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Time Scales of a Chaotic Semiconductor Laser
With Optical Feedback Under the Lens of a

Permutation Information Analysis
Miguel C. Soriano, Luciano Zunino, Osvaldo A. Rosso, Ingo Fischer, and Claudio R. Mirasso

Abstract—We analyze the intrinsic time scales of the chaotic
dynamics of a semiconductor laser subject to optical feedback by
estimating quantifiers derived from a permutation informat ion
approach. Based on numerically and experimentally obtained
times series, we find that permutation entropy and permutation
statistical complexity allow to extract important characteristics
of the dynamics of the system. We provide evidence that per-
mutation statistical complexity is complementary to permutation
entropy, giving valuable insights into the role of the different time
scales involved in the chaotic regime of the semiconductor laser
dynamics subject to delay optical feedback. The results obtained
confirm that this novel approach is a conceptually simple and
computationally efficient method to identify the characteristic
time scales of this relevant physical system.

Index Terms—Semiconductor lasers, optical feedback, chaos,
time scale identification, permutation entropy, permutation sta-
tistical complexity.

I. I NTRODUCTION

The identification of essential physical time scales from
complex laser dynamics is a nontrivial task, which is however
important for their general characterization and application.
In particular, systems with time delays can generate chaotic
dynamics with high complexity, i.e. they posses a large number
of dynamical degrees of freedom [1]. This is one of the
properties which makes delay systems very attractive for appli-
cations. Particularly, optical chaos encryption is based on the
unpredictability of the chaotic carrier [2] besides its synchro-
nizability [3]. Chaotic radar [4] and lidar [5], rainbow refrac-
tometry [6], and ultrahigh-speed physical random number gen-
eration [7], [8] are other relevant applications of opticalchaos
based on delay-phenomena. Semiconductor lasers with optical
feedback have been shown to be particularly suitable for these
applications due to their large dynamical bandwidth [9]–[13].
This bandwidth amounts to typically several GHz, related to
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the relaxation oscillation period of the semiconductor laser, but
possibly also faster time scales, as we will discuss in this paper.
The resolution of chaotic lidar and the transmission rates of
chaos communications are limited by this characteristic fast
time scale of the semiconductor laser [14]. The feedback time
delay is another intrinsic time scale determining the dynamics
of semiconductor lasers with feedback. The time delay is im-
portant to generate suitable carriers for chaos communication,
but also, because the dynamics of certain chaotic delayed
systems can be identified and modeled once their time delay is
known [15]–[17]. Consequently, the identification of the time
delay could compromise the security and confidentiality of
chaotic communication systems [18]–[20]. Rontaniet al. [21],
[22] have recently shown that difficult time delay identification
scenarios strongly depend on the time scales of the system, i.e.
the separation between the relaxation oscillation period and
feedback time delay plays a starring role in the retrieval of
the time delay.

For all these aspects, a detailed study of the time scales
present in the chaotic dynamic of a semiconductor laser subject
to optical feedback is very important. This critical issue is
addressed in this work by estimating permutation entropy,
HS , and permutation statistical complexity,CJS , of both,
numerical and experimental time series of the laser output
power as functions of the embedding delayτ of a particular
symbolic reconstruction. It is worth mentioning that this novel
approach, derived from information theory, provides useful
evidence about time delay phenomena present in noisy time
series [23]. More specifically, in this work it is found that both
quantifiers,HS and CJS , develope clear extrema when the
embedding delayτ matches the characteristic time delayτS
of the system. In the present work we verify from numerical
and experimental time series that these quantifiers are able
to identify the feedback time delay and relaxation oscillation
period in the dynamics of the semiconductor laser subject to
optical feedback operating in a chaotic regime. Additionally,
the approach detects an even faster time scale that we relateto
fast chaotic dynamical processes. Several implications, in par-
ticular temporal detection requirements, are being discussed.
We note that, according to our knowledge, we present the first
application of this methodology to experimental time series.

The paper is organized as follows. In Section II we de-
scribe the two information theory quantifiers estimated in our
analysis: permutation entropy,HS , and permutation statistical
complexity,CJS . In Sections III and IV, numerical and ex-
perimental results, respectively, are presented and discussed.
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Finally, some concluding remarks are given in Section V.

II. I NFORMATION THEORY QUANTIFIERS

Deterministic chaotic time series produced by nonlinear
time delay systems share several properties with those gener-
ated by stochastic processes, e.g. a wide-band power spectrum
and a long-term unpredictable behavior. They can be hard to
distinguish in practical situations and several works aimed
at elucidating the deterministic or random nature of a time
series [24], [25]. This similarity justifies the use of standard
statistical operators to study the properties of chaotic time
series. Autocorrelation function (ACF) and delayed mutual
information (DMI) are conventional techniques widely used
to identify time delays [18], [20]–[22], [26], [27]. However,
new alternatives were introduced in recent years in order to
perform this task [28]–[35]. We are particularly interested in
the application of a permutation information theory method-
ology to unveil delay phenomena from time series introduced
recently [23]. In this approach, quantifiers derived from infor-
mation theory, more precisely Shannon entropy and statistical
complexity, are estimated by using an efficient symbolic
technique, the Bandt and Pompe permutation method [36],
to determine the probability distribution associated to the
time series under study. This way of symbolizing time series,
based on a comparison of consecutive points, allows a more
accurate empirical reconstruction of the underlying phase
space of chaotic time series affected by weak (observational
and dynamical) noise [36]. This is the main advantage with
respect to standard methods, like ACF and DMI, that take
the exact metric into account. Moreover, the ordinal pattern
distribution is invariant with respect to nonlinear monotonous
transformations. Thus, nonlinear drifts or scalings artificially
introduced by a measurement device do not modify the
quantifiers estimations. This property is highly desired for the
analysis of experimental data. The basic intrinsic structure
of complex systems is obtained in a very fast and flexible
way. Characteristic time scales present in the system dynamics
are detected through the presence of clear extrema of the
quantifiers when they are calculated as a function of the
embedding delay.

A. Shannon entropy and statistical complexity

Shannon entropy is widely used as a first natural approach
to quantify the information content of a system. Given any
arbitrary probability distributionP = {pi : i = 1, . . . ,M},
the widely known Shannon’s logarithmic information measure
defined byS[P ] = −

∑M

i=1 pi ln pi is regarded as the
measure of the uncertainty associated to the physical process
described byP . If S[P ] = 0 our knowledge of the underlying
process described by the probability distribution is maximal. In
contrast, our knowledge is minimal for a uniform distribution.

However, entropy measures do not quantify the degree of
structure or patterns present in a process and measures of
statistical or structural complexity are necessary to capture
properties related to organization [37]. The opposite extremes
of perfect order and maximal randomness (a periodic sequence
and a fair coin toss, for example) possess no complex structure.

These systems are defined to have zero statistical complexity.
At a given distance from these extremes, a wide range of
possible degrees of physical structure exists, that shouldbe
quantified by the statistical complexity measure. Lambertiet
al. [38] introduced an effective statistical complexity measure
(SCM) that is able to detect essential details of the dynamics
and differentiate different degrees of periodicity and chaos.
This statistical complexity measure is defined, following the
intuitive notion advanced by López-Ruizet al. [39], through
the product

CJS [P ] = QJ [P, Pe] HS [P ] (1)

of the normalized Shannon entropy

HS [P ] = S[P ]/Smax (2)

with Smax = S[Pe] = lnM , (0 ≤ HS ≤ 1) and
Pe = {1/M, . . . , 1/M} the uniform distribution, and the
disequilibrium QJ defined asQJ [P, Pe] = Q0J [P, Pe].
J [P, Pe] = {S[(P+Pe)/2]−S[P ]/2−S[Pe]/2} is the Jensen-
Shannon divergence andQ0 a normalization constant, equal to
the inverse of the maximum possible value ofJ [P, Pe]. This
maximum value is obtained when one of the components of
P , saypm, is equal to one and the remaining components are
equal to zero. The Jensen-Shannon divergence, that quantifies
the difference between two (or more) probability distributions,
is especially useful to compare the symbol composition be-
tween different sequences [40]. We stress the fact that the
above SCM is not a trivial function of the entropy because
it depends on two different probabilities distributions, the one
associated to the system under analysis,P , and the uniform
distributionPe. Furthermore, it has been shown that for a given
HS value, there exists a range of possible SCM values [41].
Thus, it is clear that important additional information related
to the correlational structure between the components of
the physical system is provided by evaluating the statistical
complexity [42], [43].

B. Bandt and Pompe symbolization method

In order to evaluate the two above-mentioned quantifiers,
HS andCJS , an associated probability distribution should be
constructed beforehand. The adequate way of choosing the
probability distribution associated to a time series is an open
problem. Rarely, a univocal procedure imposes itself. Bandt
and Pompe [36] introduced a successful method to evaluate the
probability distribution taking into account the time causality
of the system dynamics. They took partitions by comparing
the order of neighboring values rather than partitioning the
amplitude into different levels. That is, given a time series
{xt, t = 1, . . . , N}, an embedding dimensionD > 1, and
an embedding delay timeτ , the ordinal pattern of orderD
generated by

s 7→
(

xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)

(3)

has to be considered. To each times we assign aD-
dimensional vector that results from the evaluation of the
time series at timess − (D − 1)τ, . . . , s − τ, s. Clearly, the
higher the value ofD, the more information about the past is
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incorporated into the ensuing vectors. By the ordinal pattern
of order D related to the times we mean the permutation
π = (r0, r1, · · · , rD−1) of (0, 1, · · · , D − 1) defined by

xs−r0τ ≥ xs−r1τ ≥ · · · ≥ xs−rD−2τ ≥ xs−rD−1τ . (4)

In this way the vector defined by Eq. (3) is converted into
a unique symbolπ. The procedure can be better illustrated
by a simple example; let us assume that we start with the
time series{3, 2, 5, 1, 4, 6, . . .}, and we choose the embedding
dimension asD = 4 and the embedding delay asτ = 1. In
this case the state space is divided into4! partitions and24
mutually exclusive permutation symbols are considered. The
first 4-dimensional vector is(3, 2, 5, 1). According to Eq. (3)
this vector corresponds to(xs−3, xs−2, xs−1, xs). Following
Eq. (4) we find thatxs−1 ≥ xs−3 ≥ xs−2 ≥ xs. Then, the
ordinal pattern allowing us to fulfill Eq. (4) will be(1, 3, 2, 0).
The second4-dimensional vector is(2, 5, 1, 4), and(2, 0, 3, 1)
will be its associated permutation, and so on. For all theD!
possible permutationsπi of orderD, their associated relative
frequencies can be naturally computed by the number of times
this particular order sequence is found in the time series
divided by the total number of sequences. Thus, an ordinal
pattern probability distributionP = {p(πi), i = 1, . . . , D!}
is obtained from the time series. This probability distribution
is derived once we fix the embedding dimensionD and the
embedding delay timeτ . The former parameter plays an
important role for the evaluation of the appropriate probability
distribution, sinceD determines the number of accessible
states, given byD!. Moreover, it was established that the
lengthN of the time series must satisfy the conditionN ≫ D!
in order to obtain a reliable statistics [44]. With respect to the
selection of the other parameter, Bandt and Pompe specifically
considered an embedding delayτ = 1 in their cornerstone
paper [36]. Nevertheless, it is clear that other values ofτ could
provide additional information. It has been recently shownthat
the embedding delayτ is strongly related, if it is relevant, with
the intrinsic time delay of the system under analysis [23].

In this work the normalized Shannon entropy,HS (Eq. (2)),
and the SCM,CJS (Eq. (1)), are evaluated using the permu-
tation probability distribution,P = {p(πi), i = 1, . . . , D!}.
Defined in this way, these quantifiers are usually known as per-
mutation entropy and permutation statistical complexity [45],
[46]. These symbolic quantifiers were shown to be particularly
useful for different purposes like distinguishing chaoticsys-
tems from stochastic processes [24], detecting noise-induced
temporal correlations in stochastic resonance phenomena [47],
quantifying the randomness of chaotic pseudo-random number
generators [48], discriminating market dynamics [49], and
characterizing the complexity of low-frequency fluctuations in
semiconductor lasers with optical feedback [50]. In addition,
a very related approach, based on computing the number
of forbidden patterns present in the time series, has been
recently used to find evidence of deterministic behavior in
financial time series [51] and to characterize numerically and
experimentally the level of stochasticity in the leader-laggard
dynamical regime of two mutually coupled semiconductor
lasers [52].

III. N UMERICAL RESULTS

In this paper, we focus on the chaotic dynamics of a
semiconductor laser. In particular, we consider a single mode
laser with moderate delayed feedback, operating in the coher-
ence collapse regime. The data used in our analysis originate
from the numerical integration of the widely used Lang-
Kobayashi rate equations [53]. These equations have been
shown to be successful in modelling the dynamical behaviors
of semiconductor lasers subject to weak to moderate coherent
optical feedback, taking into account a single reflection inthe
external cavity. The equations for the complex slowly varying
amplitude of the electric fieldE(t) and the carrier number
inside the cavityN(t) are

Ė(t) =
1 + iα

2

[

G(t)−
1

τp

]

E(t) + γE(t− τS)e
−iΦ,(5)

Ṅ(t) =
I

e
−

N(t)

τN
−G(t)|E(t)|2, (6)

whereG(t) = g(N(t) − N0)/(1 + s|E(t)|2) is the optical
gain. Table I details the different parameters as well as their
values as they were used in the simulation. The relaxation
oscillation frequency of the solitary laser isfRO = 4.2 GHz
at this pumping condition.

Parameter Description Value
α linewidth enhancement factor 5
τp photon lifetime 2 ps
τN carrier lifetime 2 ns
g differential gain coefficient 1.5× 10−8 ps−1

No carrier number at transparency 1.5× 108

s gain compression coefficient 5× 10−7

τS feedback time delay 1 ns
γ feedback strength 20 ns−1

Φ optical feedback phase 0
Ith threshold current 14.7 mA
I bias current 1.5Ith

TABLE I
PARAMETER SET IN THE NUMERICAL SIMULATION.

The intensity dynamics of the laser was obtained by numer-
ically integrating Eqs. (7) and (8) using a second-order Runge-
Kutta method with a time step of∆t = 0.1 ps. We analyzed
time series ofN = 2 · 106 data points with a sampling period
of Ωs = 1 ps. Figure 1 shows a typical temporal trace.

In Fig. 2 we plot the normalized permutation entropy,
HS , and the permutation statistical complexity,CJS , asso-
ciated with the laser intensity time series as a function of
the embedding delayτ for different embedding dimensions
(4 ≤ D ≤ 8). Independently of the embedding dimension
the permutation entropy is minimized and the permutation
statistical complexity is maximized when the embedding delay
τ of the symbolic reconstruction is similar toτS , i.e. for
τ ≈ τs/Ωs = 1000. This particular value, denoted asτ∗S
hereafter, is slightly larger thanτs due to the inertia of the laser
system. The inertia or internal response time is an inherent
property difficult to determine precisely and affects most of the
methods proposed to identify time delay from time series [20].
In particular, we have obtained the same time delay estimation
by using the autocorrelation function (ACF) and the delayed
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Fig. 1. Numerical chaotic time trace simulated by using the Lang-Kobayashi
model at the coherence collapse regime (I = 1.5Ith, γ = 20 ns−1, τS =

1 ns andΩs = 1 ps).

mutual information (DMI) since the inertia also affects these
conventional techniques [21], [22], [31].

It is worth noting that the time delay of the system can be
identified from the analysis of only one of the two quantifiers.
Both of them have local extrema around the time delay,
providing approximately the same information. However, it
should be noted that the permutation statistical complexity is
better in identifying the time delay due to the higher contrast
with the base line. Other minima and maxima forHS andCJS ,
respectively, are obtained when the embedding delay matches
harmonics and subharmonics of τ∗S . However, they are less
pronounced as it can be concluded from Fig. 2. The number
of the peaks associated to subharmonics ofτ∗S increases with
the embedding dimension. More precisely, there areD − 2
subharmonic peaks for embedding dimensionD, located at
τ∗S/2, τ

∗

S/3, . . . , τ
∗

S/(D−1). In the insets of Figure 2 we have
detailed the locations of the different peaks for the particular
case of embedding dimensionD = 8. It is reasonable to
assume that with the largest possible embedding dimension we
have considered, i.e. withD = 8, more information is being
included when estimating the quantifiers because, in this case,
we are maximizing the length and number of symbols. We just
have to take into account that longer time series are necessary
in this case (N ≫ D!).

From Fig. 2 we can identify other significant extrema of
the quantifiers for an embedding delayτ slightly larger than
τ∗S (indicated by the black arrow). The presence of this peak
can be attributed to the relaxation oscillation period,τRO,
because its time location (τ = 1155) is approximately equal
to τ∗S + τRO/2 independently of the embedding dimension.
Also for small embedding delays we find the signature of
the relaxation oscillation period. The gray arrow indicates the
location of a broader peak. Its position is aroundτRO/2. We
have confirmed that in the case of periodic functions certain
ordinal patterns do not appear, or have very small probabilities,
for embedding delay at the half of the period. Consequently,
HS has a minimum andCJS has a maximum for this particular
embedding delay value. As it can be seen from Fig. 2 the
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Fig. 2. Permutation entropyHS (top) and permutation statistical complexity
CJS (bottom) as a function of the embedding delayτ with embedding
dimensions4 ≤ D ≤ 8 for the numerical intensity time series. Black and
gray arrows indicate the peaks associated to the relaxationoscillation period.
Locations of the local extrema associated with the feedbacktime delayτ∗

S
and its subharmonics forD = 8 are detailed in the insets. It is worth noting
that the local extrema related to subharmonics decrease in amplitude.

location of the latter peak shifts to the left with the embedding
dimension and better identification is curiously obtained for
smaller embedding dimension values (D = 4, 5 and 6). We
have checked that extrema at similar locations, namelyτRO/2
andτ∗S + τRO/2, are obtained for the autocorrelation function
and the delayed mutual information.

In addition, we find a third relevant time scale for an even
smaller embedding delay value. The permutation complexity
indicator has a pronounced change for well-defined small
embedding delays. Figure 3 displays the behavior of both
quantifiers for embedding dimensions4 ≤ D ≤ 8 and1 ≤ τ ≤
50. CJS is maximized for an intermediate value ofτ while HS

monotonically increases withτ in this domain highlighting an
important difference between both quantifiers. This particular
embedding delay valueτM , at which the permutation statistical
complexity reaches a local maximum, represents the minimally
required sampling rate to capture all the information related
to the nonlinear correlations of the fast chaotic dynamics.
We note that this time scale is faster than the relaxation
oscillation time scale. It is therefore not sufficient to record
with the bandwidth of the relaxation oscillations in order to
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acquire the full complexity of the dynamics. The origin of
this faster time scale can be associated with the picosecond
pulsing due to partial mode locking of the external cavity
modes in the delayed feedback system, as it has been found
in Ref. [54]. In order to justify that this time scale is related
to the fast chaotic dynamics we have analyzed the evolution
of the quantifiers for small embedding delays (1 ≤ τ ≤ 50) in
the complexity-entropy causality plane, i.e. the plane obtained
with the permutation entropy of the system in the horizontal
axis and the permutation statistical complexity in the vertical
one. The termcausality takes into consideration that the
temporal correlation between successive samples is taken into
account by using the permutation probability distributionto
estimate both information theory quantifiers. This representa-
tion space was shown to be useful to discriminate between
chaotic systems and stochastic processes, locating them at
different planar positions [24]. It is clear that the embedding
delay is directly related to the sampling frequency; i.e. low
embedding delay values require high sampling frequencies.
For embedding delays smaller thanτM , τ < τM (sampling
frequencies larger than the optimum value) we oversample
the dynamics. Thus, spurious and superfluous correlations are
introduced, causing low permutation entropy and statistical
complexity values typically associated with a regular process
(see Fig. 4). On the other hand, for embedding delays larger
than τM , τ > τM (sampling frequencies smaller than the
optimum value) the intrinsic non linear correlations present in
the chaotic system are progressively lost due to undersampling.
The resulting sampled system resembles a random process
with high permutation entropy and low permutation statistical
complexity values (see Fig. 4). The curve described by the
permutation quantifiers as a function of the embedding delay
allows to estimate the amount of information redundancy, de-
terminism, and stochasticity present in the underlying chaotic
nature of the laser system. We have checked that the minimally
required sampling rate is related to the sampling rate at
which other nonlinear time series analysis measures such as
correlation dimension provide meaningful results.

It is worth mentioning that De Miccoet al. [43] have
recently shown that the permutation statistical complexity can
be used to determine the best sampling time of chaotic systems
by analyzing the behavior of this quantifier as a function of
the sampling frequency. They illustrated the results for the
case of two paradigmatic examples: the Rössler and Lorenz
chaotic attractors. Our approach is slightly different. The
original time series of the delayed feedback laser is efficiently
subsampled by changing the embedding delay of the symbolic
reconstruction, which appears to be a more adequate approach.
From Figs. 3 and 4 it can be concluded thatτM increases
with D. In Fig. 5 the minimal required sampling timeτM is
plotted as a function of the embedding dimensionD for the
numerical data. According to this plot, by increasing the em-
bedding dimensionD the minimal required sampling time also
increases. Therefore, higher values ofD allow the use of larger
minimal required sampling times, retaining all the information
about the chaotic dynamics of the system under analysis. It is
necessary to consider that an appropriate statistical analysis
can be only done if the number of points of the time series
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satisfiesN ≫ D!. We have found that the values estimated
for τM are close to the optimal sampling time predicted by the
Nyquist-Shannon sampling theorem, even though the chaotic
system under study is not a bandwidth-limited signal. As
it is depicted in Fig. 6, where the power spectrum of the
numerical realization of the dynamical system is plotted, the
Nyquist-Shannon theorem predict that the time continuous
function is approximately determined and reconstructed with
an infinite sequence sampled atτNS = 1/(2fmax) ≈ 14 ps,
with fmax = 36 GHz. This frequency roughly corresponds to
the highest significant frequency in the power spectrum, i.e.
99% of the full spectrum is taken into account. For smaller cut
off frequencies the estimated values for the optimal sampling
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time increase. They are around21 ps and28 ps when the95%
and90% of the full power spectrum, respectively, is considered
(see Figs. 5 and 6).

IV. EXPERIMENTAL RESULTS

Experiments on the delayed feedback dynamics of a semi-
conductor laser were performed using a fiber pigtailed semi-
conductor laser lasing at 1542 nm, fabricated by Eblana
Photonics. The threshold current of the solitary laser isIth =
11.7 mA at 20 ◦C. The laser exhibits single-mode emission
above the lasing threshold. The side-mode suppression ratio
of this device is over40 dB when the laser is biased at
I = 18 mA. The temperature is stabilized up to±0.01 K.
This device has been packaged without an optical isolator so
that optical feedback studies can be performed.

The external optical feedback has been introduced using
a fiber loop, such that the laser operates in the long cavity
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Fig. 7. Experimental chaotic time trace recorded by using a 16 GHz band-
width digital scope with a sampling rate of 40 Gsamples/second (δs = 25 ps).

regime [55]. This regime is defined by the time delays of
the feedback loop being much longer than the relaxation
oscillation period. In our experiment, the length of the external
fiber cavity is aboutLext = 3.5 m, i.e. the round trip time
delay is estimated to be aroundτext = 2nLext

c
= 38.5 ns,

wheren is the refractive index in the optical fiber andc is the
speed of light. When the laser is biased atI = 18 mA, the
relaxation oscillation period isTRO = 0.24 ns, which is much
shorter than the time delay. The threshold current of the laser
is reduced to 10.33 mA (12% threshold reduction) when the
feedback fiber loop is optimized.

The intensity dynamics is detected via an AC-coupled
13 GHz bandwidth photodiode (Miteq DR-125G-A). The
converted electrical signal is then analyzed using a 16 GHZ
bandwidth digital scope with a sampling rate of 40 GSamples/s
(LeCroy WaveMaster 816Zi) and by a spectrum analyzer with
a 9 kHz-30 GHz bandwidth (Anritsu MS2667C). This is close
to the current technology limit for temporal detection of long
time series, with a sampling time ofδs = 25 ps. Time series
with N = 2 · 106 data points were recorded. We note that
different sampling rates are selected in the numerical and
experimental analysis. This is because the small sampling
period we have chosen in the numerical study can not be
experimentally attained.

The detected time trace of the intensity dynamics for a bias
current ofI = 18 mA is shown in Fig. 7. The dynamical time
scales of the laser in the coherence collapse regime [56] are
associated with the relaxation oscillation frequency of several
GHz. Therefore, we can sufficiently resolve the temporal
dynamics of the laser output with the sampling time and fre-
quency resolution of our detection scheme. The fast intensity
dynamic of the laser displays irregular oscillations [54],as it
can be seen in the inset of Fig. 7. The temporal separation
among individual pulses is in a range of200 to 400 ps.

In Fig. 8 we plot the normalized permutation entropy
and the permutation statistical complexity obtained from the
experimental time series as a function of the embedding
delay τ for an embedding dimensionD = 8. We verify
experimentally that the permutation entropy is minimized and
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the permutation statistical complexity maximized when the
embedding delayτ of the symbolic reconstruction takes values
near τext, i.e. for τ close to 1540 (τext/δs = 1540). We
have also found the other extrema when the embedding delay
matchesharmonics and subharmonics of τext. In analogy to
the numerical case, they are less noticeable. The differences in
peak resolution found when comparing Fig. 2 and Fig. 8 are
due to the different sampling periods. We consider that these
experimental results confirm the reliability and robustness of
our permutation information theory approach to identify the
feedback time delay in a real situation.

We have also analyzed the permutation information quanti-
fiers for small embedding delays looking for the other relevant
fast time scales of the laser. As it can be seen from Fig. 9,
for the current experimental sampling time (δs = 25 ps)
the permutation information quantifiers take values near the
optimal ones, i.e.HS ≈ 0.7 andCJS ≈ 0.5, for the smallest
embedding delay (τ = 1) and the largest embedding dimension
(D = 8). Comparing Figs. 3 and 9, we conclude that the
experimental sampling time is very close to the minimal
required sampling time for an embedding dimensionD = 8.
Numerical and experimental results are not directly compa-
rable becauseτext ≫ τS . However, we have numerically
checked that the minimal required sampling time is the same
for different feedback delaysτs in the long cavity regime
(250 ps, 500 ps, 1 ns, 10 ns, 20 ns, 30 ns, and40 ns). For these
different feedback time delays there is hardly any change in
the chaotic bandwidth. Consequently, we find that the minimal
required sampling time, directly related to the fastest relevant
time scales in the system, is independent of the feedback delay
time in this regime. The signature of the relaxation oscillation
period appears aroundτ = 4, as it is shown in the inset of
Fig. 9. Notice the vertical enlargement necessary to unveilthe
presence of the extremum.

In order to demonstrate experimentally the presence of the
maximum of the permutation statistical complexity for small
embedding delays we have analyzed experimental chaotic time
traces obtained with lower bias current (I = 13 mA) and
feedback strength, where the bandwidth of the chaotic system
decreases. Hence, the minimal required sampling time should
increase. As it can be seen in Fig. 10, a clear maximum forCJS
is found for a small embedding delay (τM = 2) whileHS is an
increasing function ofτ in this range. This is an experimental
confirmation of the identification of the fast time scale of
the laser with the permutation information analysis. The other
extrema observed in Fig. 10 for both quantifiers whenτ = 8
are associated to the relaxation oscillation period (TRO). For
this lower bias current we have found thatfRO ≈ 2.2 GHz.
Then, the location of the extrema is nearlyTRO/2 supporting
the relaxation oscillation signature found in the numerical
analysis.

V. CONCLUSIONS

We have shown both numerically and experimentally that
a permutation information theory analysis, based on the esti-
mations of permutation entropy and statistical complexity, is
able to identify characteristic time scales present in the chaotic
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dynamics of a semiconductor laser subject to optical feedback.
By analyzing the behavior of these quantifiers as a function
of the embedding delay of the symbolic reconstruction it is
possible to identify the feedback time delay, the relaxation
oscillation period and the picosecond pulsing time scale of
this relevant physical system. On the one hand, the feedback
time delay and the relaxation oscillation period are associated
with embedding delay values that minimize the permutation
entropy and maximize the permutation statistical complexity,
simultaneously. The presence of additional peaks at harmonics
and subharmonics of the feedback time delay allow us to
distinguish between these two intrinsic time scales. On the
other hand, the fastest time scale defining the minimal required
sampling time can be estimated as the embedding delay
value where the permutation statistical complexity is also
maximized while the permutation entropy has a monotone
increasing behavior around this domain. According to these
results estimations of both quantifiers are necessary to identify
all the relevant time scales. Moreover, we have also found
that the minimal required sampling rate decreases when the
embedding dimension is increased. Thus, all the information
of the chaotic system is retained with a smaller sampling fre-
quency by increasing the embedding dimension. This finding
can be very valuable for experimental analysis. Our analysis
confirms that high bandwidth and high sampling rates beyond
the relaxation oscillation bandwidth are required to allowfor
a full time series analysis of the chaotic semiconductor laser
dynamics. Fortunately, these high experimental demands have
finally come into reach and promise further interesting insights
into the complex dynamics of semiconductor lasers and its
functional utilization.
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S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent
semiconductor laser source,”Appl. Phys. Lett., vol. 89, p. 091106, 2006.

[7] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya,
I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and
P. Davis, “Fast physical random bit generation with chaoticsemicon-
ductor lasers,”Nat. Photon., vol. 2, pp. 728–732, 2008.

[8] T. E. Murphy and R. Roy, “Chaotic lasers: the world’s fastest dice,”Nat.
Photon., vol. 2, pp. 714–715, 2008.

[9] C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of
chaotic semiconductor lasers: application to encoded communications,”
IEEE Photon. Technol. Lett., vol. 8, pp. 299–301, 1996.

[10] V. Annovazzi-Lodi, S. Donati, and A. Sciré, “Synchronization of chaotic
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[52] J. Tiana-Alsina, J. M. Buldú, M. C. Torrent, and J. Garcı́a-Ojalvo,
“Quantifying stochasticity in the dynamics of delay-coupled semicon-
ductor lasers via forbidden patterns,”Phil. Trans. R. Soc. A, vol. 368,
pp. 367–377, 2010.

[53] R. Lang and K. Kobayashi, “External optical feedback effects on
semiconductor injection laser properties,”IEEE J. Quantum Electron.,
vol. 16, pp. 347–355, 1980.

[54] I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Elsässer, E. Göbel,
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