819.2 2819.6 44.2 +9.2 +4.6 
OCT1-p-Qut-p-Qut 3229.3 3230.7 48.0 +13.0 +6.5 
OCT1-p-Act 2779.4 2780.5 47.0 +12.0 +6.0 
OCT1-p-Act-p-Act 3150.6 3152.6 48.0 +13.0 +6.5 
OCT1-p-Act-p-Qut 3191.3 3191.6 43.9 +8.9 +4.4 
OCT1-(EG)4-p-Qut 3073.3 3075.6 49.7 +14.7 +7.3 
TTCC-Act-p-GGAA 2783.3 2780.5 32.0 -3.0 -1.5 
OCT2 2408.2 2408.5 36.0 -- -- 
OCT2-p-Qut 2817.8 2819.6 37.1 +1.1 +0.5 
OCT2-p-Qut-p-Qut 3228.0 3230.7 39.2 +3.2 +1.6 
OCT2-p-Act-p-Qut 3190.5 3191.6 42.1 + 6.1 +3.0 
OCT2-p-Act 2779.9 2780.5 40.0 + 4.0 +2.0 
OCT2-(EG)4-p-Qut 3073.3 3075.6 47.7 +11.7 +5.8 
TBA 4723.2 4723.8 46.0 -- -- 
TBA-p-Act 5098.4 5095.9 49.7 +3.7 +3.7 
TBA-p-Qut 5134.8 5234.9 50.7 +4.7 +4.7 
TBA-p-Qut-p-Act 5505.7 5507.0 53.5 +7.5 +7.5 
TBA-p-Act-p-Qut 5506.3 5507.0 49.5 +3.5 +3.5 
TBA-p-Act-p-Act 5466.8 5468.0 52.1 +6.1 +6.1 
TBA-(EG)4-p-Qut 5414.6  

(M+ Na+) 
5390.9 52.4 +6.4 +6.4 

a Uncertainty ± 0.8°C; OCT1: 5’-TTCCGGAA-3’; OCT2: 5’-CCAATTGG-3’; TBA: 5’-
GGTTGGTGTGGTTGG-3’. Buffer conditions for TBA derivatives: 10 mM sodium cacodylate 
buffer, 100 mM NaCl and 10 mM KCl (pH 7.0). Buffer conditions for octamers 100mM sodium 
phosphate buffer and 1M NaCl (pH 7.0). 
 
Table 2. UV melting temperatures for duplexes carrying the acridine derivative in the middle of the 
sequencea. 
 

 Y = Act Y = C Y = T 
X = C 51.3 37.1 40.7 
X = T 53.9 39.3 40.9 
X = G 52.6 54.7 46.2 
X = A 52.5 42.2 53.3 

a Uncertainty ± 0.5°C. Buffer conditions 10mM sodium phosphate buffer and 50mM NaCl (pH 7.0). 
Sequences 5’-d(TAGAGGXTCCATTGC-3’) and 5’-d(GCAATGGAYCCTCTA-3’) 
 
 
 
 
 
 



 
 
 
 
Table 3. Proton chemical shift (ppm) of TBA-(EG)4-p-Qut in 10 mM potassium phosphate buffer 
and 5 mM KCl (pH 6.9), T=5°C 
 
 H8/H6 H1’ H2’ H2’’ H3’ H4’ H5’/H5’’ Me NH 
G1 7.42 6.08 3.00 3.04 4.91   -- 12.10 
G2 8.14 6.01 3.03 2.35 5.15 4.44 4.30 --  
T3 7.88 6.20 2.25 2.60 4.91 4.23  1.98  
T4 7.13 6.04 2.04 2.68 4.91 4.23 3.91 1.02 11.34 
G5 7.46 6.05 3.36 2.91 4.91 4.49 4.29 -- 12.20 
G6 7.80 6.00 2.81 2.63 5.15 4.47 4.27 -- 12.16 
T7 7.80 6.43 2.55 2.61    1.97  
G8 7.50 5.84 1.99 2.34 4.89   -- 11.24 
T9 7.07 5.89 2.04 2.45 4.71 3.72 3.05,3.55 1.78  
G10 7.42 6.06 3.67 2.90    -- 11.91 
G11 8.22 6.04 2.99 2.34 5.15 4.42 4.31,4.27 -- 12.33 
T12 7.91 6.19 2.25 2.61 4.94 4.31  2.00 11.32 
T13 7.23 6.09 2.07 2.73 4.95 4.27 3.96 0.99  
G14 7.38 6.05 2.89 2.97 5.15  4.27,4.49 -- 12.11 
G15 8.01 6.03 2.77  4.92   -- 12.32 

 
 H1 H2 H3a H4 H6 H7 H8 H9 NHind Hα Hβ Meb NH CH2O 
Qut 8.06 7.47 7.97 7.48 7.94 7.47 7.00 7.39 10.55 4.03 4.30 1.28 8.90 3.00-

3.98 
 

a The assignments of H3 and H4 could be exchanged. 
b Other Me signal at 1.43 ppm 
 
 
Table 4.  Intramolecular NOE interactions of TBA-(EG)4-p-Quta 
 
     Quindoline             TBA moiety 
                        I mode of binding 
      NH ind                 H5”T9 
       Me                 H6T9,H8G8, H2’T7 
       H2                 H2’T9,H5”T9 
       H3                 H2’T9 
       H8                 H2’-H2”T9 
       H9                 H4’, H5’T9 
  
                      II mode of binding 
      NH ind              H2’G6 
      Me                                             H1’G6, H2’G6H5’-H5”G6 
      H8              H2”G6 
a 10 mM potassium phosphate buffer and 5 mM KCl (pH 6.9), T=5°C 
 
 



 
 
 
 

 
 
Table 5. Proton chemical shift (ppm) of OCT1-(EG)4-p-Qut in D2O,10 mM potassium phosphate 
buffer and 100 mM NaCl (pH 6.7), T=10°C 
 
 H8/H6 H5/H2A H1’ H2’ H2’’ H3’ Me 
T1 7.33 -- 5.87 2.34 2.18  1.41 
T2 7.33 -- 5.84 2.44 2.04  1.36 
C3 7.32 5.38 5.64 2.17 1.92 4.62 -- 
C4 7.14 5.32 5.20 2.03 1.68 4.60 -- 
G5 7.55 -- 5.21 2.43 2.38 4.56 -- 
G6 7.48 -- 5.18 2.42 2.03  -- 
A7 7.72 7.60 5.65 2.54 2.30 4.78 -- 
A8 7.66 7.60 5.74 2.48 2.48 4.82 -- 
 
 Har1 Har1 Har1 Har1 Har2 Har2 Har2 Hα Hβ Me CH2O 
Quta 6.86 7.07 7.19 7.76 6.97 7.50 7.58 4.00 3.90 1.18 3.00-3.98 

a Har 1 and Har 2stands for aromatic protons of ring 1 and 2 respectively 
 
 
 
 
Table 6. Proton chemical shift (ppm) of OCT2-(EG)4-p-Qut in D2O,10 mM potassium phosphate 
buffer and 100 mM NaCl (pH 6.7), T=10°C 
 
 H8/H6 H5/H2A H1’ H2’ H2’’ H3’ Me 
C1 7.53 5.72 5.72 2.27 1.85  -- 
C2 7.36 5.47 5.06 2.15 1.88 4.65 -- 
A3 8.10 7.09 5.77 2.76 2.64 4.88 -- 
A4(I) 8.01 7.65 5.97 2.71 2.40 4.86 -- 
A4(II) 7.98             7.65 5.92 2.60 2.38 4.86 -- 
T5 6.92 -- 5.60 2.24 1.69 4.60 1.08/1.06 
T6 6.98 -- 5.47 2.69 2.40 4.60 1.32 
G7 7.53 -- 5.24 2.48 2.50 4.81 -- 
G8 7.45 -- 5.57 2.50 2.50  -- 
 Har1 Har1 Har1 Har1 Har2 Har2 Har2 Hα Hβ Me CH2O 
Quta 7.78 7.82 7.61 7.25 7.10 7.15 6.87 4.00 4.45 1.20 3.00-3.98 

a Har 1 and Har 2stands for aromatic protons of ring 1 and 2 respectively 
 
 
 
 
 
 
 
 
 



FIGURE LEGENDS 

 

Figure 1. A) Structure of the threoninol derivatives of acridine and quindoline (Act and Qut). B) 

duplex structure of a self-complementary octamer carrying an acridine derivative at the 3’-end 

(OCT1-p-Act). 

 

Figure 2. 1H-NMR spectra of the imino resonances at 5°C of (a) thrombin-binding aptamer TBA; 

(b) TBA-p-Act; (c) TBA-p-Qut and (d) TBA-(EG)4-p-Qut. 

 

Figure 3. Imino protons region of TBA-(EG)4-p-Qut from 5°C to 65°C. 

 

Figure 4. Region of NOESY spectrum of TBA-(EG)4-p-Qut in H2O/D2O (9:1),10 mM potassium 

phosphate buffer and 5 mM KCl (pH 6.9), showing the intramolecular crosspeaks of quindoline 

moiety: A) NHind/H9, B) NH/H1, C) NH/H2, D) NHind/Hα, E) NHind/Hβ. 

 

Figure 5. Two regions of the NOESY spectra of A) TBA-(EG)4-p-Qut, B) TBA-p-Qut, C) TBA-p-

Act, showing intraresidual H1’, H6/H8 and Methyl, H6/H8 interactions. Extra quindoline methyl 

NOEs crosspeaks was observed with: a) H6T9, b) H8G8. 

 

Figure 6. Molecular modelling of the TBA-(EG)4-Q. The yellow represents the G quartet tetrads, 

the red represents the loops of the TBA and the blue corresponds to the tetraethylene glycol 

quindoline moiety. 
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Table 1S  Proton chemical shift (ppm) of TBA-p-Act in 10 mM potassium phosphate buffer and 5 
mM KCl (pH 6.9), T=5°C 
 
 H8/H6 H1’ H2’ H2’’ H3’ H4’ H5’/H5’’ Me  NH 
G1 7.43 6.10 2.94 2.96 4.93   --  
G2 8.12 6.04 3.04 2.36 5.18 4.46 4.31 --  
T3 7.81 6.21 2.26 2.59 4.93   1.99  
T4 7.06 6.07 2.05 2.67 4.93   1.04  
G5 7.44 6.06 3.38 2.89 4.96   -- 12.13 
G6 7.83 6.02 2.88 2.60 5.16   --  
T7 7.72 6.43 2.50 2.60    1.99  
G8 7.51 6.10 2.00 2.36    --  
T9 7.06 5.86 2.05 2.40 4.92  3.05,3.55 1.99  
G10 7.43 6.10 3.62 2.94 4.94 4.96  --  
G11 8.21 6.05 3.05 2.37 5.18 4.46 4.32 --  
T12 7.85 6.21 2.29 2.61 4.98   2.02 12.05 
T13 7.15 6.02 2.05 2.70 4.91   1.04 12.06 
G14 7.29 6.05 2.80 2.92 5.16  4.26 --  
G15 7.99 6.05 2.71 2.80 4.91   --  

 
 H1 H2 H3 H4 H5 H6 H7 H8 Hα Hβ Me NH 
Act 7.29 8.01 7.49 7.49 7.36 7.72 7.60 8.08 4.16 4.47 1.43 9.21 

 
 

Table 2S Proton chemical shift (ppm) of OCT1-p-Qut in H2O,10 mM potassium phosphate buffer 
and 100 mM NaCl (pH 6.7), T=25°C 
 
 H8/H6 H5/H2A H1’ H2’ H2’’ H3’ Me NH 
T1 7.64 -- 6.06 2.64 2.22 4.81 1.82  
T2 7.49 -- 6.06 2.52 2.22 4.92 1.62  
C3 7.52 5.68 5.81 2.49 2.11  --  
C4 7.35 5.58 5.41 2.21 1.89 4.78 --  
G5 7.80 -- 5.39 2.47 2.38 4.88 -- 12.98 
G6 7.61 -- 5.30 2.58 2.22  -- 12.57 
A7 7.78 7.05 5.40 2.53 2.22  --  
A8 7.75 7.19 5.72 2.53 2.22  --  
 
 Har Har Me NHind 
Qut 7.90 7.38 1.31 9.87 

 
 

 
 
 
 
 
 
 
 



Table 3S Proton chemical shift (ppm) of OCT1-(EG)4-p-Qut in D2O,10 mM potassium phosphate 
buffer and 100 mM NaCl (pH 6.7), T=25°C 
 
 H8/H6 H5/H2A H1’ H2’ H2’’ Me 
T1 7.54 -- 6.08 2.58 2.42 1.66 
T2 7.46 -- 6.12 2.66 2.25 1.61 
C3 7.56 5.64 5.91 2.43 2.16 -- 
C4 7.38 5.58 5.48 2.27 1.80 -- 
G5 7.79 -- 5.48 2.68 2.61 -- 
G6 7.69 -- 5.44 2.64 2.52 -- 
A7 7.94  5.81 2.74 2.64 -- 
A8 7.98  6.03 2.70 2.52 -- 
 Har1 Har1 Har1 Har2 Har2 Har2 Har2 Hα Hβ Me CH2O 
Quta 7.11 7.43 8.03 7.32 7.76 7.85 nd 4.00 4.40 1.43 3.00-3.98 

a Har 1 and Har 2 stands for aromatic protons of ring 1 and 2 respectively 
 

 
Figure 1S. CD spectra of TBA-(EG)4-pQut from 5ºC to 75 ºC 
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