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Abstract: In employing MaxEnt, a crucial role is assigned to the reciprocity relations that

relate the quantifier to be extremized (Shannon’s entropy S), the Lagrange multipliers that

arise during the variational process, and the expectation values that constitute the a priori

input information. We review here just how these ingredients relate to each other when the

information quantifier S is replaced by Fisher’s information measure I . The connection of

these proceedings with thermodynamics constitute our physical background.
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1. Introduction

We present here a review on the connections between Fisher’s information measure and the formalism

of thermodynamics, whose main feature resides in its Legendre transform structure. Our starting point

is the connection between information theory and statistical mechanics, which was established by

Jaynes [1,2] on the basis of a constrained variational approach. This entails extremization of Shannon’s
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information measure subject to the constraints imposed by the a priori knowledge on may possess

concerning the system of interest. Jaynes has shown that the entire statistical mechanics can be elegantly

reformulated, without reference to the ensemble-notion, if one chooses Boltzmann’s constant as the

informational unit and identifies Shannon’s measure with the thermodynamic entropy. The concomitant

methodology is referred to as the Maximum Entropy Principle (MaxEnt) [1,2]. Nevertheless, such

methodology does not always lead to an adequate distribution function [3]. This fact has encouraged

the formulation of either alternative entropies or variational procedures. The later is the case if one

appeals to Fisher’s information measure (FIM) I [3–6], where I replaces S. Such an approach provides

a new viewpoint within the so-called Wheeler’s paradigm of observer participatory physics [7]. Indeed,

much effort has been focused recently upon FIM-applications. The work of Frieden, Soffer, Plastino,

Nikolov, Casas, Pennini, Miller, and others has shed much light upon the manifold physical applications

of I (as a non-exhaustive set, see for instance [5,8–13]).

2. MaxEnt and Reciprocity Relations

As stated above, statistical mechanics and thermodynamics can be formulated on the basis of

Information Theory if the density distribution f(x) is obtained by MaxEnt [1,2]. This theory asserts

that assuming that your prior knowledge about the system is given by the values of M expectation values

< A1 >, . . . , < AM >, then f(x) is uniquely fixed by extremizing S(f) subject to the constraints given

by the M conditions < Aj >=
∫

dxf(x)Aj(x), entailing the introduction of M Lagrange multipliers

λi. In the process, one discovers that the information quantifier S can be identified with the equilibrium

entropy of thermodynamics if our prior knowledge < A1 >, . . . , < AM > refers to extensive quantities.

Sconstraints extrem., once determined, yields complete thermodynamical information with respect to the
system of interest [1]. f(x), the classical MaxEnt probability distribution function (PDF), associated to

Boltzmann-Gibbs-Shannon’s logarithmic entropy, is given by [1,2]

fMaxEnt = f(x) = exp

[
−
(
Ω +

M∑
i=1

λi Ai(x)

)]
, (1)

with the normalization parameter Ω being given by [1,2]

Ω(λ1, . . . , λM) = ln

{∫
dx

[
exp

(
−

M∑
i=1

λi Ai(x)

)]}
, (2)

that also verifies
∂Ω(λ1, . . . , λM)

∂λj

= −〈Aj〉, (j = 1, . . . ,M), (3)

and

S = Ω+
M∑
i=1

λi 〈Ai〉. (4)

Accordingly,

dS =
M∑
i=1

λi d〈Ai〉, (5)
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so that the Euler theorem holds [2]:
∂S

∂λi

=
∑
k

λk
∂〈Ak〉
∂λi

, (6)

and, using (4), one arrives to the so-called reciprocity relations, around which this communication will

revolve, starting with

dS =
M∑
i=1

λi d〈Ai〉 =⇒ ∂S

∂〈Ai〉 = λi

S = S(〈A1〉, . . . , 〈AM〉), (7)

applying the Legendre transform

Ω = Ω(λ1, . . . , λM) = S −
M∑
i=1

λi 〈Ai〉, (8)

and then immediately finding that reciprocity holds, namely,

∂S

∂〈Aj〉 = λj and
∂Ω

∂λj

= −〈Aj〉; j = 1, . . . ,M, (9)

where the second set of equations, together with (2), yield the Lagrange multipliers as a function of the

input information regarding expectation values [2]. Finally, let us point out that the nice expression (2)

results from having a closed analytical expression for fMaxEnt. Things become more involved below, in

the Fisher instance, when a such expression is not available.

3. A Fisher Primer

3.1. Preliminaries

We have in mind here the formalism developed in Reference [6], adapted to a three-dimensional

setting. Consider a system that is specified by a physical parameter Θ(�θ) and let f(�v, �θ|t) describe the

normalized probability distribution function (PDF) for this parameter, at that time t. Fisher’s Information

Measure (FIM) I will read

I =

∫
d3v f(�v, �θ|t)

3∑
i=1

{
∂

∂θi
ln [f(�v, �θ|t)]

}2

. (10)

The special case of translational families deserves a special mention. These are mono-parametric

distribution families of the form

f(�v, �θ|t) = f(�v − �θ|t),
which are known up to the shift parameter Θ. Following Mach’s Principle (no absolute origin), all

members of the family possess identical shape, and here the FIM adopts the form

I =

∫
d3v f(�v|t)

3∑
i=1

{
∂

∂vi
ln [f(�v|t)]

}2

. (11)

This FIM-form exhibits a variety of mathematical properties (see, for instance, [14,15]) and constitutes

the main ingredient of a powerful variational principle, as discussed below.
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3.2. Extremizing Fisher’s Information Measure

Consider a system that is specified by a set of M physical parameters Θk measured at the time t. We

can write

Θk = 〈Ak〉t , with Ak = Ak(�v) (k = 1, ...,M) (12)

and Θk measured at the time t.

Note that the set of Θk-values is the prior knowledge which represents empirical information measured
at the fixed time t. Let the pertinent probability distribution function (PDF) be f(�v|t). Then,

〈Ak〉t =

∫
d3v Ak(�v) f(�v|t) , k = 1, . . . ,M. (13)

These mean values play the role of extensive thermodynamical variables, as explained in Reference [6].

In this context, the relevant PDF f(�v|t) extremizes the FIM (11) subject to (i) the prior conditions (12)

and, of course, (ii) the normalization condition∫
d3v f(�v|t) = 1. (14)

Our Fisher-based extremization problem adopts, at a given time t, the appearance

δ

(
I − α

∫
d3v f(�v|t)−

M∑
k=1

λk

∫
d3v Ak(�v) f(�v|t)

)
= 0 (15)

where we have introduced the (M + 1) Lagrange multiplier. Variation leads to

3∑
i=1

[
1

f 2

(
∂f

∂vi

)2

+
∂

∂vi

(
2

f

∂f

∂vi

)]
+ α +

M∑
k=1

λk Ak(�v) = 0 (16)

To put the above equation in a more manageable form [6,16,17], we introduce the function ψ(�v|t) via

the identification |ψ(�v|t)|2 = f(�v|t) so that Equation (16) adopts the Schrödinger-aspect

− 1

2
∇2ψ −

M∑
k=1

λk(t)

8
Ak ψ =

α

8
ψ, (17)

Then, in order to find the PDF one has to solve the above wave-equation (WE) where the Lagrange

multiplier (α/8) plays the role of an energy eigenvalue E, and the sum of the (λkAk) is an effective

potential function

U = U(�v, t) = − 1

8

M∑
k=1

λk(t) Ak(�v), (18)

where the Lagrange parameters λk are fixed with the available prior information. Notice that the

eigen-energies α/8 yield automatically the value of the Lagrange multiplier associated to normalization

[cf. Equation (2) for the Shannon instance]. Squaring the solutions ψ yields the PDF, i.e.,

ψ(�v, t)2 = f(�v|t). (19)
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It is important to remark that

• No specific potential has been assumed, as it is appropriate for thermodynamics. Also, we note

that U is a time-dependent potential function and will allow for the description of non-equilibrium

situations.

• The specific Ak(�v) to be used depend upon the nature of the physical application at hand. This

application could be of either a classical or a quantum nature.

• Equation (17) represents a boundary value problem, generally with multiple solutions, in contrast

with the unique solution that one obtains when employing Jaynes-Shannon’s entropy in place of

Fisher’s measure [18].

• The solution leading to the lowest I-value is the equilibrium one [6], admixtures of excited

solutions yield non-equilibrium states [6].

4. Illustration: The Treatment of the Ideal Gas

As a didactic example we will here discuss the Fisher treatment of the ideal gas, by following the

considerations expounded in [23]. We look for the density distribution, in configuration space, of the

(translational invariant) ideal gas (IG) that describes non-interacting classical particles of mass m with

coordinates q = (r,p), where mdr/dt = p. The translational invariance is described by the translational

family of distributions F (r,p|θr, θp) = F (r′,p′) whose form does not change under the transformations

r′ = r − θr and p′ = p − θp. We assume that these coordinates are canonical and uncorrelated. This

assumption is introduced into the Fisher information measure (FIM) (11), with 2D dimensions (phase

space). For the sake of dimensional balance we introduce in (11) two appropriate dimensional constants,

namely, cr for space coordinates and cp for momentum coordinates [23]. The phase space probability

density F (r,p) can obviously be factorized in the fashion F (r,p) = ρ(r)η(p), and then it follows

from the additivity of the information measure [5] that I = Ir + Ip, i.e., FIM becomes the sum of a

coordinate-FIM and a momentum-one. Since D is the dimensionality we have

Ir = cr

∫
dDr ρ(r) |∇r ln ρ(r)|2

Ip = cp

∫
dDp η(p) |∇p ln η(p)|2 .

(20)

In extremizing FIM we constrain [23] the normalization of ρ(r) and η(p) to the total number of

particles N and to 1, respectively, i.e.,∫
dDr ρ(r) = N,

∫
dDp η(p) = 1. (21)

In addition, we must penalize infinite values for the particle momentum (infinite energies are un-physical)

with a constraint on the variance of η(p) to force it to be finite [23], namely,∫
dDp η(p)(p− p)2 = Dσ2

p, (22)

where p is the mean value of p. For each degree of freedom it is known from the Virial Theorem that

the variance is related to the temperature T as σ2
p = mkBT , with kB the Boltzmann constant. Variation

thus yields

δ

{
cr

∫
dDr ρ |∇r ln ρ|2 + μ

∫
dDr ρ

}
= 0 (23)
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and

δ

{
cp

∫
dDp η |∇p ln η|2 + λ

∫
dDp η(p− p)2 + ν

∫
dDp η

}
= 0, (24)

where μ, λ and ν are Lagrange multipliers. Introducing now ρ(r) = Ψ2(r) and varying (23) with respect

to Ψ leads to a Schröedinger-like equation[−4∇2
r + μ′]Ψ(r) = 0, (25)

where μ′ = μ/cr. To fix the boundary conditions, we first assume that the N particles are confined

in a box of volume V , and next we take the thermodynamic limit N, V → ∞ with N/V finite. The

equilibrium state compatible with this limit corresponds to the ground state solution (μ′ = 0), which is

the uniform density ρ(r) = N/V .

Introducing η(p) = Φ2(p) and varying (24) with respect to Φ leads to the quantum harmonic

oscillator-like equation [−4∇2
p + λ′(p− p)2 + ν ′]Φ(p) = 0, (26)

where λ′ = λ/cp and ν ′ = ν/cp. The equilibrium configuration corresponds to the ground state

solution, which is now a Gaussian distribution. Using (22) to identify |λ′|−1/2 = σ2
p we get the

Maxwell-Boltzmann distribution, which leads to a density distribution in configuration space of the

form

f(r,p) =
N

V

exp
[−(p− p)2/2σ2

p

]
(2πσ2

p)
D/2

. (27)

If H is the elementary volume in phase space, the total number of microstates is [24]

Z = N !HDN
∏N

i=1 F1(ri,pi), where F1 = F/N is the single particle distribution and N ! counts all

possible permutations for distinguishable particles. The entropy S = −kB lnZ gets then written in the

form

S = NkB

{
ln

V

N

(
2πσ2

p

H2

)D/2

+
2 +D

2

}
, (28)

where we have used the Stirling approximation for N ! . This expression agrees, of course with the known

value entropic expression for the IG [24], illustrating on the predictive power of the FIM formulation.

5. Connecting the SWE’s Solutions to Thermodynamics

The connection between the solutions of Equation (17) and thermodynamics has been established

in References [6] and [9]. Here we will look at things in a rather different fashion. For starters, we

will consider that the vector �v in that equation is a “velocity” and we are going to extend the procedure

of [6] and [9] to the three-dimensional instance, by dealing with an equilibrium gas of mass density ρo.

Moreover, we will focus on non-equilibrium thermodynamics’ facets.

Accordingly, our velocity-space Schrödinger (SWE) reads

− 1

2ρo
�∇ 2 ψ(�v, t)−

M∑
k=1

λk(t)

8
Ak(�v) ψ(�v, t) =

α

8
ψ(�v, t), (29)

The prior knowledge is chosen to be the temperature characterizing our equilibrium state. How? Via

the equipartition theorem [19], that allows us calculate the average value of the squared velocity square
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in the equilibrium state, 〈 v2 〉o. Consequently, choosing A1(v) = v2 and writing λ
′
1(t) = ρo/(2ω

2
o),

α/8 = E/ω2
o , the ensuing time-independent Schrödinger wave equation is given by[

− 1

2
�∇ 2 +

ρ2o
2ω2

o

v2
]
ψ =

ρo E

ω2
o

ψ. (30)

At this point, we split up the Hamiltonian H into the unperturbed Hamiltonian Ho plus a perturbation

part H ′,
H = Ho +H ′ , Hψn = Enψn , Hoφn = Eo

nφn

Ho can be identified with the harmonic oscillator hamiltonian,[
− 1

2
�∇ 2 +

ρ2o
2ω2

o

v2
]
φn(�v, t) = (ρo E

o
n/ω

2
o) φn(�v, t), (31)

so that the ground state solution becomes a Gaussian function,

φo =

(
ρo
πωo

)3/4

exp

(
− ρo

2ωo

v2
)
. (32)

The excited solutions ψn(�x, t) to the Fisher-based SWE can be obtained using an appropriate, standard

approximation method for stationary states [6,9,21]. The expansion coefficients are computed using the

< Ak > of (13) by Hermite polynomials [22]. The total number of them that one needs depends upon

how far from equilibrium we are.

Note that, the coefficients are computed at the fixed time t at which the input data

< Ak >t are collected. At equilibrium there is only one such coefficient. The premise of the constrained

Fisher information approach is that its input constraints are correct, since they come from experiment.
Summing up, the approach of [6] yields solutions at the fixed (but arbitrary) time t. Schrödinger’s wave

equation approach gives solutions valid at discrete time-points t. In other words, for any other time

value t∗ we need to input new < Ak > values, appropriate for this time, but this does not compromise

the validity of the Fisher-Schrödinger approach.

6. Fisher Reciprocity Relations

The reciprocity relations are an expression of the Legendre-invariant structure of thermodynamics

and constitute its essential formal ingredient [20]. It is thus a crucial question to ascertain that they also

hold for the Fisher treatment, as we will show below, so that we can speak of a Fisher-thermodynamics.

As stated in Section 2, standard thermodynamic makes use of the derivatives of the entropy S with

respect to both λi and 〈Ai〉 parameters (for instance, pressure and volume, respectively). In the same way,

we are led to investigate analogous properties of ∂I/∂λi and ∂I/∂〈Ai〉. The concomitant proceedings

are not so direct as their MaxEnt counterparts, but do not present serious difficulties. The derivation

below is original as far as we know.

We start by substituting (19) into Equation (11),

I =

∫
d3v f

3∑
i=1

(
∂ ln f

∂vi

)2

=

∫
d3v ψ2

n

3∑
i=1

(
∂ lnψ2

n

∂vi

)2

= 4

∫
d3v

3∑
i=1

(
∂ψn

∂vi

)2

(33)
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which, with some vectorial algebra and the Gauss Theorem, can be recast as

I = 4

∮
S

(
ψn

�∇ψn

)
· n̂ ds− 4

∫
ψn

�∇ 2ψn d3v = − 4

∫
ψn

�∇ 2ψn d3v (34)

Then, using the SWE (17) we get

I =

∫
ψn

(
α +

M∑
k=1

λk Ak

)
ψn d3v (35)

Finally, the prior conditions (12) and the normalization condition (13) lead to

I(〈A1〉 , . . . , 〈AM〉) = α +
M∑
k=1

λk 〈Ak〉 , (36)

the Fisher-counterpart of (4). Note that the Legendre transform of I is α,

α = I(〈A1〉 , . . . , 〈AM〉)−
M∑
k=1

λk 〈Ak〉 = α(λ1, . . . , λM), (37)

so that

∂α

∂λi

= −〈Ai〉. (38)

Finally, according to (36)

λk =
∂I

∂ 〈Ak〉 , (39)

and moreover,

∂I

∂λi

=
M∑
k

λk
∂〈Ak〉
∂λi

(40)

which is a generalized Fisher-Euler theorem that was previously proved in [6].

7. Second Illustrative Simple Example

To illustrate the above assertions we discuss a simple and instructive one-dimensional example.

We focus attention on Equation (17) and assume that the prior information leads to a harmonic

oscillator-problem because it consists of the moment < x2 >’s value, i.e.,(
−1

2

d2

dx2
− λ2

8
x2

)
ψ =

α

8
ψ, (41)

It is immediately verified that the Gaussian wave function

ψ(x) = (2π)−1/4σ−1/2 exp [−(2σ)−2 x2], (42)

(σ2 the dispersion) is a solution of the above Schrödinger’s equation with α, λ2, σ linked in the fashion

α =
2

σ2
, λ2 = − 1

σ4
(43)
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We can then evaluate the pertinent PDF as f = ψ2. Thus, I(f) and the x2−moment turn out to be

I = I(〈x2〉) = 1

σ2
, 〈x2〉 = σ2 , (44)

so that the so-called Cramer-Rao bound Iσ2 ≥ 1 gets saturated, as it should for Gaussian

distributions [4].

The reciprocity relations for the present situation are now seen to be given, as expected, by

∂α

∂λ2

=
∂(2

√|λ2|)
∂λ2

= − 〈x2〉, (45)

∂I

∂〈x2〉 = − 1

σ4
= λ2 . (46)

8. Convexity

In order to be able to construct a thermodynamic based upon I , it is also necessary to examine the

convexity nature of I [20]. We prove below that I is a convex functional of the probability distribution

p. Therefore, I exhibits the desirable mixing property [20].

Let a, b be two real scalars such that a + b = 1, p1, p2 two normalized probability distributions, and

consider

ψ =
√
ap1 + i

√
bp2, (47)

so that

p = |ψ|2 = ap1 + bp2, (48)

is a third probability distribution whose associated Fisher Information for translation families reads

I = 4

∫
d3v

3∑
i=1

(
∂|ψ|
∂vi

)2

. (49)

Then, to investigate the convexity question we must find the relationship relating I(p) to aI(p1)+bI(p2).

If we set now

ψ(v) = R(v) exp[iS(v)], (50)

R y S two real functions in 
, we immediately find

I = 4

∫
d3v

3∑
i=1

(
∂R

∂vi

)2

. (51)

Now, it is easy from (47) to see that

∂ψ

∂vi
=

1

2

(√
a

p1

∂p1
∂vi

+ i

√
b

p2

∂p2
∂vi

)
, (52)

so that
3∑

i=1

∣∣∣∣∂ψ∂vi
∣∣∣∣
2

=
1

4

3∑
i=1

[
a

p1

(
∂p1
∂vi

)2

+
b

p2

(
∂p2
∂vi

)2
]
, (53)
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which implies ∫
d3v

3∑
i=1

∣∣∣∣∂ψ∂vi
∣∣∣∣
2

= aI(p1) + bI(p2). (54)

In the other hand by using (50) we see that∫
d3v

3∑
i=1

∣∣∣∣∂ψ∂vi
∣∣∣∣
2

= I(p) + 4

∫
d3v |ψ|2

3∑
i=1

(
∂S

∂vi

)2

. (55)

the integral on the right side of the preceding equation is clearly ≥ 0, which allows one to assert [25]

that

I(ap1 + bp2) ≤ aI(p1) + bI(p2); (56)

i.e., Fisher information for translational families is indeed a convex functional of the probability

distributions. The right side of Equation (56) represents the net probability, after mixing, for two distinct

systems. It should be mentioned here that the approach can be generalized in the same fashion to a

mixture theorem for N systems. The inequality (56) is a special instance of Fisher’s I-theorem

dI

dt
≤ 0, (57)

predicted in [3] and proved in [10–12].

9. Conclusions

We have here reviewed the steps necessary to prove that a Fisher-based thermodynamics exists. The

question is not trivial, since we do not have at hand a closed analytical expression for the probability

distribution function that extremizes the Fisher measure subjected to appropriate constraints, but must

obtain it via the solutions of a Schrödnger-like equation. This makes things more involved than in the

Shannon instance, but more general as well, since it allows to deal with equilibrium and off-equilibrium

scenarios on an equal footing, as we have endeavored here to explain.
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