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To prepare a biosynthetic module in an infochemical communication project, we

designed a silicon=glass microreactor with anti-adsorption polyelectrolyte

multilayer coating and immobilized alcohol acetyl transferase (atf), one of the key

biosynthetic enzymes of the pheromone of Spodoptera littoralis, on agarose beads

inside. The system reproduces the last step of the biosynthesis in which the

precursor diene alcohol (Z,E)-9,11-tetradecadienol is transformed into the major

component (Z,E)-9,11-tetradecadienyl acetate. The scope of this study was to

analyze and implement a multilayer, anti-adsorption coating based on layer-by-

layer deposition of polyethylenimine=dextransulfate sodium salt (PEI=DSS). The

multilayers were composed of two PEI with molecular weights 750 and 1.2 kDa at

pH 9.2 or 6.0. Growth, morphology, and stability of the layers were analyzed by

ellipsometry and atomic force microscopy (AFM). The anti-adsorption

functionality of the multilayer inside the microreactor was validated. The activity

of His6-(atf) was measured by gas chromatography coupled to mass spectrometer

(GC-MS). VC 2011 American Institute of Physics. [doi:10.1063/1.3608138]

I. INTRODUCTION

Insects communicate with their con-specifics using complex blends of volatile chemicals

called pheromones. The pheromone communication system consists of the release of specific

chemical blends, generally by the females, to the environment that are then detected by a very

sensitive olfactory system of the males. These chemical blends are biosynthesized in a phero-

mone gland in most cases from fatty acids by pheromone specific enzymes. The biosynthetic

pathways of the sex pheromone of the moth Spodoptera littoralis1 was taken as a starting point

for the development of a chemical communication system to mimic the generation and recep-

tion of a chemical signal.2 One of the biosynthetic modules is an enzymatic microreactor sys-

tem to perform the final biosynthetic step in the production of the major component of the

pheromone, (Z,E)-9,11-tetradecadienyl acetate.1 In the future, such modules will be hierarchi-

cally integrated to establish a chemoemitter for infochemical communication.

The last step in the biosynthesis of all components of the pheromone blend of S. littoralis
consists of the transfer of an acetyl group from acetyl-CoA to the precursor alcohol. This reac-

tion is catalyzed in the moth by an alcohol acetyl transferase. However, due to the absence of a

known acetyl transferase in S. littoralis, we selected an orthologue (a wax ester synthase, atf)
to perform the same biochemical reaction (Fig. 1). The atf esterifies aliphatic alcohols with car-

bon chains longer than 6 into the corresponding acetates.3 To exploit this enzymatic reaction in

a microreactor module, a route was sought to immobilize the enzyme in a microreactor
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compartment. Several of such compartments, containing different biosynthetic enzymes, may

then be connected by an integrated microfluidic network (see e.g., Ref. 4) in order to mimic the

complete biosynthetic pathway. Several methods to immobilize enzymes in a microfluidic envi-

ronment have been described in the literature,5–8 and for simplicity, we followed a similar pro-

cedure to that reported by Seong et al.9 This involved immobilization of the enzyme on

microbeads and package of the beads into a microfluidic chip, through which a flow of the sub-

strate solution was passed to produce the expected product at the outlet.

Preliminary experiments with such a construct showed that the compounds of our interest

were prone to adsorb on the surface of the silicon=glass microreactor. Previous fundamental

studies have proved that adsorption on silicon surfaces (with a native oxide) occurs on silanol

groups.10,11 Building a polyelectrolyte multilayer (PEM) on these negatively charged groups

may mask the charges and prevent adsorption. Deposition of PEM was implemented using a

layer-by-layer (lbl) technique, suggested by Iler12 and later developed by Decher.13 The polye-

lectrolyte system explored here was polyethylenimine=dextransulfate sodium salt (PEI=DSS). A

similar approach was adopted by Kim and Urban as a basis for thromboresistant thin films on

polyvinyl chloride.14 The polyelectrolyte modification of microreactor surfaces is a versatile

method in terms of layer optimization which allows fine tailoring of interfacial properties of

glass, silicon, and poly(dimethylsiloxane) (PDMS).15–17 During the last two decades, research

has been performed on polyelectrolyte stability,18 growth regimes,19,20 and interaction with pro-

teins.21,22 Additionally, specific knowledge on PEI charge density,23,24 adsorption behavior,25,26

and dynamics of protein interactions at interfaces27 provide us solid ground for further explora-

tion and implementation of the PEI=DSS couple in a biomicroreactor.

Foregoing literature describes the adsorption of PEI on silica19,25,26 and the PEI coupling

to epoxysilane for attachment of antibodies;28 however, the PEI=DSS polyelectrolyte couple

has not been studied in details for deposition on silanized silicon surfaces. Thus, it is important

to characterize the layer formation and thickness on the silanized substrate under various condi-

tions and to compare with their non-silanized counterparts before application in a microreactor.

II. MATERIALS AND METHODS

Branched polyethyleneimine (PEI) 50% (wt.) solution with molecular weight 750 kDa and

PEI with molecular weight 1.2 kDa as polycations and DSS from Leuconostoc spp. as polyan-

ion with molecular weight 500 kDa were used in the lbl deposition. The cross linking reagent,

crotonaldehyde, sodium cyanoborohydride (NaCNBH3), sodium chloride (NaCl), acetate, MES

monohydrate and borate buffers, dodecyl acetate (97%), toluene (anhydrous GC grade), N,N-di-

methyl-formamide (DMF), dimethyl sulfoxide (DMSO, GC grade), glycerol, acetyl coenzyme

A sodium salt (acetyl-CoA), Trizma HCl (Tris-Cl), hydrogen peroxide (H2O2, 30%), (3-glyci-

doxypropyl)trimethoxysilane (97%, GC grade), and sulfuric acid (H2SO4, 98%) were purchased

from Sigma-Aldrich (Chemie BV, Germany) and used without further modification. The (Z,E)-

9,11-tetradecadienyl acetate was purchased from Bedoukian (Danbury, USA).

FIG. 1. Bioconversion catalyzed by an alcohol acetyl transferase (a wax ester synthase, atf, in this paper). In the presence

of acetyl-CoA atf transforms the (Z,E)-9,11-tetradecadienol, the pheromone precursor, into (Z,E)-9,11-tetradecadienyl ace-

tate, the pheromone product.
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The agarose beads were part of HisBand purification kit from Novagen (Darmstad, Ger-

many). One side polished 4 in. Sif100g wafers were obtained from Okmetic (Vantaa, Finland),

4 in. borofloat glass wafers were purchased from Schott AG (Benelux, The Netherlands).

A. Surface activation before layer deposition

Characterization of lbl deposition was conducted on 7� 7 mm2 pieces diced from the sili-

con wafer (Disco DAD-321, Tokyo, Japan). Prior to layer deposition, the silicon pieces were

activated with piranha solution (H2SO4 (98%):H2O2 (30%) 3:1) for 25 min. (Attention: Piranha

is a strong oxidizing agent!) The abundance of hydroxyl radicals from piranha opens the silox-

ane bonds on the Si=SiO2 surface to form silanols. Surfaces were washed for 25 min with copi-

ous amount of Milli-Q water (Millipore, Billerica, USA), dried in N2 flow and on a hotplate in

air at 100 �C for 5 min.

B. Polyelectrolyte layer-by-layer deposition

1. Non-anchored layer

In our study, direct deposition of non-anchored PEM on the activated wafer surfaces was

performed by lbl adsorption,13 an electrostatically driven sequential deposition of polyelectro-

lytes from water solutions. Initial experimental conditions for the PEM generation were chosen

according to Kim and Urban.14 Two variants of PEI, with molecular weight 1.2 kDa and 750

kDa, were used as polycations during the lbl deposition. For each molecular weight 0.01%

(wt.), PEI aqueous solutions were prepared in 10 mM MES buffer at pH 6 and 10 mM borate

buffer at pH 9.2. Crotonaldehyde (4.1 lM) was added and the salt concentration was adjusted

to 1.7 mM NaCl. Time of incubation in the PEI solution was 10 min at room temperature. The

loosely bound PEI molecules were removed with sufficient amounts of Milli-Q water.

The Si pieces were transferred consecutively into Eppendorf tubes containing 0.4% (wt.)

DSS in 10 mM acetate buffer, pH 3.8, with 1.7 mM NaCl and incubated for 10 min at room

temperature. Non-adsorbed DSS molecules were discarded by washing with Milli-Q.

An odd number of layers were deposited alternating PEI with DSS, thus terminating the

build-up with positively charged PEI.

2. Anchored layer

Anchored PEM, via (3-glycidoxypropyl)trimethoxy silane, was obtained following a

slightly modified protocol from the originally reported covalent attachment on silicon beads.29

Activated, dry, Si pieces were incubated in 1.5% (3-glycidoxypropyl)trimethoxy silane solution

in anhydrous toluene for 2 h and then rinsed with DMF. Coupling of the amino group to the

epoxy was done overnight using 0.01% (wt.) PEI (molecular weight 1.2 kDa or 750 kDa) in

DMF. The pH values were maintained with 10 mM MES, pH 6, or 10 mM borate buffer, pH

9.2. The Si pieces were rinsed with Milli-Q water. The processing continued for an odd number

of layers as the direct deposition lbl described above, terminating with PEI as target molecule

because of its positively charged amino groups.

3. Reduction of the Schiff bases

To complete the process and to obtain stable cross linking, a 10 mM solution of NaCNBH3

in 10 mM acetate buffer, pH 3.8, was applied to the surface for 1 h at room temperature. Dur-

ing this step, the Schiff bases were reduced. Surfaces were rinsed with water and dried over-

night at 30 �C before characterization.

C. Characterization of the polyelectrolyte layers on Si surface

Surface morphologies and step heights were studied with a commercial atomic force micro-

scope (Dimension Icon, Bruker, Germany) equipped with a Nanoscope V controller. All scans

were obtained in non-contact mode using rectangular silicon cantilevers (NCH, NanoWorld,
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Switzerland) with a force constant of 42 N=m. Roughness of the surfaces was determined for a

constant scan area of 1� 1 lm on dry samples. The raw data were processed and visualized

with GWYDDION (version 2.19), an open source software.

The scans for the step measurements were conducted after scratching away part of the coating

with a scalpel. Then heights were obtained from those scans by fitting a step-height (GWYDDION) to

the interface between scratch and coating. For each surface modification, the mean height value

and standard deviation were calculated from three cross sections, illustrated in Fig. 2.

The thickness of dry polymer layers was determined by ellipsometry on the Si pieces after

each layer of the PEM deposition process. Angles W and D were measured with a VASE

(J. A. Woollam Co., Inc, Lincoln, USA) ellipsometer at three incident angles, 65�, 70�, 75�,
using the wavelength (k) from 250 to 1250 nm. The number of samples was duplicated in

order to evaluate the reproducibility of lbl deposition. Thickness and refractive index of the

native oxide layer on bare Si pieces were obtained by using the WVASE32 modeling software

for the measured W and D in the beginning of each experimental series. The mean layer thickness

was calculated from the three incident angles data, fitted by the two layer Cauchy mathematical

model.

Stability of the coatings was evaluated by comparison of thicknesses before and after incu-

bation in working conditions. The initial layer thicknesses were ellipsometrically measured, two

points from each sample, then the samples were left in 10 mM Tris-Cl (pH 7.3) with 10% glyc-

erol at 30 �C for a week. Samples were dried and the measurements were repeated.

D. Fabrication of the silicon=glass microreactor

Fabrication of the silicon-glass microreactor followed well established techniques.30 The

200 lm deep channel was etched with straight walls into the silicon wafer after 10 min

“Bosch” directed reactive ion etching (B-UNIFORM recipe, Adixen AMS100SE, Alcatel,

France). The fluorides, formed during Bosch processing, were striped first with oxygen plasma

for 10 min (500 W) followed by 15 min at 800 �C. Resulting SiO2 was etched for 2 min in

50% HF. A Borofloat wafer was cleaned, spin dried, and anodically bonded (EV 501 Bonding

Station, EV Group, Austria) to the clean, dry Si wafer.

FIG. 2. Height of step measurement. Three cross sections were set in random positions on the AFM scan across the

scratch=coating interface and a model was fit measuring the step heights.
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E. Adsorption of (Z,E)-9,11-tetradecadienol and (Z,E)-9,11-tetradecadienyl acetate inside

the silicon=glass microreactor

Reaction buffer with predefined concentrations of substrate and product were flown through

the microreactor at a rate of 10 ll=min. The non-coated microreactor with non-coated syringe

and capillary was compared with the microsystem (microreactor and capillaries) coated with

high molecular weight (HMW) PEI=DSS (pH 9.2=3.8) in the adsorption experiment. Collected

fractions at the outlet were extracted with hexane and analyzed by gas chromatography coupled

to mass spectrometer (GC-MS) (ThermoFisher Sci., Madrid, Spain).

F. Determination of His6-EGFP adsorption inside a silicon=glass microreactor

Standard dilutions were prepared from a stock solution of 40 lM enhanced green fluores-

cent protein with Histidine tag (His6-EGFP) in 10 mM Tris-Cl containing 10% glycerol. Fifty

microliters of the stock solution was transferred into an Eppendorf tube with 50 ll of 10 mM

Tris-Cl, 10% glycerol to result in 20 lM concentration. By repeating this process, standard sol-

utions of 10, 5, 2.5, 1.25, and 0.625 lM were obtained. Non-coated microreactor was filled

with the last standard dilution, a fluorescent image was acquired at magnification �20 with 4 s

exposure time using a microscope with external light source (Leica AF6000 with EL6000,

Leica microsystems, Germany), and the microreactor was flushed with water. The process was

repeated with the next dilution sample (1.25 lM) and so on. The obtained fluorescent images

were converted (MATLAB 2008, The MathWorks, USA) to 8-bit gray scale images and the aver-

age of the pixel intensity was calculated for each image. The collected data points were plotted

versus the protein concentration to generate the calibration curve shown in Fig. 3.

For the adsorption measurement 20 lM His6-EGFP solution was inserted in an anchored

HMW PEI=DSS (pH 9.2=3.8) coated microreactor and incubated for 30 min at room tempera-

ture. An image of the microreactor was acquired to evaluate fluorescence of the protein. The

biomicroreactor was shortly rinsed with buffer and another image was acquired. Measurements

were triplicated. The amount of adsorbed His6-EGFP was determined by using the calculated

intensity from these images and the already generated calibration curve.

G. Expression and purification of His6-atf

The construction pET23a::His6atf was transformed into Escherichia coli (strain Rosetta

(DE3)pLys) and protein was expressed according to the procedure described by Steinbüchel

et al.3 Next the overexpressed atf was purified from the crude extract by metal affinity chroma-

tography (Novagen), followed by membrane dialysis (MWCO 68000, 6.4 mm diameter; Spec-

trumlabs) to remove the imidazole used during the chromatographic elution.

FIG. 3. Calibration curve imaging the His6-EGFP content versus the fluorescence intensity measured inside a microreactor.

Fluorescent images were acquired in duplicate and concentrations were plotted against their intensity values, the data were

fitted to an exponential curve.
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H. Immobilization and activity assay of the His6-atf inside the microreactor

In total a five layer structure was anchored via (3-glycidoxypropyl)trimethoxy silane inside

a microreactor and capillaries, following the protocol described above and using HMW

PEI=DSS (pH 9.2=3.8) for 10 min deposition time in a stopped flow mode. Then, 100 ll of so-

lution containing Nitrilotriacetic acid (NTA) functionalised agarose beads was introduced into

the microreactor. The beads were prevented from leakage by adjusting the gap between the cap-

illary and microreactor outlet smaller than the smallest measured bead diameter approximately

30 lm. Further, conditioning of the packed agarose beads was performed in accordance with

the Novagen protocol for protein purification.

A solution of 10 lg His6-atf in 10 mM Tris-Cl, pH 7.3, with 10% glycerol was prepared.

The solution was manually injected into the microreactor and incubated for 30 min. The col-

lected fraction was re-injected, and incubation was repeated till the total incubation time was

2 h. The enzyme was kept on ice during incubation. The biomicroreactor was thoroughly

washed with buffer using a syringe pump (PHD 2000 Programmable, HARVARD apparatus,

UK) at 10 ll=min for 15 min.

For the activity assay, the reaction buffer contained 10 mM Tris-Cl (pH 7.3) with 10%

glycerol, 250 lM acetyl-CoA, 320 lM (Z,E)-9,11-tetradecadienol, and 4% DMSO. The DMSO

was used as solvent to prepare the stock solution of 8 mM (Z,E)-9,11-tetradecadienol. The reac-

tion buffer was run through the system at 10 ll=min using the syringe pump. Fractions were

collected from the outlet of the biomicroreactor in sealed glass vials. A batch reaction experi-

ment was set in parallel under the same conditions.

I. Hexane extraction and measurement of pheromone concentration by GC-MS

Extraction of the organic material from the aqueous phase was done with hexane. Dodecyl

acetate (0.2 ml of a 0.3 lg=ml solution) was added to the extract, vortexed for 1 min. The sam-

ples were frozen in dry ice, the organic fractions were taken out with a Pasteur pipette, concen-

trated to ca. 20 ll and analyzed by GC-MS on a HP-5MS column (Agilent Technologies, Ma-

drid, Spain). This step was done in duplicate. Injector and detector (FID) temperature were set

to 280 �C. The oven temperature was initially set at 80 �C and increased at 3 �C=min until

280 �C, which was held for 10 min. The injections were done in splitless mode at 60 ml=min

and a splitless time of 0.6 min. Helium was used as a carrier gas at a flow rate 1.3 ml=min.

III. RESULTS AND DISCUSSION

A. Characterization of polyelectrolyte multilayer thickness and morphology

We studied the effect of pH and MW on the thickness of one, three, and five layers on flat

silicon silanized surfaces and compared the results with those of non-silanized surfaces. The

results obtained for both silanized and non-silanized surfaces (Figs. 4(a) and 4(b)) showed that

the thickness of PEM deposited at alkaline pH is larger than the thickness of the layers depos-

ited at acid pH. The same general trend can be observed irrespective of the number of layers.

These results can be explained by the adsorption energy, solvency, and electrostatic interac-

tions.31 The latter, also known as Coulombic interactions, can be influenced by the surface and

polymer charge density, as well as the ionic strength of the solution due to the influence of pH

on the surface charge density, and to the dissociation of amino groups in the PEI molecules.

For instance, in the case of PEI from Fig. 4(a), the anchoring layer on the surface screens the

negatively charged silanols and shifts the electrostatic interaction towards a covalent bond for-

mation between an amino and an epoxy group. In comparison, on the non-silanized surfaces

(Fig. 4(b)), the PEI layer is rather thin in all four experimental variations. This is due to the

fact that electrostatic forces govern the deposition and once the charges on the Si surface are

compensated, no further growth takes place.

In the case of anchored PEI=(DSS=PEI)�2, illustrated in Fig. 4(a), the buildup reaches

21.9 6 0.2 nm for the HMW at pH 9.2 because the electrostatic interaction is restored with the

lbl deposition. Moreover, low molecular weight (LMW) at the same pH is approximately 3 nm
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thinner. Another group is formed by the HMW at pH 6 with 6.7 6 0.3 nm thickness and LMW

at pH 6 for which the thickness was 6.0 6 0.1 nm. Strong evidence of the pH influence on the

PEI=DSS growth was obtained by AFM step measurement. The results are consistent, within

the error, to the experimental values from the ellipsometry, Table I.

Thus, pH influences significantly the thickness, especially with higher layer number, and

therefore is a suitable control parameter for layer thickness.

Another parameter that influences the deposition of PEM is the time of adsorption. The

most suitable method for this investigation was to utilize non-silanized surfaces because of the

marginal differences between the two types of substrate in terms of growth, especially for high

layer numbers. Therefore, we measured the non-silanized samples with 5, 10, 15, and 20 min

deposition time between two consecutive layers (Fig. 5(a)).

Looking at the mean thickness for five layers, all coatings are within 18 to 21 nm. A simi-

lar situation was observed for the mean values measured from the four layer structures: in the

same interval of deposition times the thickness values were in the range of 10 to 14 nm. Based

on these results, it can be stated that the deposition time between two consecutive layers does

not influence the deposition process of PEI=DSS multilayer, because the difference in thickness

between 5 and 20 min time of deposition is relatively small within the same number of layers.

The finding is in agreement with the work of Müller and Paulik27 on PEI=PAC and the earlier

study by Cohen-Stuart et al.18 The former used ATR-FTIR to study the kinetics and showed a

steep ascent for less than 5 min deposition time, which is outside our region of investigation;

however for longer deposition times, the thickness increased slightly. Therefore, any of the

times from the studied interval (5 to 20 min) could be implied for coating a microsystem and

the resulting PEI=DSS thickness would not vary strongly between the same number of layers

generated at different times of deposition.

FIG. 4. Effects of pH and molecular weight of PEI on layer thickness after 10 min incubation. In total, five polyelectrolyte

layers were generated on planar (a) silanized with (3-glycidoxypropyl)trimethoxy silane and (b) non-silanized silicon surfa-

ces using PEI with HMW¼ 750 kDa or LMW¼ 1.2 kDa.

TABLE I. Thickness of PEMs deposited on silanized silicon surfaces. From the generated AFM scans, the height of step

(mean values 6 SD) is presented.

PEI PEI=DSS=PEI PEI=(PEI=DSS)� 2

HMW, pH 9.2 3.9 6 2.1 15.4 6 3.5 24.4 6 4.5

HMW, pH 6 3.2 6 1.2 6.0 6 1.0 6.7 6 1.4

LMW, pH 9.2 5.3 6 1.6 12.9 6 1.4 19.3 6 2.3

LMW, pH 6 1.9 6 1.5 7.3 6 1.8 7.8 6 0.6
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The thickness growth of the PEI=DSS (pH 9.2=3.8) has linear behavior with the total depo-

sition time. This trend, which is attributed to the lack of diffusion between consecutive layers is

shown in Fig. 5(b) for 5 min deposition between two single layers. The results are consistent

with the findings by Bieker and Schönhoff,20 although these authors applied a different polye-

lectrolyte couple. By using the established linear growth pattern, it is possible to adjust the

thickness of the PEI terminated multilayer coating for more than five layers.

AFM scans, illustrated in Fig. 6, show the influence of the number of layers on the mor-

phology and roughness (RMS) of the HMW PEI=DSS coating (pH 9.2=3.8). The coverage of

the first layer (a) is already sufficient as the layer appears homogeneous with a granular struc-

tured coating. The roughness of this layer is the lowest of all four layers, RMS¼ 0.41 nm. In

the second and third layers, the granular structures grow in size which results in increase in

roughness from 1.34 nm (b) to 1.66 nm (c). Although the RMS values differ by 0.22 nm, it can

be seen that bulky structures start to form on the surface of the three layer coating (c). Rough-

ness reaches a value of 5.55 nm for layer (d) whilst the grain structure does not alter in com-

parison to the third layer (c). The influence of time on roughness, for the PEI=PAC couple, has

been documented in previous research.27 In their work, the authors presumed that an increase

in adsorption time would lead to an increase in RMS. In contrast, the current findings on the

PEI=DSS couple allow us to assume that roughness increase is dependent on the number of

layers even for constant time of deposition.

The PEMs have implicit porous structure, as observed in Fig. 6. On the first two surfaces,

such porosity might result in non-protected silanol groups and consecutive pheromone adsorp-

tion because of poor layer coverage and low thickness. Therefore, they were considered unsuit-

able for modifying the silicon=glass microreactor. The coverage of both layers (c) and (d)

would be sufficient to prevent adsorption.

B. Layer stability in working conditions

The results from the measurements are summarized in Figs. 7(a) and 7(b), from which it

becomes clear that there is no depletion of the surface coating after 1 week. The coatings have

no decrease in thickness before and after the incubation period for both silanized and non-silan-

ized samples. For the LMW layer generated at pH 9.2, an increase of the thickness was

observed, in the authors’ opinion, due to residual water on the sample. Nevertheless, it can be

FIG. 5. Layer thickness versus time of deposition. Five single PE layers were generated starting with HMW PEI, pH 9.2,

and alternating with DSS, pH 3.8. The thicknesses were measured in duplicate by Ellipsometry, one point per sample, after

each deposition step. Plotted were (a) the mean values of thicknesses and standard deviations for increasing times of depo-

sition between two consecutive layers from 5 min to 20 min; (b) experimental data (symbols) and fitted function correlating

the thickness to the total deposition time, R2¼ 0.95.
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stated that, in static conditions, without flow, PEM stability is not dependent on the anchoring

layer. The PEI=DSS multilayer is stable and suitable for application in a biomicroreactor for

pheromone synthesis.

C. Chemical and biological inertness of PEI terminated coating inside a microreactor

The recovered amounts of dienol and acetate for three different experimental conditions are

summarized in Fig. 8 as percentage of the initial concentration. The recovered substrate (Z,E)-

9,11-tetradecadienol from the syringe and capillary was approximately 38%. The recovered

amount was lower in the non-treated system (12%), whereas for the one coated with the five

single layers, the recovered amount of alcohol increased to 85%. Recovery of the product

(Z,E)-9,11-tetradienyl acetate was lower in the three cases, amounting to 4% in the non-coated

system, 18% for the syringe and capillary, and 60% for the PEM coated microsystem. These

data confirm the efficiency of the PEM as anti-adsorption layer (ca. 20� the recovered amount

of substrate and product in comparison to the non-coated system).

The substrate recovery is close to the initial concentration. Overall, loss of product may be

due to the polar nature of the acetate functional group of the pheromone, which is retained pos-

sibly due to interactions with the PEI terminal layer. The exact mechanism of adsorption for

the (Z,E)-9,11-tetradecadienol and (Z,E)-9,11-tetradienyl acetate on the weak PEM coating is

still not clear. In the authors’ opinion, due to the porosity of the PEM coating there might be

regions with active negative charges either from the Si surface or the DSS. Plausibly, the swel-

ling of the PEM would enhance the effect, by exposing charged sites on the surface. Equally

valid, if the charge on the terminal PEI layer approaches zero, the repulsion from the surface

would diminish and adsorption would eventually take place because of weak interactions. The

zero surface charge could be a result of the charge overcompensation, which is assumed to be

FIG. 6. AFM scans representing the surface morphology of polyelectrolyte coating, deposited at 10 min of incubation, on

silinated silicon substrate: (a) one layer (PEI), RMS¼ 0.41 nm; (b) two layers (PEI=DSS), RMS¼ 1.34 nm; (c) three layers

(PEI=DSS=PEI), RMS¼ 1.66 nm; (d) five layers (PEI=(DSS=PEI)�2), RMS¼ 5.55 nm.

034102-9 Biomicroreactor with anti-adsorption PEM Biomicrofluidics 5, 034102 (2011)

Downloaded 20 Jul 2011 to 161.111.223.248. Redistribution subject to AIP license or copyright; see http://bmf.aip.org/about/rights_and_permissions



the driving force for PEM formation during the lbl deposition. Additionally, the ionic strength

of the solution could also lead to zero charge, according to the Derjaguin, Landau, Verwey, and

Overbeek33,34 theory (DVLO). Nonetheless, the recovered amount for the (Z,E)-9,11-tetradienyl

acetate is 20 times higher from the coated microsystem than from its non-coated counterpart.

According to these results, the enzymatic reaction should be achievable in a PEM coated

microsystem.

Next, the effect of the PEM coating on adsorption of protein was studied. The retained

His6-EGFP on the walls of the microchannel was determined, and amounted to less than 0.2

lM. Even though a direct comparison between the adsorption behavior of His6-EGFP and His6-

atf would be futile, since these two proteins have different amino acid sequences and structure,

we can infer it indirectly. The native isoelectric point of His6-EGFP proteins is in the range of

5–6.2,32 which will result in an overall negative charge for His6-EGFP at the immobilization

conditions (pH 7.3). On the other hand, atf is positively charged at pH 7.3.35 Therefore, if His6-

FIG. 7. Effects of incubation for 1 week in the specified solution. Five PE layers were deposited on, (a) silanized with

(3-glycidoxypropyl)trimethoxy silane and (b) non-silanized, silicon surfaces using PEI with HMW¼ 750 kDa or

LMW¼ 1.2 kDa.

FIG. 8. Amount of (Z,E)-9,11-tetradecadienol and (Z,E)-9,11-tetradienyl acetate recovered after passing through a non-

coated microreactor, non-coated syringe and capillary, and microreactor and capillary coated with PEM.
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EGFP molecule is not adsorbed on a positively charged surface, this would mean that no inter-

action would be expected for the positively charged atf either.

However, in their work on adsorption of lysozyme at a model charged surface, Kubiak-

Ossowska and Mulheran36 argue that electrostatic interactions might not be sufficient to domi-

nate protein adsorption. This opinion is confirmed by Müller and Paulik,27 who state that

adsorption is possible for negatively charged human serum albumin on negatively charged

poly(vinylsulfate).22 Accordingly, such interaction would occur between charged domains of

the protein molecule and dissociated polyanion. Although the adsorption behavior of His6-

EGFP cannot be translated unconditionally on atf, it provides valuable information about

adsorption on PEI terminated coating. The experimental results evidence that PEI=His6-EGFP

interactions are weak and reversible.

D. Biomicroreactor activity in comparison with batch activity

The reactions were conducted after thorough washings of the microreactor with buffer solu-

tion, indicating that the enzyme was successfully immobilized by coordination bonds to the

agarose beads. Thus the PEI=DSS multilayer coating was proved inert towards the immobilized

enzyme.

The results from these experiments are illustrated in Fig. 9 and show similar conversion in

the biomicroreactor and in the batch. Considering the mean values for detected (Z,E)-9,11-tetra-

decadienol and (Z,E)-9,11-tetradienyl acetate from the batch and PEM coated microreactor,

there is a loss of approximately 30% in each system, compared to the amount of (Z,E)-9,11-tet-

radecadienol in the initial mix. Despite the non-complete recovery, a working biomicroreactor

was presented thus proving the functionality of the anchored five layers coating based on the

PEI=DSS.

IV. CONCLUSIONS

In summary, a PEM coated silicon=glass microreactor has been developed to mimic the

biosynthetic last step of the pheromone of S. littoralis. The PEI=DSS multilayer coating was

able to mask the active sites on silicon surfaces, thus considerably reducing adsorption of the

substrate and the pheromone. Equally important, the PEI terminated coating demonstrated inert-

ness towards His6-EGFP from which was presumed an identical lack of interaction with the

His6-atf. The PEI=DSS properties were affected by pH and time of deposition and therefore

these parameters could be used to achieve the desired thickness and morphology of the coating.

FIG. 9. Conversion of (Z,E)-9,11-tetradecadienol into (Z,E)-9,11-tetradienyl acetate in batch and after single passing

through a biomicroreactor coated with PEM and containing atf immobilized on beads.
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Our findings would allow to optimize the infochemical pheromone synthesis using biomi-

croreactors. More generally, the explored PEI=DSS couple could be applied successfully as an

anti-adsorption coating in a variety of silicon surfaces using polar substrates.
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1L. Muñoz, G. Rosell, C. Quero, A. Guerrero, Physiol. Entomol. 33, 275 (2008).
2M. Cole, J. Gardner, Z. Racz, S. Pathak, A. Guerrero, L. Muñoz, G. Carot, T. Pearce, and J. Challiss, et al., in Sensors,
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