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Abstract  23 

 24 

The morphology and functionality of Ruditapes decussatus haemocytes have 25 

been characterized by light microscopy and flow cytometry, leading to the identification 26 

of three different cellular subpopulations. Granulocytes were the largest cells, the 27 

hyalinocytes were smaller and contained fewer granules and the intermediate cells 28 

showed a size similar to hyalinocytes and a higher number of granules. The 29 

phagocytosis of different particles and the associated production of oxygen radicals 30 

were measured by flow cytometric methods. Granulocytes were the most active cells, 31 

followed by the intermediate cells and hyalinocytes. The effect of stimulation of 32 

haemocytes with lipopolysaccharide (LPS), with a heat inactivated bacterial mixture or 33 

with the infection of Vibrio splendidus on the cell viability and the expression of 34 

selected immune related genes were studied. While significant low levels of damaged 35 

cells were registered in LPS-stimulated cells, the treatment with dead bacteria or V. 36 

splendidus reduced cell viability 1 h, 3 h and 6 h after treatment. The stimulation of 37 

haemocytes with LPS and dead bacteria induced changes in the expression of defender 38 

against cell death (DAD-1), thrombin, prosaposin, inhibitor of apoptosis (IAP), factor B 39 

and C3 complement component.  40 

 41 

 42 

Key words: Ruditapes decussatus, haemocyte, immune system, flow cytometry, 43 

phagocytosis, reactive oxygen radicals, cell viability, bacterial infection, gene 44 

expression. 45 
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1. Introduction 47 

 48 

Haemocytes are circulating cells present in bivalve molluscs haemolymph. They 49 

are involved in both physiological processes and immune functions such as 50 

phagocytosis [1-3]. Since haemocytes have been broadly studied to determine the 51 

immune and physiological status of economically important bivalves [4-7] their 52 

classification and functionality might be of interest to better understand bivalve defence. 53 

The division of the haemocytes is based on the nature of the cytoplasmatic organelles, 54 

the acidification and abundance of cytoplasmatic granules and the morphology of the 55 

nucleus [8]. The haemocytes of several bivalve species were identified following 56 

Cheng´s criteria who classified them into granulocytes with numerous and large 57 

granules, and hyalinocytes with less or no granules in the cytoplasm [8-18].  58 

In addition to morphological and cytochemical criteria, some cell separation 59 

techniques such as density gradients have been used to classify the haemocytic cells in 60 

Crassostrea gigas, Crassostrea virginica, Mytilus edulis, Ostrea edulis and Argopecten 61 

irradians [19-23]. The identification of subpopulations using monoclonal antibodies has 62 

been successful in M. edulis and O. edulis [24, 25] but not in R. decussatus [14]. Both 63 

cell types, granulocytes and hyalinocytes, are able to internalise foreign particles and 64 

pathogens by phagocytosis [15, 26-30]. However, it has been hypothesized that the 65 

presence of granules with hydrolytic enzymes could act to degrade the phagocytised 66 

particles suggesting that granulocytes have higher phagocytic activity than hyalinocytes 67 

[31].. Internalised material is also degraded by the action of the reactive oxidative 68 

species (ROS) released during the phagocytosis process. After primary and secondary 69 

reactions, toxic free radicals such as the superoxide anion (O
2-

), the hydrogen peroxide 70 

(H2O2) and the hydroxyl radical (OH
-
) are released [32, 33].  71 
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Phagocytosis and respiratory burst play an important role in bivalve defence [15, 72 

27, 34] and are studied to determine the immune status against pathogens [4-7, 35, 36]. 73 

Although several methodologies have been applied to determine these cellular immune 74 

parameters, the application of the flow cytometry allows the simultaneous 75 

morphological and functional characterization of the cell populations. Different cell 76 

subpopulations of O. edulis, Ruditapes philippinarum, C. virginica, M. edulis and 77 

Mytilus galloprovincialis were characterised by flow cytometry as well as several 78 

immune parameters such as phagocytosis and oxidative burst [37-44]. The production 79 

of ROS has not been detected in the clams Mya arenaria, Mercenaria mercenaria, R. 80 

decussatus and Scrobicularia plana by the classical assays: luminol-dependent 81 

chemiluminiscence, the reduction of nitroblue tetrazolium (NBT) and the reduction of 82 

cytochrome-c [45-48]. However, the application of flow cytometry has recently allowed 83 

the detection of ROS production in the clam M. mercenaria [42].  84 

Gram-negative bacteria are widely distributed in marine ecosystem, and they can 85 

affect the production of farmed bivalves, even when they are non pathogenic in many 86 

situations [49-54] Among them, V. splendidus and other related strains have been 87 

associated with larvae mortality both in R. decussatus and C. gigas [55-57]. The bivalve 88 

immune response against bacterial infection has been studied by experimental infections 89 

with pathogenic bacteria and stimulations with extracellular products and different 90 

components of the bacterial cell wall such as lipopolysacharide of gram-negative 91 

bacteria [36, 58, 59]. Several functional studies were carried out in bacterial infected 92 

bivalves, however the information regarding the molecular basis involved in the 93 

immune function, although increasing, is still scarce [4, 60, 61]. Recently, several genes 94 

have been identified by Suppression-Subtractive Hybridization to be involved in the 95 

immune functions of R. decussatus after parasitic infection and dead bacterial infection. 96 
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Among them, the defender against cell death (DAD-1), thrombin, prosaposin, inhibitor 97 

of apoptosis (IAP), factor B and C3 complement component were selected due to their 98 

involvement on death signaling and complement system activation [62-64].  99 

The aim of the present work is the morphological and functional characterization 100 

of the different populations of haemocytes in R. decussatus by flow cytometry. Changes 101 

in the cell viability and in the selected gene expression profiles were determined after 102 

experimental infections with V. splendidus and stimulations with dead bacteria and LPS.  103 

 104 

2. Materials and methods 105 

 106 

2.1. Animals  107 

Sexually immature adult carpet shell clam, R. decussatus (4-5 cm long) were 108 

obtained from a commercial shellfish farm and maintained in opened circuit with 109 

filtered sea water (FSW) at 15ºC for one week before the experiments. Animals were 110 

daily feeding with Tetraselmis suecica (10
7 

cells/ml) and Isochrysis galbana (10
7 

111 

cells/ml). All animal experiments were conducted according the CSIC National 112 

Committee on Bioethics. 113 

 114 

2.2. Morphological characterization of R. decussatus haemocytes 115 

 The characterization of the different cell populations in haemolymph from carpet 116 

shell clams was done by light microscopy and flow cytometry.  117 

 118 

2.2.1. Light microscopy studies 119 

Haemolymph was withdrawn without anti-aggregating solution through the 120 

adductor muscle with sterile needle and syringes after shell perforation. Each sample 121 
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was treated individually and maintained on ice until use. Haemolymph was diluted in 122 

filtered sea water (FSW) (1:5) and centrifuged at 55xg for 5 min in a Shandon Cytospin 123 

4 cytocentrifuge (Thermo Scientific). Haemocytes were fixed with ethanol, stained with 124 

the Hemacolor kit (Merck) and mounted with DEPEX resin (BDH, Chemicals). 125 

Haemocytes were visualised using an Eclipse 80i light microscopy (Nikon) with 126 

Nomarski DIC prism to enhance the contrast in fresh non-stained samples. Photographs 127 

were taken with a digital camera DXM 1200 (Nikon). 128 

 129 

 130 

2.2.2 Flow cytometry analysis 131 

R. decussatus haemocytes subpopulations were identified by flow cytometry 132 

(FACSCalibur, BD) in density plots of relative size (forward-light-scatter, FSC-H) and 133 

complexity (side-light-scatter, SSC-H) in logarithmic scale. The different cell regions 134 

were located in density plot graphics by the Cell Quest Pro software (BD) using 1.0% of 135 

threshold and two smoothing passes. Haemolymph samples extracted from 12 clams 136 

were diluted in FSW (1:1) and individually analysed. A total of 2x10
6
 cells of each 137 

subpopulation were collected in a 50 ml Falcon tube (BD) using the cell sorter module 138 

and centrifuged at 82xg for 5 min. The cell pellet was resuspended in 1 ml of FSW and 139 

treated for light microscopy as described above.  140 

 141 

2.3. Functional characterization of R. decussatus haemocytes 142 

The functional characterization of the haemolymph cell populations was done by 143 

analyzing the ability to phagocyte different particles and the associated production of 144 

oxygen radicals. 145 

 146 
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2.3.1. Phagocytosis assay 147 

Crude haemolymph samples (200 µl) were withdrawn as described in section 148 

2.2.1 and maintained on ice for a maximum of 15 minutes before being dispensed into 149 

96-wells plates. Four replicates of each haemolymph sample were made to compare the 150 

phagocytosis of three different fluorescein-labelled (FITC) particles: latex microspheres 151 

at 2.7x10
8
 particles/ml (1.3 µm, Molecular Probes), Escherichia coli at 2.7x10

10
 152 

particles/ml (Sigma) and zymosan at 1.7x10
8
 particles/ml (Sigma). Labelled particles 153 

were added at a ratio of 10:1 (particles: haemocyte). Control haemocytes were 154 

maintained in FSW. After two hours of incubation at 15ºC samples were washed twice 155 

with phosphate buffered saline (PBS). Attached cells were collected in PBS and stained 156 

with Trypan blue (0.8% in PBS) to quench the adhered but non-phagocyted particles 157 

fluorescence. Phagocytosis was assayed by flow cytometry after the measurement of 158 

10000 events per sample. The experiment was repeated four times with 4 clams each 159 

experiment. Results are shown as the mean ± standard deviation of the percentage of 160 

cells that internalised at least one fluorescent particle. Data were analyzed using 161 

Student’s t-test and differences were statistically significant at p<0.05. Haemocytes 162 

exposed to FITC-labelled particles were observed with an Eclipse 80i light microscopy 163 

(Nikon) with Nomarski DIC prism and compared with haemocytes exposed to FSW. 164 

Photographs were taken with a digital camera DXM 1200 (Nikon). 165 

 166 

2.3.2. Respiratory burst assay 167 

The production of oxygen radicals was measured by flow cytometry using the 168 

2´,7´-dichlorofluorescein-diacetate probe (DCFH-DA , Molecular Probes). The DCFH-169 

DA diffuses into the cytoplasm where is blocked and hydrolysed to 2´,7´-170 

dichlorofluorescein (DCFH). After oxidation by the released oxygen radicals, the 171 
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hydrolysed form emits fluorescence that is detected in the FL1-H channel. Crude 172 

haemolymph samples (200 µl) were maintained on ice for 15 min maximum before 173 

being dispensed into 96-wells plates in triplicate. After 30 min of incubation at 15ºC in 174 

the dark for cell adhesion, the media was replaced with the DCFH-DA solution (1:1000 175 

in FSW, 0.4% dimethyl sulfoxide) and incubated 10 min on ice. Haemocytes were 176 

rinsed twice before stimulation with zymosan (Sigma) at 0.5 mg/ml in FSW. ROS-177 

inhibited samples were treated with superoxide dismutase (SOD, Sigma) at 300 U/ml 178 

just before the stimulus and FSW was used as control. Cells were incubated 30 min at 179 

15ºC in the dark, and measured by flow cytometry after resuspending in PBS. The 180 

experiment was repeated five times with a total of 22 clams and 10000 events were 181 

measured per sample. Mean fluorescence index were calculated as the ratio of 182 

stimulated samples to the control. Results are shown as the mean ± standard deviation 183 

of the calculated mean fluorescence index in each region obtained in the four trials. 184 

Data were analyzed using Student’s t-test and differences were statistically significant at 185 

p<0.05. 186 

 187 

2.4. In vitro stimulation of R. decussatus haemocytes 188 

LPS (Sigma, Aldrich) at a final concentration of 50 µg/ml in FSW, live V. 189 

splendidus and a mixture of heat inactivated bacteria (Micrococcus luteus, V. splendidus 190 

and Vibrio anguillarum) were used to stimulate clam haemocytes. V. splendidus were 191 

cultured overnight at room temperature (20ºC) in TSA supplemented with 1%NaCl. V. 192 

splendidus suspension was then prepared in FSW to obtain 10
6 

CFU/ml (OD620 = 0.033). 193 

To prepare the mixture of inactivated bacteria, the strains were grown in appropriate 194 

medium (TSB for M. luteus and TSB supplemented with 1%NaCl for Vibrio spp.) and 195 
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equal amounts of culture medium with an OD620 = 0.035 were heat inactivated at 95ºC 196 

for 10 min. Aliquots were maintained at -80ºC until use. 197 

The immune response of the carpet shell clam haemocytes was characterized 198 

measuring the effect of the stimulation on the different cell populations viability and 199 

changes in the gene expression profile. 200 

 201 

2.4.1. Effect of the stimulants on the cell viability 202 

The viability of the different populations of haemocytes was analyzed after the 203 

exposure to different stimuli using the fluorescent dye propidium iodide (PI) (BD, 204 

Pharmingen), which penetrates through broken cell membranes. Haemolymph from 16 205 

adult clams was extracted, pooled in 4 different samples and dispensed into 96-wells 206 

plates (200 µl/well). Haemocyte were incubated 30 min at 15ºC. After adhesion, 207 

haemocytes were stimulated with 100 µl of different solutions containing LPS (50 208 

µg/ml), live V. splendidus (10
6 

CFU/ml) or a mixture of diluted heat inactivated bacteria 209 

diluted 1/3 in FSW before the experiments. Control haemocytes were incubated in FSW 210 

in the same way than stimulated haemocytes. Cell cultures were incubated at 15 ºC and 211 

1h, 3h and 6h after stimulation samples were stained with PI (25 µg/ml), incubated for 212 

10 min in the dark and measured by flow cytometry. The experiment was repeated five 213 

times. Fold-change units were calculated dividing the values obtained in stimulated 214 

samples by the values obtained in the control. Results are shown as the mean ± SD of 215 

the fold-change units obtained in the five trials. Data were analyzed using Student’s t-216 

test and differences were statistically significant at p<0.05. 217 

 
218 

2.4.2. Effect of the stimulants on the gene expression profile 219 
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Haemolymph from twelve clams was extracted and pooled in 4 samples (3 clams 220 

each). Cells were dispensed on 24-well plates (1 ml/well) and incubated for 30 min at 221 

15ºC. After adhesion, haemocytes were stimulated as previously described for 1 h, 3 h 222 

and 6 h. Haemocytes from each pool, treatment and sampling point were then collected 223 

and total RNA was extracted in 6 ml of Trizol reagent (Invitrogen) following the 224 

manufacturer’s protocol. The purity and integrity of the RNA was evaluated in a ND-225 

1000 Spectrophotometer (Nanodrop Technologies, USA). First-strand cDNAs were 226 

synthesized with SuperScript II (Invitrogen) using 1 µg of total RNA, treated with 227 

Turbo DNA-free (Ambion) to remove contaminating DNA. Specific primers were 228 

designed with Primer3 software (v. 0.4.0) and checked to ensure similar efficiencies in 229 

the amplification reaction (Table 1). Real time PCR was carried out in a 7300 Real 230 

Time PCR System (Applied Biosystems). A total of 0.5 µl of each primer (10 µM) was 231 

mixed with 12.5 µl of SYBR green PCR master mix (Applied Biosystems) in a final 232 

volume of 25 µl.  233 

Amplification was carried out at standard cycling conditions (95ºC for 10 min, 234 

followed by 40 cycles of 95ºC 15 s and 60ºC for 1 min). All reactions were carried out 235 

as technical triplicates. The comparative Ct method (2
-∆∆Ct

 method) was used to 236 

determine the expression level of analyzed genes [65]. The expression of the candidate 237 

genes was normalized using the R. decussatus actin gene as a control housekeeping 238 

gene, which was constitutively expressed and not affected by the treatments. Fold units 239 

were calculated by dividing the normalized expression values obtained in stimulated 240 

samples by the normalized expression values obtained in the control at each sampling 241 

point. Data were analyzed using the Student’s t-test. Results were expressed as the mean 242 

± standard deviation of the four different samples and differences were considered 243 

statistically significant at p<0.05. 244 
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 245 

 246 

3. Results  247 

 248 

3.1. Morphological characterization of R. decussatus haemocytes 249 

The visualization of fresh haemolymph samples by light microscopy allowed the 250 

description of three morphologically distinct subpopulations also supported by the 251 

presence of three different cell populations in FSC-H/SSC-H dot plots observed by flow 252 

cytometry. Due to the high variability between individuals, the cell population 253 

perimeters were slightly adjusted for each clam. The R1 included the biggest cells with 254 

high granularity. The R2 enclosed the smallest cells with low numbers of cytoplasmatic 255 

granules and the R3 was composed by cells with intermediate values of size and 256 

granularity (Figure 1A).  257 

The morphological differences detected in each subpopulation by flow 258 

cytometry were verified after cell sorting, cytocentrifugation and fresh and stained 259 

observations under the light microscope. Each sorted region were photographed and 260 

compared with fresh haemocyte preparations. The relative broad range of size and 261 

complexity in each region detected by flow cytometry was corroborated by light 262 

microscopy. The cells included in the R1 corresponded to granulocytes (Figures 1B-263 

1D). Different shapes and morphologies were observed in fresh samples after cell 264 

attachment to the glass surface (Figure 1C). Granulocytes were the largest cells, 265 

showing a low nucleus-cytoplasm ratio. Those cells were composed by an endoplasm 266 

with high number of granules and an extended hyaline ectoplasm (Figure 1C). The cells 267 

included into the R2 matched with hyalinocytes (Figures 1E-1G). Hyalinocytes were the 268 

smallest cells and were characterized by the lack of endoplasm and the high nucleus-269 
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cytoplasm ratio (Figure 1F). The cells included in the R3 were characterized as 270 

intermediate cells (Figures 1H-1J). They presented a high nucleus-cytoplasm ratio, with 271 

the cytoplasm mainly composed by an endoplasmatic region with the ectoplasm reduced 272 

to a small striped region surrounding the endoplasm (Figure 1I).  273 

 274 

3.2. Functional characterization of R. decussatus haemocytes 275 

3.2.1. Phagocytosis assay  276 

The cell populations showed different ability to phagocyte the FITC-labelled 277 

particles (latex beads, zymosan and E. coli). The phagocytosis was detected as an 278 

increase of the fluorescence levels registered in the FL1-H channel (Figure 2A). The 279 

phagocytic levels of cells treated with latex beads were significantly higher than the 280 

levels registered after zymosan or E. coli treatment regardless of the cell population 281 

(Figure 2B). The easiest phagocitable particles were the latex beads, following by the 282 

zymosan and the E.coli. Moreover, after two hours of latex exposition, the 40% of the 283 

cells in R1 ingested at least one particle in contrast with 10% of R3 cells and 5% of R2 284 

cells (Figure 2B). Phagocytosis levels registered in the R1 after treatment with latex 285 

beads or zymosan particles were significantly higher than those of the cells included in 286 

the R2 or R3 (Figure 2B). Haemocyte samples were also observed by microscopy after 287 

phagocytosis. Although the internalization of the particles was corroborated in all cell 288 

types (Figure 2C-2G), the granulocytes were the cells with the highest phagocytosis 289 

rate, showing also the highest number of particles into the cytoplasm (Figure 2D and 290 

2E).  291 

 292 

3.2.2. Respiratory burst assay 293 
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The production of reactive oxygen species after the stimulation with zymosan 294 

was detected in the FL1-H channel as an increase in the mean fluorescence value. 295 

Moreover a decrease of this value was recorded in the same samples treated with SOD 296 

(Figure 3A). The clam respiratory burst activity was low and only 8 out the 24 analyzed 297 

clams (33 %) produce detectable levels of oxygen radicals in the three cell populations 298 

at the same time. The percentage of active clams increased to 83.3 %, 41.6 % and 62.5 299 

% when only one cell population was considered (R1, R2 and R3, respectively). In all 300 

populations the stimulation with zymosan induced significant changes in the mean 301 

fluorescence values compared to the levels registered in control samples (Figure 3B). 302 

There were variations in the fluorescence values detected in each region from 303 

one clam to another (Figure 3C). Granulocytes (R1 cells) showed the highest and the 304 

hyalinocytes showed the lowest values of ROS production. The average fluorescence 305 

levels registered in R1, R2 and R3 cells were 131, 5 and 34 respectively (Figure 3C).  306 

 307 

 308 

3.3. In vitro stimulation of R. decussatus haemocytes 309 

3.3.1. Effect of the stimulants on the cell viability 310 

The exposure of the haemocytes to the different treatments induced significant 311 

changes in the cell viability (Figure 4). The analysis of the whole population revealed 312 

that the samples treated with LPS showed significant lower levels of damaged cells than 313 

those registered in the control group 1 h and 3 h after the treatment. Also those values 314 

were significantly lower than the levels registered in samples treated with dead or live 315 

bacteria regardless of the sampling point (Figure 4A). The treatment with dead bacteria 316 

and live V. splendidus reduced the cell viability in all the sampling points evidenced as 317 

a significant increase in the number of stained cells (PI+) in comparison with controls. 318 
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The response of the R1 cells to the different treatments was quite similar (Figure 4B) 319 

except for the LPS treatment. A significant 2-fold increase in the number of PI+ cells 320 

was detected in samples treated with dead bacteria in all sampling points. Live bacteria 321 

also induced a significant increase in the number of damaged cells, reaching a 2-fold 322 

change at 6 h. This reduction of the cell viability increased between 1 h and 6 h.  323 

 324 

3.3.2. Effect of the stimulants on the gene expression profile 325 

Changes in gene expression profiles following stimulation of haemocytes with 326 

LPS, dead bacteria or V. splendidus infection are summarized in Figure 5. The 327 

expression of the DAD-1 gene was significantly increased at 3 h post-treatment in 328 

haemocytes stimulated with LPS, when it reached the maximum expression value (2-329 

fold increase). At 6 h the values decreased to control levels. The infection with V. 330 

splendidus only induced a significant decrease of the DAD-1 gene 1 h after infection. 331 

No significant changes were registered at 3 h and 6 h post infection (Figure 5A). The 332 

expression of the thrombin gene increased at 6 h in samples treated with LPS or dead 333 

bacteria, although the values were not significantly different compared to the control. 334 

Infection with V. splendidus did not induce any significant change (Figure 5B). 335 

Prosaposin expression was modulated in samples treated with dead bacteria, reaching 336 

significant maximum values (2-fold increase) at 6h, meanwhile samples treated with 337 

LPS decreased to control values. The infection with V. splendidus did not induce any 338 

significant change (Figure 5C). Moreover, a 20-fold increase in IAP expression was 339 

recorded in haemocytes treated with dead bacteria 6 h post stimulation (Figure 5D). The 340 

factor B gene and the complement component C3 gene showed similar kinetics. No 341 

changes in gene expression were detected in samples infected with V. splendidus. 342 

Haemocytes stimulated with LPS or dead bacteria showed an up-regulation of both 343 
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genes 1 h and 6 h post stimulation although only the expression levels of factor B 344 

registered at 1 h were significantly different compared to the control (Figures 5E and 345 

5F). 346 

  347 

 348 

4. Discussion 349 

The two main bivalve haemocyte types, granulocytes and hyalinocytes, were 350 

observed in R. decussatus haemolymph. They differed in size, number of granules and 351 

nucleus:cytoplasm ratio being granulocytes larger and with higher number of granules 352 

and cytoplasm ratio with the nucleus. It was also detected a third group of haemocytes 353 

with intermediate values of size and granularity that we have named intermediate cells. 354 

In the clams M. mercenaria, Meretrix lusoria and the oyster C. virginica were also 355 

described a group of cells, smaller and less complex than granulocytes, that have been 356 

denominated fibrocytes, small granulocytes or intermediate cells [5, 11, 12, 29, 66]. It 357 

has been postulated that these intermediate cells could actually be degranulated 358 

granulocytes in the final step of their vital cycle [11, 67], although some authors 359 

proposes that they are active cells [68]. The identification of the two main 360 

subpopulations (granulocytes and hyalinocytes) has been described in numerous 361 

bivalves [8, 9, 14-17]. Granulocytes are the main immune-related subpopulation, with 362 

higher phagocytic ability and ROS production than hyalinocytes [69, 70]. Moreover, 363 

granulocytes are related to encapsulation process. Hyalinocytes seem to be more 364 

important in hemocyte aggregation process [18]. 365 

However, we have observed three different subpopulations based on their 366 

relative size and complexity by flow cytometry. Methodology, endogenous and 367 

exogenous factors, like age and pollution, and the high inter-individual variability 368 
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observed in bivalves could have influence in the results [12, 14, 15, 71-73]. To 369 

minimize this discrepancy, several techniques of cell identification can be used 370 

simultaneously. Among them, the physical separation by flow cytometry (cell sorting), 371 

was postulated as a useful method to distinguish between subpopulations in bivalves 372 

[37]. We have confirmed that R. decussatus haemocyte types observed by light 373 

microscopy corresponded with the subpopulations selected in the flow cytometry 374 

sorting process. Flow cytometry has major advantages when compare to traditional 375 

methods such as microscopy or density gradients since is possible to compare 376 

simultaneously several parameters at cellular level, as size and complexity, phagocytic 377 

activity and ROS production, leaving the possibility of use of specific markers [5]. In 378 

particular, flow cytometry has been shown to be very sensitive in the detection of 379 

respiratory burst activity compared with the classic luminol-dependent 380 

chemiluminiscence or NBT reduction, and is focused in individual cells more than in 381 

total populations [5, 39].   382 

 Regarding phagocytosis and ROS production, we have found that granulocytes 383 

were more active phagocytising foreign particles. However, both granulocytes and 384 

hyalinocytes were able to phagocyte particles in concordance with previous studies 385 

conducted on M. galloprovincialis, Cerastoderma glaucum, M. lusoria, M. mercenaria 386 

and A. irradians [10, 15, 23, 28, 29]. On the other hand, in other species like Tridacna 387 

crocea, Cerastoderma edule and R. philippinarum (=Tapes semidecussatus) 388 

phagocytosis in hyalinocytes has not been detected [10, 18, 73, 74]. The discrepancy 389 

could be related with the sensitivity of the method, with the lack of antibodies for the 390 

characterization of the different populations and also with the seasonal and inter-391 

individual variability. Related with the phagocytosis process, high reactive oxygen 392 

radicals are released during the oxidative burst that can be detected by luminol or 393 
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lucigenin dependent chemiluminescence, the NBT reduction and the cytochrome-c 394 

reduction [6, 21, 32, 34, 45, 75, 76]. There is some controversy about the ability of clam 395 

species to produce ROS [77]. In Siliqua patula and Tapes philippinarum it has been 396 

detected ROS by lucigenin dependent chemiluminescence and NBT reduction. 397 

However, these probes failed in detecting ROS in the clams R. decussatus, M. 398 

mercenaria, M. arenaria and S. plana [45, 47]. The extremely low amount of radicals 399 

released in clam species comparing to other bivalve species could explain the lower 400 

detection of ROS in clams when they are analysed by classical methodologies. As it has 401 

been postulated before, the detection of ROS is dependent of the method utilised and its 402 

sensitivity, the stimulus used and the composition of the medium to maintain the 403 

haemocytes [42, 77, 78]. The use of a more sensitive methodology such as flow 404 

cytometry, allowed the detection of ROS release in C. gigas and R. philippinarum [43, 405 

44] and the detection of H2O2 production in M. mercenaria [42]. Regarding R. 406 

decussatus, several attempts without success have been previously made to detect 407 

oxidative burst by applying the commonly used methodologies [46, 47]. However we 408 

have confirmed by flow cytometry that R. decussatus haemocytes release oxidative 409 

radicals. Our results showed that granulocytes, as occurs in C. virginica [5], were the 410 

haemocytes that release more oxygen radicals. In hyalinocytes we have also detected 411 

respiratory burst although at a very low level. In intermediate cells we have found 412 

moderate values compared with granulocytes and hyalinocytes. To test the specificity of 413 

the reaction we have used the superoxide dismutase enzyme (SOD) [6]. We have not 414 

observed a complete inhibition due to the triggering of reactive oxidative species that 415 

are not specifically inhibited by the SOD, suggesting that several oxygen species forms 416 

the oxidative defence of R. decussatus. This suggests that DCFH oxidation detection by 417 
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flow cytometry is a good system to detect the low levels of oxygen radicals released by 418 

R. decussatus.  419 

The infection of haemocytes with live or dead bacteria induced an expected 420 

decrease in the cell viability as it was previously described [55]. The effect of the 421 

bacterial infection on the gene expression profile was assayed by analyzing the changes 422 

in genes related to stress and apoptosis. Candidate genes related to complement system 423 

and apoptosis were selected from previous works because they showed a modulated 424 

expression after protozoan infection and bacterial stimulation of R. decussatus [62-64]. 425 

The DAD-1 gene has been characterized to play roles in the apoptotic process [79] and 426 

is over-expressed after different stimuli such as tissue damages, infections and stress 427 

induced by environmental changes [80-82]. The regulatory function of this protein to 428 

inhibit apoptosis has also been described in scallops [82]. The stimulation of the 429 

haemocytes with LPS induced a significant up-regulation of this gene at 3 h when the 430 

maximum levels of cell viability were registered in R1 and also in the whole cell 431 

population. Interestingly, the infection with V. splendidus induced a significant down-432 

regulation of this gene 1 h after infection, suggesting that apoptosis could be involved in 433 

the pathogenesis associated with the bacterial infection as it was described in other 434 

bacterial models [81, 83]. Gagnaire et al. [84] also reported that V. splendidus induced a 435 

down-regulation of SOD, that is a protective protein against reactive oxygen species, in 436 

C. gigas. The apoptotic process was also analyzed by measuring the expression levels of 437 

the IAP gene and the prosaposin gene. The prosaposin gene is not directly involved in 438 

the apoptotic process, although the generation of bioactive ceramides are involved in the 439 

regulation of apoptosis by the activation of proapoptotic caspases [85]. The infection 440 

with V. splendidus did not modulate the expression levels of both genes and only the 441 

treatment with LPS induced high expression levels of IAPs and prosaposin gene (25 and 442 



19 

 

2-fold changes respectively). The high expression levels of IAPs in LPS stimulated cells 443 

could be related with the increase on the cell viability. The serine-protease enzymes are 444 

involved in different immune processes such as coagulation, phagocytosis, activation of 445 

the complement cascade [86] or activation of the prophenoloxidase system that has been 446 

described in different bivalve molluscs [87-90]. The thrombin gene and the factor B 447 

gene contained a 3´serine-protease domain [63]. In vertebrates the factor B induces the 448 

activation of the C3 by the alternative pathway and its expression is modulated by 449 

different stimuli [91, 92]. Both genes were up-regulated after the stimulation with LPS 450 

and dead bacteria. Cathepsin L, a similar proteinase located in lysosomes has been 451 

previously observed up-regulated 24h after a V. splendidus-related infection in C.gigas 452 

[84]. The biological process that is activated after the expression of this serine-protease 453 

similar to thrombin has not been already described in bivalves, but it could be a 454 

mechanism similar to the coagulation pathway described in Tachypleus tridentatus after 455 

LPS stimulation [93]. It could be possible that the release of extracellular products by V. 456 

splendidus can degrade the complement proteins as it was previously described [94]. 457 

In conclusion, the flow cytometry is a suitable technique to study the 458 

morphology of R. decussatus haemocytes and also to measure some immune parameters 459 

such as the phagocytosis and the production of oxygen radicals. The infection with V. 460 

splendidus induced a decrease in the cell viability. Opposite to the results obtained in 461 

samples stimulated with LPS or dead bacteria, V. splendidus did not modify the 462 

expression levels of genes related with stress, apoptosis and serine-protease activity 463 

suggesting that the bacterial extracellular products could modulate the immune 464 

response. 465 
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Tables 741 

 742 

Table 1: Sequences of specific primers used for qPCR assays. 743 

 744 

Target Sequence Forward Sequence Reverse 

DAD-1 GCTATTGTGCATTGGTTGGA AATGCTCTTTCTGGGCTGAT 

Thrombin CGTTTGTTGTTCGACATCCT ATGATCCTTGTTCCGCTTTC 

Prosaposin TGCATTTTCTTTTGCTTTCG TGTTTGGTAGCCCCACATT 

IAP CAGAGGAGTTGCAGTCGGTA TACATCTGCCCTTTTGTCCA 

Bf GACAGATGCTGAGGAAACG GTGCGGTGTTGAGGCTATTT 

C3 CGGCAAAGGCTTTATTGTGT TGAGTGCAGTGCCTATCTGG 

Actin CGACTCTGGAGATGGTGTCA ATGAGTAAGTGTTGGTGGCG 

   

 745 

 746 

747 
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Figure legend 748 

 749 

Figure 1. (A) Density plot distribution of haemocyte populations in relative size (FSC-750 

H) and complexity (SSC-H) by flow cytometry. Granulocytes, hyalinocytes and 751 

intermediate cells were included in the regions R1, R2 and R3, respectively. (B) 752 

Microphotograph of ethanol fixed and stained granulocyte. (C) Fresh granulocyte under 753 

Nomarski DIC objective. (D) Fresh granulocyte after sorting. (E) Microphotograph of 754 

ethanol fixed and stained hyalinocyte. (F) Fresh hyalinocyte under Nomarski DIC 755 

objective. (G) Fresh hyalinocyte after sorting. (H) Microphotograph of ethanol fixed 756 

and stained intermediate cell. (I) Fresh intermediate cell under Nomarski DIC objective. 757 

(J) Fresh intermediate cell after sorting. (n) nucleus, (hy) hyaloplasm, (en) endoplasm, 758 

(ec) ectoplasm. Scale bar 10 µm. 759 

 760 

Figure 2: (A) Histogram of fluorescence registered in the FL1-H channel in R1 cells 761 

(granulocytes) treated with latex beads. (B) Percentage of granulocytes (R1), 762 

hyalinocytes (R2) and intermediate cells (R3) that ingested at least one fluorescent 763 

particle (E. coli, latex beads or zymosan). The bars represent the mean ± standard 764 

deviation of 16 samples in each treatment. (a) Significant differences in each region 765 

regarding to the levels obtained in haemocytes treated with latex beads. (b) Significant 766 

differences within each treatment regarding to the level recorded in R1. (C) 767 

Photomicrography of a control granulocyte. (D) Granulocyte ingested several latex 768 

beads after 2 hours of incubation. (E) Granulocyte engulfed zymosan particles. (F) 769 

Intermediate cell engulfed one zymosan particle. (G) Hyalinocyte engulfed one latex 770 

bead. Scale bar 10 µm. 771 

 772 
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Figure 3: (A) Histogram representing the mean fluorescence of a representative sample 773 

of granulocytes (R1 cells) stimulated with zymosan and treated with zymosan plus SOD 774 

at the same time. (B) Results represent the mean ± SD of the fluorescence values 775 

recorded in responsive animals. Results from 13, 10 and 15 animals were considered in 776 

the R1, R2 and R3, respectively. The y axis showed relative units of fluorescence (mean 777 

fluorescence values). (*) Significant differences regarding to the levels obtained 778 

controls. (C) Response of eight representative clams exposed to FSW (control), 779 

zymosan and zymosan plus SOD. R1 (granulocytes). R2 (hyalinocytes). R3 780 

(intermediate cells). 781 

 782 

Figure 4: Viability of haemocytes treated with LPS, dead bacterial mixture and V. 783 

splendidus after 1 h, 3 h and 6 h post treatment. (A) Results obtained in the whole 784 

population. (B) Results obtained in R1. Significant differences (p<0.05) regarding to the 785 

levels obtained in control, LPS and dead bacteria treated samples, were indicated with a, 786 

b and c, respectively. 787 

 788 

Figure 5: Modulation of DAD-1 (A), thrombin (B), prosaposin (C), IAP (D), factor B 789 

(E) and complement component C3 (F) in haemocytes stimulated with LPS, V. 790 

splendidus and dead bacterial mixture 1 h, 3 h and 6 h post treatment. Results represent 791 

the mean ± SD of 4 experimental haemocyte pools. Data were analyzed using the 792 

Student’s t-test. a, b and c indicate significant differences (p<0.05) of each gene in 793 

haemocytes stimulated with LPS, V. splendidus and the bacterial mixture, respectively 794 

compared to the control samples. 795 

 796 

 797 

 798 



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/fsim/download.aspx?id=76821&guid=a07df405-0a98-4f11-94c0-013ff1e2f668&scheme=1


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/fsim/download.aspx?id=76822&guid=1a9d07ce-b02c-4c60-93d9-2cebd113f84b&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/fsim/download.aspx?id=76826&guid=fbc3db55-9ece-4edf-9fcf-d8baeb351d3d&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/fsim/download.aspx?id=76827&guid=ce192571-1cfc-4298-946b-ab91f35d47fe&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/fsim/download.aspx?id=76828&guid=32cded4c-6d82-4048-a024-fe46577686c5&scheme=1

