

2	1	Running title: L. PLANTARUM BENZYL ALCOHOL DEHYDROGENASE
4 5	2	
o 7 8	2	
9 10	3	
11 12	4	
13 14	5	Characterization of a benzyl alcohol dehydrogenase from
15 16 17	6	Lactobacillus plantarum WCFS1
18 19	7	
20 21 22	8	
22 23 24	9	
25 26	10	
27 28 29	11	José María Landete, Héctor Rodríguez, Blanca de las Rivas, and Rosario Muñoz*
30 31	12	
32 33	13	
34 35 36	14	Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan de la
37	15	Cierve 2, 28006 Medrid, Spein
39 40	15	Clerva 5, 28000 Madrid, Span
41 42	16	
43 44	17	
45 46	18	* Corresponding author:
47 48	19	Address: Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006
49 50	20	Madrid, Spain. Phone: +34 91 5622900; Fax: +34 91 564 4853.
52 53	21	E-mail: rmunoz@ifi.csic.es
54 55		
56 57		
58 59		
60		

22 Abstract

24	Aroma is an important sensory parameter of food products. Lactic acid bacteria
25	have enzymatic activities that could be important in the modification of food aroma. The
26	complete genome sequence from <i>Lactobacillus plantarum</i> WCFS1 shows a gene (lp_3054)
27	putatively encoding a protein with benzyl alcohol dehydrogenase activity. In order to
28	confirm its enzymatic activity we have overexpressed and purified lp_3054 from this strain.
29	Protein alignment indicated that lp_3054 is a member of the family of NAD(P)-dependent
30	long-chain zinc-dependent alcohol dehydrogenases. In lp_3054 all the residues involved in
31	zinc and cofactor binding are conserved. It is also conserved the residue that determine the
32	specificity of the dehydrogenase toward NAD+ rather than NADP+, and therefore, L.
33	plantarum benzyl alcohol dehydrogenase is less active in the presence of NADP+ than in
34	the presence of NAD+. The purified enzyme exhibits optimal activity at pH 5.0 and at 30
35	°C. The kinetic parameters, $K_{\rm m}$ and $V_{\rm max}$ on benzyl alcohol as a substrate were, respectively,
36	0.23 mM and 204 μ mol h ⁻¹ mg ⁻¹ . Besides its activity towards benzyl alcohol, it showed
37	activity against nerol, geraniol, phenethyl alcohol, cinnamyl alcohol, and coniferyl alcohol,
38	all of them volatile compounds involved in determining food aroma. The biochemical
39	demonstration of a functional benzyl alcohol dehydrogenase activity in this lactic acid
40	bacteria species should be considered when determining the influence of bacterial
41	metabolism in the aroma of food products.

43 KEYWORDS: Benzyl alcohol dehydrogenase; benzyl alcohol; aromatic alcohols;
44 aroma; benzaldehyde.

46 INTRODUCTION

48	Aroma is one of the most important quality criteria of fruit and wine products. Wine
49	aroma, a very important sensory parameter, is composed of a wide variety of compounds
50	with different aromatic properties. More than 800 volatile compounds have been identified
51	in wine, including flavour compounds originating from the grape, yeast and bacterial
52	fermentations, and post-fermentation treatments such as oak storage and bottle aging (1) .
53	The typical aroma mainly relates to volatile compounds that come from the grapes.
54	In a great number of fruits including grapes, apart from free flavour components, a
55	significant part of important flavour compounds is accumulated as non-volatile and
56	flavourless glycoconjugates, which are known as glycosidic aroma precursors. The
57	odourless non-volatile glycosides, upon acid or enzymatic hydrolysis, can give rise to
58	odorous volatiles or volatiles able to generate odour-active compounds during fruit juice
59	processing or wine storage (2). Compounds such as terpenols, terpene diols, 2-
60	phenylethanol, benzyl alcohol, and C_{13} norisoprenoids have been shown to be aglycons of
61	such glycosides (3) . Some of the monoterpenes alcohols are the most odoriferous,
62	especially nerol and geraniol, which have floral aroma (4).
63	Lactobacillus plantarum is a lactic acid bacteria that is encountered in a variety of
64	niches, being most abundant in the fermentation of plant-derived raw materials. L.
65	plantarum strains are frequently used as malolactic starters in order to perform alcoholic
66	and malolactic fermentations simultaneously when co-inoculated with selected yeast starter.
67	Lactic acid bacteria associated with grape juice and wine has been shown to produce a
68	range of enzymatic activities that could potentially be important in wine aroma. Several
69	reports indicated that L. plantarum strains possess some glycosidase activities to hydrolyze

2	
2	
3	
4	
5	
6	
7	
0	
8	
9	
10	
11	
40	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
22	
22	
33	
34	
35	
36	
27	
37	
38	
39	
40	
14	
41	
42	
43	
44	
15	
40	
46	
47	
48	
10	
49	
50	
51	
52	
52	
50 E 4	
54	
55	
56	
57	
50	
20	
59	
60	

70	some odourless non-volatile glycosides to generate odour-active aglycons (5, 6, 7, 8).
71	However, the presence in <i>L. plantarum</i> of additional enzymatic activities able to modify the
72	aglycons generated, such as some aromatic alcohols, remains unknown.
73	In year 2003, the complete genome sequence of Lactobacillus plantarum WCFS1
74	was available (9). From the analysis of this sequence, a protein annotated as aryl alcohol
75	dehydrogenase (lp_3054) could be identified. Aryl alcohol dehydrogenase catalyzes the
76	reversible oxidation of some aromatic alcohols to aldehydes with the concomitant reduction
77	of NAD. Since i) aromatic alcohols are important volatile aroma compounds on foods; ii)
78	aryl alcohol dehydrogenases has been scarcely reported in bacteria, and, only benzyl
79	alcohol dehydrogenases from Pseudomonas putida (10, 11) and Acinetobacter
80	calcoaceticus (12, 13) have been extensively characterized; iii) in fact no experimental
81	evidence demonstrated that lp_3054 is an aryl alcohol dehydrogenase; we decided to
82	genetically and biochemically characterize lp_3054 protein from L. plantarum WCFS1 in
83	order to elucidate its role in the metabolism of this important food bacteria.
84	
85	
86	MATERIALS AND METHODS
87	
88	Materials. The L. plantarum strain that has been complete sequenced, L.
89	plantarum WCFS1 (NCIMB 8826), was used in this study. The compounds assayed in this
90	study were benzyl alcohol (Fluka cat. no.13170), phenethyl alcohol (Fluka cat. no.77861),
91	tyrosol (4-hydroxyphenethyl alcohol) (Fluka cat. no. 79058), coniferyl alcohol (Fluka cat.
92	no. 27740), cinnamyl alcohol (Fluka cat. no. 96330), geraniol (Fluka cat. no. 48799), nerol
93	(Fluka cat. no. 72170), ethanol (VWR BDH Prolabo), pyrogallol (Merck cat. no. 612),

catechol (Sigma cat. no. C9510), phloroglucinol (Fluka cat. no. 79330), tryptophol (Fluka
cat. no. 54350), *p*-coumaric acid (Sigma cat. no. C9008), and caffeic acid (Sigma cat. no.
C0625).

DNA manipulations. Bacterial DNA was isolated from overnight cultures using a
protocol previously described (14). DNA sequencing was carried out by using an Abi Prism
377 DNA[™] sequencer (Applied Biosystems, Inc.). Sequence similarity searches were
carried out using Basic local alignment search tool (BLAST) on the EMBL/GenBank
databases. Signatures, pI/MW, etc. were analysed on EXPASY (http://www.expasy.ch) site
and multiple alignment was done using CLUSTAL W on EBI site (http://www.ebi.ac.uk)
after retrieval of sequences from GenBank and Swiss-Prot.

Expression, and purification of benzyl alcohol dehydrogenase. Since the aryl alcohol dehydrogenases characterized in bacteria are generally designated as benzyl alcohol dehydrogenases (BADH), we decided to name the product of lp 3054 as benzyl alcohol dehydrogenase in order to unify designations. The gene coding for the putative benzyl alcohol dehydrogenase (lp 3054) from L. plantarum has been cloned and overexpressed following a strategy previously described (15). Briefly, the gene coding for lp_3054 from L. plantarum WCFS1 was PCR-amplified with Hot-start Turbo Pfu DNA polymerase by using the primers 323 (5'-CATCATGGTGACGATGACGATAAGatgaaaattaaagcagcagtggttg) and reverse 324 (5'-

115 AAGCTTAGTTAGCTATTATGCGTAtttccccggttgataatcttcatc) (the nucleotides pairing the

116 expression vector sequence are indicated in italics, and the nucleotides pairing the lp_3054

117 gene sequence are written in lowercase letters). The 1.1-kb purified PCR product was

118	inserted into pURI3 vector by using the restriction enzyme- and ligation-free cloning
119	strategy described previously (16). Expression vector pURI3 was constructed based on the
120	commercial expression vector pT7-7 (USB) but expressing a protein containing the
121	following leader sequence MGGSHHHHHHGDDDDKM consisting of a N-terminal
122	methionine followed by three spacer amino acids, a six-histidine affinity tag, a spacer
123	glycine residue, and the five-amino acid enterokinase recognition site (16). E. coli DH5 α
124	cells were transformed, recombinant plasmids were isolated and those containing the
125	correct insert were identified by restriction-enzyme analysis, verified by DNA sequencing
126	and then transformed into E. coli JM109(DE3) (pLysS) cells.
127	Cells carrying the recombinant plasmid, pURI3-BADH, were grown at 37 °C in
128	Luria-Bertani media containing ampicillin (100 μ g ml ⁻¹) and chloramphenicol (34 μ g ml ⁻¹),
129	and induced by adding 0.4 mM IPTG. After induction, the cells were grown at 22 °C during
130	20 h and collected by centrifugation. Cells were resuspended in 20 mM Tris-HCl, pH 8.0,
131	100 mM NaCl. Crude extracts were prepared by French Press lysis of cell suspensions
132	(three cycles at 1100 p.s.i.). The insoluble fraction of the lysate was removed by
133	centrifugation at 47 000 g for 30 min at 4 °C (17).
134	The supernatant was filtered through a 0.45 μ m filter and applied to a His-Trap TM -
135	FF crude chelating affinity column (Amersham Biosciences) equilibrated with 20 mM Tris-
136	HCl, pH 8.0, 100 mM NaCl containing 10 mM imidazole, to improve the interaction
137	specificity in the affinity chromatography step. The bound enzyme was eluted by applying
138	a stepwise gradient of imidazole concentration, from 20 mM Tris-HCl, pH 8.0, 100 mM
139	NaCl containing 10 mM imidazole to 20 mM Tris-HCl, pH 8.0, 100 mM NaCl containing
140	500 mM imidazole. Fractions containing the eluted BADH were pooled and the protein was
141	then dialyzed overnight at 4 °C in a membrane (3,500 cut-off) against 25 mM sodium

142	phosphate buffer, pH 6.5. The purity of the BADH enzyme was determined by 10% sodium
143	dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE) in Tris-glycine buffer.
144	
145	Protein Assay. Protein concentration was measured according to the method of
146	Bradford using a protein assay kit purchased from Bio-Rad Laboratories (Germany) with
147	bovine serum albumin as standard.
148	
149	Enzyme activity assay. Benzyl alcohol dehydrogenase (BADH) activity was
150	assayed by following the rate of nicotinamide adenine dinucleotide (NAD+) reduction at
151	340 nm, since NAD+ is colourless at 340 nm whereas NADH absorbs strongly at this
152	wavelenght (10) . The NAD+ reduction reaction of BADH was measured in a reaction
153	mixture (1.0 mL) containing 100 mM citric acid-sodium citrate buffer (pH 5.0), 15 mM
154	ZnCl, 100 mM NAD+, and enzyme (3 μ g), and the reaction was initiated with benzyl
155	alcohol (final concentration 100 mM). The reduction rate at 30 °C is linear between 5 and
156	40 min, and varies linearly with enzyme concentration. The standard assay was performed
157	at 20 min, under the linear range of the enzyme reaction. Substrate and enzyme blanks were
158	also prepared by incubating the enzyme or substrate with just buffer.
159	
160	Enzyme characterization. The determination of kinetic parameters as well as the
161	effect of different temperatures, pH, substrates, and additives on the activity of BADH from
162	L. plantarum were studied. BADH activity was assayed by the standard assay described
163	above. All the experiments were done in triplicate for each experiment and mean values
164	calculated.

Kinetic analysis was performed at pH 5 and 30 °C for 20 min in 100 mM citric acid-
sodium citrate buffer containing the substrate (benzyl alcohol) at various concentrations.
Values of $K_{\rm M}$ were calculated by fitting the initial rates as a function of substrate
concentration to the Michaelis-Menten equation.
To determine the optimal pH of the BADH, the purified enzyme was incubated
within different pH values (3-10) at 30 °C for 20 min using benzyl alcohol (100 mM) as the
substrate. Citric acid-sodium citrate buffer (100 mM) was used for pH 3-5, phosphate
buffer (100 mM) for pH 6-7, Tris-HCl buffer (100 mM) for pH 7-8, and 100 mM glycine-
KOH buffer for pH 9 and 10. The optimal temperature was assayed by incubating the
purified BADH in 100 mM citric acid-sodium citrate buffer (pH 5.0) at different
temperatures (4-90 °C) for 20 min using 100 mM benzyl alcohol as substrate.
To determine the substrate specificity of the L. plantarum BADH different alcohols,
allylic alcohols, aryl alcohols or phenolic compounds were assayed as potential substrates.
These compounds were tested at 100 mM by the standard assay described above. The
potential substrates assayed were phenethyl alcohol, tyrosol, conyferyl alcohol, cinnamyl
alcohol, geraniol, nerol, ethanol, pyrogallol, catechol, phloroglucinol, tryptophol, p-
coumaric acid, and caffeic acid.
Different metal ions (like Mg ²⁺ , Mn ²⁺ , Ni ²⁺ , K ⁺ , Na ⁺ , Cd ²⁺ , Ca ²⁺ , and Hg ²⁺)
surfactans (Tween 80 and SDS), denaturants (urea), chelators (EDTA), and inhibitors
(DMSO, β -mercaptoethanol) were assayed at 10 mM final concentration. To assay the
effect of metals and other additives on <i>L. plantarum</i> BADH activity, the enzyme was
incubated with a 10 mM concentration of different additives and 100 mM benzyl alcohol
100 mM citric acid-sodium citrate buffer (pH 5.0) at 30 °C for 20 min. The activity was
calculated as relative activity to the sample containing no additives.

189	To validate the method the MINITAB Student test was used. Three replicate
190	determinations were carried out for each experiment. Relative standard deviations were \leq
191	5%.
192	
193	
194	RESULTS AND DISCUSSION
195	
196	Benzyl alcohol dehydrogenase (lp_3054) from <i>L. plantarum</i> WCFS1 is a
197	member of the family of NAD(P)-dependent long-chain zinc-dependent alcohol
198	dehydrogenases. The deduced product of L. plantarum WCFS1 BADH is a protein of 373
199	amino acid residues, 40 kDa, and pI of 5.04. BLAST databases searches of the translated L.
200	plantarum DNA sequence identified high-scoring similarities with the zinc-containing
201	family of alcohol dehydrogenase protein sequences that catalyze the oxidation of ethanol to
202	acetaldehyde with the concomitant reduction of NAD+. The predicted sequence of the L.
203	plantarum WCFS1 BADH protein was aligned with selected zinc-containing alcohol
204	dehydrogenases in the databases. The alignment of protein sequences that had the highest
205	overall identity with that of <i>L. plantarum</i> is shown in Figure 1. The highest sequence
206	identity (42-43%) was shown between L. plantarum and BADHs from a Pseudomonas
207	putida plasmid and from Acinetobacter sp. strain ADP1. In addition, L. plantarum BADH
208	showed a 31% identity to horse liver BADH (Figure 1).
209	Sequence alignment of members of the Zn-containing alcohol dehydrogenase family
210	shows that only 9 amino acid residues are conserved in this family; these include eight Gly
211	and one Val with structural roles (Figure 1) (18) . Some of these residues constitutes the
212	characteristic zinc-dependent alcohol dehydrogenase motif GHEXXGXXXXGXXV

213	(from amino acid residues 61 to 76 in the L. plantarum BADH protein sequence) (18, 19).
214	Crystallographic evidence has shown that horse-liver BADH, the archetypal enzyme of this
215	family (Figure 1) binds two zinc atoms per enzyme subunit, with a catalytic zinc atom
216	bound at the active site to the ligands Cys-46, Asp-49, His-67 and Cys-174, and a structural
217	zinc atom bound to the cysteine residues 97, 100, 103, and 111 (Figure 1). These zinc
218	ligands, except Cys-97, all are found to be conserved in the L. plantarum BADH protein
219	(Figure 1). Several residues are involved in the cofactor binding in horse liver BADH. It
220	has been described that Asp-223 is important in determining the specificity of the
221	dehydrogenase toward NAD+ rather than NADP+. The residues Thr-178 and Val-203
222	interacts with the nicotinamide ring, polypeptide-backbone nitrogen atoms of residues Gly-
223	201 and Gly-202 could interact with an oxygen of the phosphate proximal to the
224	nicotinamide group, and Arg-47 binds the pyrophosphate of the NAD+ coenzyme. Position
225	47 in many enzymes are Arg, but substitutions to His, as in L. plantarum BADH protein, is
226	frequently observed (20). As showed in Figure 1, except Gly-202, all the residues involved
227	in NAD+ binding are conserved in the L. plantarum BADH. Sun and Plapp (1992) (18)
228	described that the minimal requirements for dehydrogenases of this family include the
229	following: several Gly residues at certain positions that are required to form a basic folded
230	structure; residues that are necessary to bind the catalytic zinc and to modulate its
231	electrostatic environment; and Asp residue that determine the specificity for NAD+; and
232	finally, a Ser or Thr residue that facilitates proton removal from the substrate. Taking into
233	account these requirements and based on its amino acid sequence, it could be concluded
234	that lp_3054 from <i>L. plantarum</i> WCFS1 is a member of the family of NAD(P)-dependent
235	long-chain zinc-dependent alcohol dehydrogenases.
236	

Page 11 of 28

1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	
6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	
7 8 9 10 11 12 13 14 15 16 17 18 19 20	
7 8 9 10 11 12 13 14 15 16 17 18 19 20	
8 9 10 11 12 13 14 15 16 17 18 19 20	
9 10 11 12 13 14 15 16 17 18 19 20	
10 11 12 13 14 15 16 17 18 19 20	
10 11 12 13 14 15 16 17 18 19 20	
11 12 13 14 15 16 17 18 19 20	
12 13 14 15 16 17 18 19 20	
13 14 15 16 17 18 19 20	
13 14 15 16 17 18 19 20	
14 15 16 17 18 19 20	
15 16 17 18 19 20	
16 17 18 19 20	
17 18 19 20	
17 18 19 20	
18 19 20	
19 20	
20	
20	
21	
22	
22	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
00	
32	
33	
34	
25	
30	
36	
37	
20	
30	
39	
40	
/1	
maps 1	
10	
42	
42 43	
42 43 44	
42 43 44	
42 43 44 45	
42 43 44 45 46	
42 43 44 45 46 47	
42 43 44 45 46 47	
42 43 44 45 46 47 48	
42 43 44 45 46 47 48 49	
42 43 44 45 46 47 48 49 50	
42 43 44 45 46 47 48 49 50	
42 43 44 45 46 47 48 49 50 51	
42 43 44 45 46 47 48 49 50 51 52	
42 43 44 45 46 47 48 49 50 51 52 53	
42 43 44 45 46 47 48 49 50 51 52 53	
42 43 44 45 46 47 48 49 50 51 52 53 54	
42 43 44 45 46 47 48 49 50 51 52 53 54 55	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 57	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	

60

237	Functional expression of lp_3054 from <i>L. plantarum</i> WCFS1. To confirm that
238	the lp_3054 gene from <i>L. plantarum</i> WCFS1 encodes a functional BADH, we expressed
239	this gene in <i>E. coli</i> under the control of the T7 RNA polymerase-inducible ϕ 10 promoter.
240	Cell extracts were used to detect the presence of hyperproduced proteins by SDS-
241	PAGE analysis. Control cells containing the pURI3 vector plasmid alone did not show
242	expression over the 3-h time course analysed, whereas expression of additional 40-kDa
243	protein was apparent with cells harbouring pURI3-BADH (Figure 2A). In addition, cells
244	extracts from E. coli JM109(DE3) (pLysS) cells harbouring the recombinant plasmid
245	pURI3-BADH were able to reduce NAD+, whereas extracts prepared from control cells
246	containing the vector plasmid alone did not. Thus, we could prove experimentally that the
247	lp_3054 gene encodes a functional BADH.
248	As the protein was cloned containing a purification poli-His tag, BADH was
249	purified on a His-Trap TM - FF crude chelating column and eluted with a stepwise gradient σ

The eluted BADH protein was dialysed to eliminate the imidazole, and checked for BADH activity. Spectrometric analysis demonstrated that highly purified BADH protein was able to reduce NAD+ (data not shown).

imidazole. Highly purified BADH protein was obtained from pURI3-BADH (Figure 2B).

of

254

250

Enzymatic activity of *L. plantarum* BADH. In spite that benzyl alcohol
 dehydrogenases occur in a wide variety of organisms, including animals, plants, and yeasts

257 (18), however, BADH have been scarcely found in bacteria, in fact they have been only

biochemically demonstrated in some strains of the Gram-negative soil bacteria

259 Pseudomonas putida and Acinetobacter sp. (11, 12, 13, 21, 22, 23, 24). So far this activity

260 has never been described in bacteria involved in food processing.

2 3 4	261	As showed in Figure 1, L. plantarum BADH contains and Asp residue at the
5 6	262	position equivalent to Asp-223 of the horse liver alcohol dehydrogenase, which has been
7 8 0	263	shown to be important in determining the specificity of the dehydrogenase toward NAD+
10 11	264	rather than NADP+ (24). It has been determined that BADH is far less active in the
12 13	265	presence of NADP+ than in the presence of NAD+. As expected, and by using benzyl
14 15 16	266	alcohol as substrate, purified recombinant L. plantarum BADH showed one third lower
17 18	267	activity using NADP+ than when using NAD+ as cofactor (data not shown).
19 20	268	As reported, the biochemical characterization of L. plantarum BADH was
21 22 23	269	performed by using a standard assay with benzyl alcohol as substrate. Figure 3A shows
24 25	270	that L. plantarum WCFS1 presented an optimal activity at 30 °C, and remains quite stable
26 27 28	271	from 30 to 50 °C. At 70 °C, BADH activity significantly decreased to 16% of residual
29 30	272	activity. Temperature of 25 or 30 °C have been often used to assay BADH activity in
31 32	273	Pseudomonas putida (25, 26). The effect of pH on the enzyme activity was depicted in
33 34 35	274	Figure 3B that shows an optimal pH around 5.0. However, this data is in contrast to the
36 37	275	optimal pH for BADH activity in other bacteria, since optimal pH ranging from 9.2 to 9.5
38 39	276	have been reported for BADH from Pseudomonas putida or Acinetobacter calcoaceticus
40 41 42	277	(13, 25, 26). This pH difference could be related to the low environmental pH generated by
43 44	278	lactic acid bacteria growth.
45 46	279	Table 1 shows the results of <i>L. plantarum</i> BADH activity in presence of various
47 48 49	280	additives added at 10 mM final concentration. BADH activity was neither activated nor
50 51	281	inhibited when assayed in the presence of the following salts: KCl, NaCl, and NiCl ₂ . A
52 53	282	similar behaviour was observed with these compounds at 1mM on BADH activity from P.

putida (20); however, in this organism the activity of BADH nearly doubled when the

concentrations of NaCl, KCl, and KBr increased from 0 to 25 mM, and this activity was

285	independent of the salt concentration when the concentration is between 75 and 400 mM
286	(20). A lower increase on L. plantarum BADH activity (11%) was observed in the presence
287	of 10 mM KBr (Table 1). The presence of MgCl ₂ , CaCl ₂ , and CdCl ₂ slightly increased <i>L</i> .
288	plantarum BADH activity (22-27%) (Table 1). It was also reported that P. putida BADH
289	activity was increased (30-40%) by the presence of 1-10 mM MgCl ₂ and, that BADH was
290	stabilized by 2-mercaptoethanol and dithiothreitol, although concentrations of dithiothreitol
291	higher than 2.5 mM were inhibitory (26). BADH from L. plantarum was strongly inhibited
292	by 10 mM concentration of 2-mercaptoethanol and dithiothreitol (Table 1). The 2-
293	mercaptoethanol inhibition was expected since the L. plantarum BADH protein contains
294	several cysteine residues. The <i>P. putida</i> enzyme was not affected by the presence of 1-10
295	mM EDTA (13, 26); however, L. plantarum BADH was partially inhibited by 10 mM
296	EDTA (Table 1). Similarly to horse liver and yeast alcohol dehydrogenases, L. plantarum
297	BADH enzyme is sensitive to chelating agents and this is known to be a result of the
298	presence of zinc atoms at the active sites (13).
299	Substrate specificity of L. plantarum BADH. The kinetic parameters of the
300	enzyme for benzyl alcohol were determined. The Lineweaver-Burk plot indicated that the
301	$K_{\rm m}$ and $V_{\rm max}$ were, respectively, 0.23 mM and 204 µmol h ⁻¹ mg ⁻¹ (data not shown). $K_{\rm m}$
302	values ranging from 0.017 to 0.233 mM for benzyl alcohol were previously reported for
303	BADH from A. calcoaceticus (12) and from P. putida (27).
304	Horse liver alcohol dehydrogenase has exceptionally broad substrate specificity and
305	will oxidize both aliphatic and aromatic alcohols; benzyl alcohol is oxidized at
306	approximately the same rate as ethanol (28). However the alcohol specificity of A.
307	calcoaceticus BADH resembles that of some other bacterial aromatic alcohol
308	dehydrogenases. They are in general specific for aromatic alcohols, with a preference for

309	aromatic alcohols with small substituents groups (13) . We tested several compounds
310	frequent in food substrates (Table 2). As expected, non-alcohol compounds (e.g. p-
311	coumaric acid and caffeic acid) as well as some non-aromatic alcohols (e.g., ethanol) were
312	not reduced by BADH. From the compounds assayed, benzyl alcohol was an effective
313	alcohol substrate for L. plantarum BADH. The other substrates of BADH were most of
314	them aromatic in nature. It has been described that the electron-withdrawing properties of
315	the substituent groups on the aromatic ring may also be involved in dictating the
316	acceptability of a particular substrate (13). BADH is in general specific for aromatic
317	alcohols, or cyclic alcohols such as perillyl, cinnamyl and coniferyl alcohol; however, some
318	BADH catalyze efficient oxidation of some allylic alcohols, such as geraniol and nerol
319	(29). Our results indicated that BADH from L. plantarum was able to oxidize efficiently
320	both terpenols, geraniol and nerol, which are important components of the wine aromatic
321	fraction. In wine, García-Moruno et al. (2002) (30) studied the metabolism towards
322	geraniol by wine Saccharomyces cerevisiae strains but not by lactic acid bacteria. Their
323	results proved that the yeast strain dramatically affects the amount of geraniol occurring in
324	the medium at the end of fermentation. They concluded that in the fermentation of aromatic
325	musts in which geraniol is the main component, the choice of the yeast proves decisive for
326	the quality of wine.

As described previously for *A. calcoaceticus* and *P. putida*, coniferyl alcohol and cinnamyl alcohol were also substrates (*13, 31*) (**Table 2**). Both aromatic alcohols have an alkenyl group between the reactive carbinol and the aromatic ring. Cinnamyl alcohol and coniferyl alcohol are both known intermediates of lignin biosynthesis and degradation. Although cinnamyl alcohol or, presumably, coniferyl alcohol cannot serve as sole carbon source for *L. plantarum*, their oxidation could give some energy to the bacteria and the

compounds produced would then be available for metabolism by other microorganisms. It may well be that in natural food substrates the mixed populations of microorganisms contain individual species that can metabolize compounds only partially, excreting or releasing those compounds that are then available to be utilized by other organism. It has been postulated that it is presumably by this route that *A. calcoaceticus* and other soil bacteria encounter aromatic alcohols, aldehydes and acids as a result of fungal degradation of lignins (*13*).

In the previously characterized BADHs, aromatic alcohols usually found in food substrates were not analysed, therefore we assayed several of these alcohols such as tyrosol, tryptophol, pyrogallol, catechol, or phloroglucinol as potential DADH substrates (**Table 2**). None of these alcohols were oxidize by BADH. These results are in agreement with those obtained when the L. plantarum metabolism of some phenolic compounds was studied, as tyrosol, frequent in olive products, or tryptophol, frequent in wine, were not modified by L. plantarum cultures or cell-extracts (32, 33). In addition, it has been described that some phenolic acids were decarboxylated by L. plantarum strains giving their corresponding alcohols, like catechol from protocatechuic acid, and pyrogallol from gallic acid; nevertheless, these alcohols were nor further modified (32, 34). Now, in this work we have demonstrated that catechol and pyrogallol were neither oxidized by BADH in L. plantarum. Among the aromatic alcohols oxidized by *L. plantarum* BADH, benzyl alcohol and phenethyl alcohol, as well as benzaldehyde produced, are volatile compounds which respective concentration vary considerably among grape varieties. Concentrations of benzyl alcohol up to 89.57 μ g/L, phenethyl alcohol from 43.45 to 1635.38 μ g/L, and 2.53 to 13.19 µg/L of benzaldehyde has been described in some *Vitis vinifera* grape varieties (35). These aromatic compounds, together with hexyl acetate, have been proposed to be used as a basis

357	for must and wine varietal differentiation. A similar study allowed benzyl alcohol to be
358	selected as predictor variable in a discriminating analysis. This analysis indicated that
359	benzyl alcohol depends on grape variety, skin maceration, or both (36). However, in this
360	work we have demonstrated that <i>L. plantarum</i> strains possess a BADH enzyme able to
361	modify benzyl alcohol levels in wines. Therefore in the search for compounds enabling the
362	chemical differentiation of must and wines from grapes of different varieties, it should be
363	take into account that some lactic acid bacteria species posses BADH enzymatic activities
364	that could modify the levels of some of these aromatic alcohols.
365	In conclusion, lp_3054 protein from L. plantarum WCFS1 showed BADH activity
366	able to oxidize some compounds involved in the aroma of food products, such as grape
367	must or wine. Nerol, geraniol, benzyl alcohol, phenethyl alcohol, cinnamyl alcohol, or
368	coniferyl alcohol could be oxidized by L. plantarum BADH. The presence of this
369	enzymatic activity on <i>L. plantarum</i> strains will modify the aroma of food substrates, e.g.
370	wines. In wine bacterial BADH activity should be considered in order to establish the
371	aromatic alcohols selected as predictor variables for grape varietal differentiation.
372	
373	
374	ACKNOWLEDGMENT
375	
376	L. plantarum WCFS1 strain was kindly provided by M. Kleerebezem from the Wageningen
377	Centre for Food Sciences, NIZO Food Research. The technical assistance of M. V.
378	Santamaría is greatly appreciated.
379	

2 3 4	380
5 6 7	381 382
8 9 10	383
11 12	384
13 14 15	385
16 17	386
18 19 20	387
21 22	388
23 24	389
25 26 27	390
28 29	391
30 31 22	392
32 33 34	393
35 36	394
37 38 39	395
40 41	396
42 43	397
44 45 46	398
47 48	399
49 50 51	400
52 53	401
54 55	402
56 57 58	
59 60	

380 LITERATURE CITED

- 382 (1) Ebeler, S. E. Analytical chemistry: unlocking the secrets of wine flavor. *Food*383 *Rev. Int.* 2001, 17, 45-64.
- 384 (2) Pogorzelski, E.; Wilkowska, A. Flavour enhancement through the enzymatic
 385 hydrolysis of glycosidic aroma precursors in juices and wine beverages: a
 386 review. *Flavour Frag. J.* 2007, 22, 251-254.
- 387 (3) Genovés, S.; Gil, J. V.; Vallés, S.; Casas, J. A.; Manzanares, P. Assessment of
 388 the aromatic potential of Palomino Fino grape must using glycosidases. *Am. J.*389 *Enol. Vitic.* 2005, 56, 188-190.
- García-Moruno, E. The chirality of α-terpineol in aromatic wines. Detection of
 chiral or racemic linaool addition in wines. *Sci. Alim.* 1999, 19, 207-214.
- 392 (5) Marsilio, V.; Lanza, B.; Pozzi, N. Progress in table olive debittering: degradation
 393 in vitro of oleuropein and its derivatives by *Lactobacillus plantarum*. J. Am. Oil
 394 Chem. Soc. 1996, 73, 593-598.
 - 395 (6) Sestelo, A. B.; Poza, M.; Villa, T. G. Beta-glucosidase activity in a *Lactobacillus*396 *plantarum* wine strain. *World J. Microbiol. Biotech.* 2004, 20, 633-637.
 - (7) Grimaldi, A.; Bartowsky, E.; Jiranek, V. Screening of *Lactobacillus* spp. and *Pediococcus* spp. for glycosidase activities that are important in oenology. J. Appl. Microbiol. 2005, 99, 1061-1069.
 - 400 (8) Spano, G.; Rinaldi, A.; Ugliano, M.; Moio, L; Beneduce, L.; Massa, S. A β401 glucosidase gene isolated from wine *Lactobacillus plantarum* is regulated by
 402 abiotic stresses. *J. Appl. Microbiol.* 2005, 98, 855-861.

403	(9) Kleerebezem, M.; Boekhorst, J.; van Kranenburg, R.; Molenaar, D.; Kuipers, O.
404	P.; Leer, R.; Tarchini, R.; Peters, S. A.; Sandbrink, H. M.; Fiers, M. W. E. J.;
405	Stiekema, W.; Klein Lankhorst, R. M.; Bron, P. A.; Hoffer, S. M.; Nierop Groot,
406	M. N.; Kerkhoven, R.; de Vries, M.; Ursing, B.; de Vos, W. M.; Siezen, R. J.
407	Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl.
408	Acad. Sci. USA. 2003, 100, 1990-1995.
409	(10) Worsey, M. J.; Williams, P. A. Metabolism of toluene and xylenes by
410	Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL
411	plasmid. J. Bacteriol. 1975, 124, 7-13.
412	(11) Inouye, S.; Nakazawa, A.; Nakazawa, T. Molecular cloning of TOL genes xylB
413	and xylE in Escherichia coli. J. Bacteriol. 1981, 145, 1137-1143.
414	(12) MacKintosh, R. W.; Fewson, C. A. Benzyl alcohol dehydrogenase and
415	benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Purification
416	and preliminary characterization. Biochem. J. 1988, 250, 743-751.
417	(13) MacKintosh, R. W.; Fewson, C. A. Benzyl alcohol dehydrogenase and
418	benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate
419	specificities and inhibition studies. Biochem. J. 1988, 255, 653-661.
420	(14) Vaquero, I.; Marcobal, A.; Muñoz, R. Tannase activity by lactic acid bacteria
421	isolated from grape must and wine. Int. J. Food Microbiol. 2004, 96, 199-204.
422	(15) Rodríguez, H.; de las Rivas, B.; Muñoz, R.; Mancheño, J. M. Overexpression,
423	purification, crystallization and preliminary structural studies of <i>p</i> -coumaric acid
424	decarboxylase from Lactobacillus plantarum. Acta Cryst. 2007, F63, 300-303.

ACS Paragon Plus Environment

1 2		
3 4	425	(16) De las Rivas, B.; Curiel, J. A.; Mancheño, J. M.; Muñoz, R. Expression vectors
5 6	426	for enzyme restriction- and ligation-independent cloning for producing
7 8 9	427	recombinant His-fusion proteins. <i>Biotech. Progress</i> 2007, 23, 680-686.
10 11	428	(17) Muñoz, R.; López, R.; de Frutos, M.; García, E. First molecular characterization
12 13	429	of a uridine diphosphate galacturonate 4-epimerase: an enzyme required for
14 15 16	430	capsular biosynthesis in Streptococcus pneumoniae type 1. Mol. Microbiol.
17 18	431	1999 , 31, 703-713.
19 20	432	(18) Sun, H. W.; Plapp, B. V. Progressive sequence alignment and molecular
21 22 23	433	evolution of the Zn-containing alcohol dehydrogenase family. J. Mol. Evol.
24 25	434	1992 , 34, 522-535.
26 27 28	435	(19) Gillooly, D. J.; Robertson, A. G. S.; Fewson, C. A. Molecular characterization of
29 30	436	benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II of
31 32	437	Acinetobacter calcoaceticus. Biochem. J. 1998, 330, 1375-1381.
33 34 35	438	(20) Shaw, J. P.; Rekik, M.; Schwager, F.; Harayama, S. Kinetic studies on benzyl
36 37	439	alcohol dehydrogenase encoded by TOL plasmid pWW0. A member of the Zinc-
38 39	440	containing long chain alcohol dehydrogenase family. J. Biol. Chem. 1993, 268,
40 41 42	441	10842-10850.
43 44	442	(21) Collins, J.; Hegerman, G. Benzyl alcohol metabolism by <i>Pseudomonas putida</i> : a
45 46 47	443	paradox resolved. Arch. Microbiol. 1984 , 138, 153-160.
48 49	444	(22) Chalmers, R. M.; Keen, J. N.; Fewson, C. A. Comparison of benzyl alcohol
50 51	445	dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and
52 53 54	446	mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-
55 56	447	encoded toluene pathway in Pseudomonas putida. Biochem. J. 1991, 273, 99-
57 58 59 60	448	107.

3 4	449	(23) Shaw, J. P.; Schwager, F.; Harayama, S. Substrate-specificity of benzyl alcohol
5 6	450	dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid
7 8 0	451	pWW0. Metabolic and mechanistic implications. <i>Biochem. J.</i> , 1992 , 283, 789-
9 10 11	452	794.
12 13	453	(24) Fan, F.; Lorenzen, J. A.; Plapp, B. V. An aspartate residue in yeast alcohol
14 15 16	454	dehydrogenase I determines the specificity for coenzyme. Biochemistry 1991,
17 18	455	30, 6397-6401.
19 20	456	(25) Keat, M. J.; Hopper, D. J. The aromatic alcohol dehydrogenases in Pseudomonas
21 22 23	457	putida NCIB 9869 grown on 3,5-xylenol and p-cresol. Biochem. J. 1978, 175,
24 25	458	659-667.
26 27 28	459	(26) Shaw, J. P; Harayama, S. Purification and characterization of TOL plasmid-
29 30	460	encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of
31 32	461	Pseudomonas putida. Eur. J. Biochem. 1990 , 191, 705-714.
33 34 35	462	(27) Chalmers, R. M.; Scott, A. J.; Fewson, C. A. Purification of the benzyl alcohol
36 37	463	dehydrogenase and benzaldehyde dehydrogenase encoded by the TOL plasmid
38 39	464	pWW53 of Pseudomonas putida MT53 and their preliminary comparison with
40 41 42	465	benzyl alcohol dehydrogenase and benzaldehyde dehydrogenases I and II from
43 44	466	Acinetobacter calcoaceticus. J. Gen. Microbiol. 1990, 136, 637-643.
45 46	467	(28) Sund, H.; Theorell, H. The enzymes, 2nd ed., pp. 25-38. Academic Press, New
47 48 49	468	York, NY, 1963 .
50 51	469	(29) Curtis, A. J.; Shirk, M. C.; Fall, R. Allylic or benzylic stabilization is essential
52 53	470	for catalysis by bacterial benzyl alcohol dehydrogenases. Biochem. Biophys. Res.
55 56 57	471	Commun. 1999, 259, 220-223.
58 59 60		

Page 21 of 28

1		
3 4	472	(30) García-Moruno, E.; Ribaldone, M.; Di Stefano, R; Conterno, L.; Gandini, A.
5 6	473	Study of five strains of Saccharomyces cerevisiae with regard to their
/ 8 9	474	metabolism towards geraniol. J. Int. Sci. Vigne Vin, 2002, 36, 221-225.
10 11	475	(31) Overhage, J.; Steinbüchel, A.; Priefert, H. Biotransformation of eugenol to
12 13	476	ferulic acid by a recombinat strain of Ralstonia euthropha H16. Appl. Environ.
14 15 16	477	<i>Microbiol.</i> 2002 , 68, 4315-4321.
17 18	478	(32) Landete, J. M.; Rodríguez, H.; de las Rivas, B.; Muñoz, R. High-added-value
19 20 21	479	antioxidants obtained from the degradation of wine phenolics by Lactobacillus
21 22 23	480	plantarum. J. Food Prot. 2007 , 70, 2670-2675.
24 25	481	(33) Landete, J. M.; Curiel, J. A.; Rodríguez, H.; de las Rivas, B.; Muñoz, R. Study of
26 27 28	482	the inhibitory activity of phenolic compounds found in olive products and their
29 30	483	degradation by Lactobacillus plantarum strains. Food Chem. 2008, 107, 320-
31 32	484	326.
33 34 35	485	(34) Rodríguez, H.; Landete, J. M.; de las Rivas, B.; Muñoz, R. Metabolism of food
36 37	486	phenolic acids by <i>Lactobacillus plantarum</i> CECT 748 ^T . Food Chem. 2008, 107,
38 39 40	487	1393-1398.
40 41 42	488	(35) Rosillo, L.; Salinas, M. R.; Garijo, J.; Alonso, G. L. Study of volatiles in grapes
43 44	489	by dynamic headspace analysis. Application to the differentiation of some Vitis
45 46 47	490	<i>vinifera</i> varieties. J. Chromatogr. A 1999 , 847, 155-159.
48 49	491	(36) Bueno, J. E.; Peinado, R.; Moreno, J.; Medina, M.; Moyano, L.; Zea, L.
50 51	492	Selection of volatile aroma compounds by statistical and enological criteria for
52 53 54	493	analytical differentiation of musts and wines of two grape varieties. J. Food Sci.
55 56	494	2003 , 68, 158-163.
57 58 59 60	495	

496	
497	This work was supported by grants AGL2005-000470 and AGL2008-01052 (CICYT),
498	FUN-C-FOOD Consolider 25506 (MEC), and S-0505/AGR-0153 (CAM). H.
499	Rodríguez was a recipient of a predoctoral fellowship from the I3P-CSIC. J. M.
500	Landete was a recipient of a postdoctoral fellowship from the MEC.
501	
502	
503	FIGURE CAPTIONS
504	
505	Figure 1. Comparison of benzyl alcohol dehydrogenase protein sequences from
506	Lactobacillus plantarum (LPL) (accession Q88TC0), Pseudomonas putida (PPU)
507	(accession P39849), Acinetobacter sp. ADP1 (AAD) (accession Q9XC27), and Equus
508	caballus (ECA) (accession P00327). Clustal W program was used to compare predicted
509	sequences. Residues conserved in all members of the Zn-containing alcohol
510	dehydrogenases family ($\mathbf{\nabla}$), residues involved in the interaction of NAD(P) ($\mathbf{\bullet}$), residue
511	that makes a hydrogen bond to the substrate (\blacklozenge), residues involved in zinc binding (\circ), or in
512	the binding to the non-catalytic zinc (Δ) are indicated on the <i>L</i> . <i>plantarum</i> sequence.
513	Residues that are identical (*), conserved (:) or semi-conserved (.) in all the sequences of
514	the alignment are also indicated. Dashed represents gaps introduced to maximize
515	similarities.
516	
517	
518	Figure 2. SDS-PAGE analysis of the expression and purification of the BADH protein
519	from L. plantarum WCFS1. (A) Analysis of soluble cell extracts of IPTG-induced cultures.
	ACS Paragon Plus Environment

52	Lane 1: <i>E. coli</i> JM109 (DE3) (pLysS) (pURI3). Lane 2: <i>E. coli</i> JM109 (DE3) (pLysS)
52	(pURI3-BADH). (B) Analysis of fractions eluted after His-Trap-FF crude chelating affinit
52	column (lines 1 to 4). BADH protein is indicated by an arrow. SDS-Polyacrylamide gels
52	were stained with Coomassie blue. The positions of molecular mass markers (Bio-Rad) ar
52	indicated on the left.
52 52	
52	
52	Figure 3. Some biochemical properties of the <i>L. plantarum</i> WCFS1 purified BADH. (A)
52	BADH activity as a function of temperature. (B) BADH activity as a function of pH. The
52	experiments were done in triplicate. The mean value and the standard error are showed.

Table 1

Table 1. Effect of additives on L. plantarum WCFS1 BADH activity

Additions	Relative activity
(10 mM)	(%)
Control	100
KBr	111
KCI	100
NaCl	100
MgCl ₂	122
NiCl ₂	100
$CaCl_2$	127
$CdCl_2$	125
AgNO ₃	42
Urea	100
Tween-80	100
DMSO	80
EDTA	78
β-mercaptoethanol	24
DTT	16
SDS	14
525	

Table 2

Table 2. Relative activities of L. plantarum WCFS1 BADH with various potential substrates

Substrates	Relative activity
(100 mM)	(%)
Benzyl alcohol	100
Nerol	116
Geraniol	105
Phenethyl alcohol	73
Cinnamyl alcohol	67
Coniferyl alcohol	59
Tyrosol	0
Tryptophol	0
Pyrogallol	0
Catechol	0
Phloroglucinol	0
Ethanol	0
<i>p</i> -Coumaric acid	0
Caffeic acid	0
	25 Paragon Plus Environ
ACSE	aragon Pius Environi

Figure 1

TDT		БЭ
	METRA VURVNOPFVIRDDIELAEMKAIDLQIRMVAIGICHSDEAIRKGDAS	55
		56
RAD FCA		50
ECA	· STAGKVIKCKAAVLWEEKKPFSIEE·VEVAPPKAHEVKIKMVAIGICKSDDHVVSGILV	50
трт		110
ЦРЦ ПОП		⊥⊥∠ 111
AAD ECA		110
LCA		110
T.DT.		177
ם זם זוסס		171
	FSGCDDDCHSAVCSHDHHKTHDHFFAOSSFATTALSTERNIAVKVSKDVDLFLLCDLCCCT	175
FCA		176
LCA	* * · · · *·* · · *· *· * · · ***	170
	• • • • • • •	
T.PT.	VTGSGTVLNSLOPRPGOTTAVFGTGAVGLAAMMAGKTSGCTEVTAVDTVDSRLELAKELG	230
PPII	OTGAGSVI.NALNPPAGSATATFGAGAVGI.GAVMAAVVAGCTTTTAVDVKENRI.EI.ASELG	231
AAD	OTGAGAAINALKVAPASSEVTWGAGAVGLSALLAAKVCGATTIINDUKLKLBELG	235
ECA	STGYGSAVKVAKVTOGSTCAVFGLGGVGLGVTMGCKAAGAARTTGVDTNKDKFAKAKEVG	236
	** *:.:: : .:: : :* *:*:::: .*: :*:*::: :*:*:	
LPL	ATHAINSK-EEDPVEAIKKLTHGYGVDFAVDTTGVEPVMVSAIHALAOGGTAALIAVTAK	289
PPU	ATHIINPA-ANDPIEAIKEIFAD-GVPYVLETSGLPAVLTQAILSSAIGGEIGIVGAPPM	289
AAD	ATHVINSK-TQPDVEAIKEITGG-GVKFALESTGRPEILKQGIDALGILGSIAVVGAPPL	293
ECA	ATECVNPQDYKKPIQEVLTEMSNGGVDFSFEVIGRLDTMVTALSCCQEAYGVSVIVGVPP	296
	**. :*. :.*:: . ** : .: * : .: .	
LPL	NITIS - SWNDLCVDDKKVIGVNMGDAIPGVDIPRLIDFYQHGMFPFEKTEK - FYKFEDIN	347
PPU	GATVPVDINFLLFN-RKLRGIVEGQSISDIFIPRLVELYRQGKFPFDKLIK-FYPFDEIN	347
AAD	GTTAAFDVNDLLLGGKSIIGVVEGSGVPKKFIPALVSLYQQGKFPFDKLVK-FYDFKDIN	352
ECA	DSQNLSMNPMLLLSGRTWKGAIFGGFKSKDSVPKLVADFMAKKFALDPLITHVLPFEKIN	356
	. * :. * * . :* *: : *.:: ***	
LPL	QANADSGSGKTIKPVLIIDEDYQPGK 373	
PPU	RAAEDSEKGVTLKPVLRIG 366	
AAD	QAAIDSHKGITLKPILKIG 371	
ECA	EGFDLLRSGESIRTILTF 374	
	* :::.:* :	

