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We study the clusterization of phase oscillators coupled with delay in complex networks. For the
case of difussive oscillators, we formulate the equations relating the topology of the network and the
phases and frequencies of the oscillators (functional response). We solve them exactly in directed
networks for the case of perfect synchronization. We also compare the reliability of the solution of
the linear system for non-linear couplings. Taking advantage of the form of the solution, we propose
a frequency adaptation rule to achieve perfect synchronization. We also propose a mean-field theory
for uncorrelated random networks that proves to be pretty accurate to predict phase synchronization
in real topologies, as for example the C.elegans or the Autonomous Systems connectivity.

Functional networks of complex systems are
usually obtained monitoring the temporal activ-
ity of their components, and are often used to in-
fer their unknown underlying connectivity. This
process, of utmost importance, is analyzed here
from a theoretical perspective. We take advan-
tage of the mathematical simplicity of a diffusive
system of coupled with delay oscillators, to ana-
lyze its temporal correlations and explore the re-
lationship with the uderlying network topology.
The study allows us to contribute to the under-
standing of the relation between topology and dy-
namics in complex networks, and provides useful
connections between both, that can be used in
the topological inference process using dynamical
information.

I. INTRODUCTION

After Winfree’s work [1], synchronization in popula-
tions of interacting elements has been a subject of in-
tense research in physical, chemical, biological, and so-
cial systems [2–4]. Although Winfree’s approach proved
to be successful in describing the emergence of sponta-
neous synchronization in populations of oscillators, it was
based on the premise that every oscillator feels the same
mean-field. However, this implicit all-to-all connectiv-
ity between elements of a large population is difficult to
imagine in real world. When the number of elements
is large enough, this pattern is incompatible with physi-
cal constraints as for example minimization of energy (or
costs), and in general with the rare observation of long
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range interactions in systems formed by macroscopic ele-
ments. The particular local connectivity structure of the
elements was missing (in fact, discarded) in these and
subsequent approaches. Something similar occurs when
considering the delays on their interactions.

There are plenty of studies of network synchrony in
the absence of time delays [4]. However, interaction be-
tween elements usually involves the propagation through
a communication channel, introducing delay. This de-
lay is present in social and many biological systems [5],
playing an essential role in neural networks [6]. The con-
sideration of these delays is of utmost importance [7].

Recently, it has been analytically, and experimentally
shown that zero time-lag synchronization is feasible over
two distant (delayed) interacting oscillators when a third
oscillator is placed in between of them [8, 9]. A re-
cent study sheds light along these lines by studying the
synchronization of networks of chaotic units with time-
delayed couplings using the formalism of the master sta-
bility function [10].

Our ansatz at this point is that the dynamics of a
network of linear coupled oscillators with delays, should
provide a simple toy model where to analyze relation-
ships between the substrate of the interactions and the
functional response of the system. There has been a big
effort from the scientific community to infer the com-
plex network of interactions between elements from the
functional network [11–18]. We analyze the functional
network resulting from the simplest dynamical system
with delay presenting a synchronous dynamics, on a given
topology. Given the simplicity of the model, we obtain
the exact solution, develop a statistical mean-field theory
approximation and find the relation between the degree
distribution of the topological network and the associated
functional network.

The paper is structured as follows, in section II we in-
troduce the model and the general solution. In section
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III we explore the effect of the heterogeneity in the nat-
ural frequencies and the delays and we propose an adap-
tive frequency rule to obtain perfect synchronization. In
section IV we compare both the lineal versus the non-
lineal coupling. We also determine how the normaliza-
tion of the coupling term changes the solution. In section
V we develop a heterogeneous mean-field approximation
and obtain a mean-field solution for directed uncorrelated
networks. We illustrate this solution in two real networks
like the neural network of the C. elegans and the Internet
at the Autonomous System level. Finally, in section VI
we present the main conclusions.

II. OSCILLATORS’ NETWORK MODEL

We study a system of N delay coupled oscillators which
dynamics is described by:

φ̇i(t) = ωi +
∑
j

aij(φj(t− τij)− φi(t)) , (1)

where ωi is the internal frequency of the ith oscillator.
The elements aij of the adjacent matrix A define the net-
work of interaction, that is, aij = 1 if the oscillator j in-
fluences i. We denoted the delay in the interaction by τij
indicating the time lag that oscillator j needs to interact
and affect the dynamics of oscillator i. It is worth noting
that, if the phase differences remain small enough, Eq. (1)
can be understood as the linearization of many nonlinear
interaction models, including the Kuramoto model [19].

If the network of interactions presents a single compo-
nent, Eq. (1) presents an unique phase locked solution of
the form

φi(t) = Ωt+ θi , (2)

where Ω is the global locking frequency and θi the initial
phase of oscillator i. Substituting in Eq. (1), we obtain
a set of N linear equations that can be written in matrix
form as

ω − Ω (1 + T) = Lθ , (3)

where ω and θ are the frequency vector and the phase
vector with components ωi and θi respectively. L is the
Laplacian matrix defined as Lij = ki,inδij − aij , ki,in =∑
j aij is the in-degree of node i, δij is the Kronecker

delta, 1 is a vector of 1’s and T is a vector of components
Ti =

∑
j aijτij the total delay affecting each node.

In general, as the sum of the rows of the Laplacian
matrix L is zero, there exist a left-eigenvector c =
(c1, c2, ..., cN ) with eigenvalue 0, that is, cL = 0. This
left-eigenvector c is unique as long as all the nodes of the
network can be reached by at least one node [20]. Then,
the locking frequency can be obtained by left-multiplying
Eq. (3) by c

Ω =
〈ω〉

1 + 〈T〉
, (4)

where 〈x〉 =
∑
i cixi and c is normalized,

∑
i ci = 1. The

phases are given by

ωi − 〈ω〉+ (ωi〈T〉 − 〈ω〉Ti)
1 + 〈T〉

= (Lθ)i . (5)

III. UNDIRECTED NETWORKS: THE ROLE
OF HETEROGENEITY

Equations (4) and (5) allow us to investigate the rela-
tionship between the dispersion on distribution of delays,
frequencies and phases. First, let’s consider the solution
of identical oscillators in undirected networks. In this
case the oscillation frequency and the phases are given
by

Ω =
ω

1 + 〈k〉τ
, (6)

ωτ (〈k〉 − ki)
1 + 〈k〉τ

= (Lθ)i . (7)

When the frequencies or the delays are distributed,
one can expect, due to the linear relationship found in
Eq. (5), a distribution of the phases. Fig. 1 shows the dis-
tribution of individual phases θi for a network composed
of N = 103 nodes with a regular degree of ki = 4 when
the frequencies or the delays are normally distributed.
In Fig. 1(a) the natural frequencies are distributed fol-
lowing a Gaussian distribution with mean 〈ω〉 = 1.0 and
standard deviation σω = 0.01. In Fig. 1(b) the delays
are Gaussian distributed with 〈τ 〉 = 0.1 and στ = 0.01.
Using the same parameters, we observe that the distri-
bution of delays has more impact in the dispersion of
phases to achieve synchronization. Fig. 2 shows that the
system exhibit a linear dependence in the standard devia-
tion of the distribution of θi with respect to the standard
deviation of the distribution of frequencies σ(ωi) and de-
lays σ(τi). The slope A of the linear fitting in Fig. 2
provides the relationship between the dispersion of the
phases and the mean degree. We found that the disper-
sion of the phases σ(θi) is related with the inverse of the
mean degree 〈k〉 following σ(θi) = B/ 〈k〉p (see Fig. 3).

A. Perfect Synchronization

The formal solution obtained in Eq. (5) allows to ex-
plore the conditions in which the frequency, delays and
topology can be combined to achieve perfect synchroniza-
tion between each node. It is straightforward to obtain
from Eq. 3 that the condition for fully clustered solution
in the network (θi = θj , ∀i, j) requires

ωi
(1 + Ti)

= Ω . (8)

From Eq. (8) we see that in absence of delays (Ti = 0) all
the elements must have the same natural frequency, and
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FIG. 1. Dispersion of the individual phases θi in a degree
regular network versus (a) the natural frequency ωi of the
oscillators (〈ω〉 = 1.0, σω = 0.01 and τij = 0.1) and (b)
the delay τij in their connections (〈τ 〉 = 0.1, στ = 0.01 and
ωi = 1.0).

reversely, if all nodes have the same natural frequency
(ωi = ω), the total delay affecting each node must be
the same. In the case of degree regular networks with
identical elements and equal delays, i.e., ωi = ω and
τi = τ , the frequency of the phase synchronized state is
Ω = ω

1+kτ . In general, it is always possible to choose
the frequencies, the topology and the delays such that
perfect coordinated activity is reached.

Note that once the dynamics starts, correlations arise
between any two nodes in the network with different sig-
nificance in their values ranging from 0 to 1. The repre-
sentation of the functional network we use will be always
a weighted complete network, where the links weights
represent the correlation between them. The functional
network, that is, the network formed connecting those
nodes displaying correlated activity, will be a fully con-
nected network despite the sparse connectivity of the un-
derlying interaction network.

Next, we explore the possibility to obtain perfect syn-
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FIG. 2. Dependence of σ(θi) versus σ(ωi) (upper panel) and
σ(τi) (bottom panel) for different values of the mean degree
〈k〉 = 4 (circles), 6 (squares), 8 (diamonds) and 10 (triangles).
The mean value of the distributions in each case is 〈ω〉 = 1.0
and 〈τ 〉 = 0.1. Lines correspond to a lineal fitting y = Ax.

chronization in an Erdös-Rényi (ER) network with N =
103 nodes and 〈k〉 = 6 by mean of a dynamical adjust-
ment of the frequencies ωi. Initially, we start with a
given distribution of frequencies for the nodes, then, we
integrate Eq. (1) for a period of time after which the
frequencies are readjusted proportionally to the differ-
ence between the phase of each node θi and the mean
phase value 〈θ〉 as follows: ω′i = ωi(1 + (〈θ〉 − θi)). In
the last iteration, as an alternative way to obtain perfect
synchronization, we follow the recipe given in Eq. (8) and
distribute the frequencies according to ωi = Ω (1 + Ti) in-
stead. In Fig. 4(a) we show the dispersion of the phases
θi and the difference between the theoretical frequency
ωth = Ω(1 + Ti) and the current frequency ωi for each
iteration of the adaptive process. We can see how both,
the phases and the frequencies converge to the theoretical
values. In Fig. 4(b) we applied the same algorithm but
using local information only. In this case, the frequencies
are readjusted following ω′i = ωi(1 + (〈θ〉nn − θi)), where
〈θ〉nn is the average value of the phases of the neighbors
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FIG. 3. Dependence of σ(θi) with the mean degree 〈k〉 for a
distribution of the frequencies (circles) and the delays (dia-
monts). Lines correspond to a nolineal fitting y = B/xq with
B = 4.22, q = 1.59 (dashed line) and B = 6.45, q = 1.62
(dotted line).

of oscillator i. As it can be seen from Fig. 4, both al-
gorithms lead to perfect synchronization, however, when
the frequencies are updated using local information only,
a drift in the frequencies is observed (see Fig. 4(c)).

IV. LINEAL VERSUS NON-LINEAL COUPLING

In this section we address the question of how the so-
lution of Eq. (1) changes when a non-linear coupling be-
tween the oscillators is considered like the Kuramoto sys-
tem described as

φ̇i(t) = ωi +
∑
j

aij sin(φj(t− τij)− φi(t)). (9)

Let’s illustrate how the phases and the oscillation fre-
quency changes by analyzing the motif of three elements
(1↔2↔3) with aij = 1, ∀i, j. Solving Eq. (1) for this
motif, we find ∆θ13 = 0, ∆θ21 = ∆θ23 = ωτ

3+4τ and
Ω = ω

1+4/3τ . Fig. 5 shows the phase difference ∆θ23
and the oscillation frequency Ω as a function of the de-
lay when the elements of the motif interact through either
lineal or sinusoidal coupling. The solution for the nonlin-
ear interaction remains close to the solution of the lineal
problem until a critical value of the delay τ0 is reached.
Then, for delays grater than τ0, a new solution of the
nonlinear problem appears [21].

A. Normalized interaction

An interesting issue that is not addressed in general is
the normalization in the coupling. So far we have ana-
lyzed in detail the clusterization of the phases of Eq. (1)
where the influence for one neighbor adds to the influence
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FIG. 4. Dispersion of the individual phases θi after applying
the proposed algorithm using (a) global information and (b)
local information. Inset: (in both panels) difference between
the theoretical frequency ωth and the current frequency ωi
of each node. (c) Evolution of the mean frequency for the
adaptive process using global (circles) and local (squares) in-
formation. The last iteration corresponds to the value of the
mean frequency after apply the recipe given in Eq. (8).

of the others. Alternatively we could consider the case

φ̇i(t) = ωi +
1

ki,in

∑
j

aij(φj(t− τij)− φi(t)) . (10)
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FIG. 5. (a) Phase difference ∆θ23 and (b) oscillation fre-
quency Ω as a function of the delay τ for the motif of three
elements (1↔2↔3) under different coupling interactions. The
natural frequency of each oscillator is ωi = 1.0.

Following the similar approach as in the previous section,
a unique phase locked solution with frequency Ω exists if
the phases satisfy

kin · (ω − Ω (1 + T)) = Lθ , (11)

where kin = (k1,in, . . . , kN,in). Again, the locking fre-
quency is given by

Ω =
〈kinω〉
〈k〉+ 〈T 〉

. (12)

Some simple cases are worth considering. For undirected
networks and identical ωi = ω and τij = τ the locking
frequency is given by

Ω =
ω

1 + τ
, (13)

and the phases are the same θi = θ, that is, independent
of the underlying topology. Introducing heterogeneity in
the natural frequencies and/or delays gives rise to a dis-
tribution of the phases. This is in contrast to the solution
of the unnormalized solution that depends on the under-
lying topology even in the undirected case. Additionally,

the value of the delay τ0 where the destabilization of the
solution for the sinusoidal coupling occurs is shifted (see
Fig. 6).
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FIG. 6. Oscillation frequency Ω for the motif of three ele-
ments (2↔1↔3) under different normalized interactions. The
natural frequency of each oscillator is ωi = 1.0.

We can extend our study beyond the motif structure
and analyze more complex networks. We explore in Fig.
7 the effect of the averaged degree in an ER network
composed of N = 103 nodes with a mean degree 〈k〉. The
solution for the nonlinear coupling is well approximated
by the solution of the linearized interaction at high mean
degree values, while it deviates from the lineal case at
low mean degree values (〈k〉 = 4 and 6). The oscillation
frequency Ω is also well approximated in both linear and
sinusoidal coupling by Eq. (8) which solution is indicated
by solid lines in Fig. 7(b).

V. HETEROGENEOUS MEAN-FIELD
APPROXIMATION

As we have shown, for a given network we can find the
locked solution. However the formal solution does not
allow us to understand the role played by the different
topological features in how phases are distributed. To
make some understanding in this direction we perform an
heterogeneous mean-field approximation for uncorrelated
random networks. For the sake of clarity we will restrict
ourselves to the case of undirected networks [22]. The
approximation coarse-grains the dynamics to classes of
nodes of the same degree k; we define the phase density
Φk, and the frequency density Ωk of nodes of degree k as

Φk =
1

Nk

∑
i∈K

φi (14)

Wk =
1

Nk

∑
i∈K

ωi . (15)

where Nk = P (k)N is the expected number of nodes with
degree k, and K denotes the set of nodes with degree k.
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FIG. 7. (a) Averaged phase difference 〈∆θij〉 and (b) inverse
of the oscillation frequency Ω in a ER network with different
average degree 〈k〉 = 4 (triangles), 6 (squares), 8 (circles)
and 10 (diamonds). Filled (open) symbols stand for lineal
(sinusoidal) coupling. Other parameters: N = 103, ωi = 1
and τi = 0.1.

This notation allows to group the sums by the degrees of
the nodes. For instance, if the degree of node i is ki = k
then ∑

j

aijφj = k
∑
k′

P (k′|k)Φk′ , (16)

where P (k′|k) measures the probability to reach a vertex
of degree k′ leaving from a vertex of degree k. The time
evolution of the phase density of the class of nodes of
degree k, Φk(t) can be rewritten from Eq. (1) as

Φ̇k(t) = Wk + k
∑
k′

P (k′|k)(Φk′(t− τ)− Φ(t)) . (17)

For uncorrelated networks P (k′|k) = k′P (k′)
〈k〉 and with

the ansatz of locked solutions Φk = Ωt+ Θk, we obtain

Ω = W − ΩTk +
k

〈k〉
∑
k′

k′outP (k′)(Θk′ −Θk) . (18)

Summing over all degrees we find

Θk =
Ω〈T 〉
k

+ a , (19)

Ω =
〈kω〉

1 + 〈T 〉
, (20)

being a an arbitrary constant. For identical oscillators
we recover for the locking frequency

Ω =
ω〈k〉

1 + 〈k〉τ
, (21)

where 〈k〉τ = 〈T〉, and

Θk =
Ω〈k〉τ
k

+ a . (22)

This indicates that whether two nodes show a similar
phase depends, in an uncorrelated network, on their de-
gree difference. It also shows that low-degree nodes are
ahead of high-degree nodes. Obviously, this dependence
of the degree is reminiscent of our hypothesis of a mean-
field coarse-grained by degree, however it is not trivial
that this approximation will hold for the actual dynam-
ics (Eq. (1)).

In Figure 8, for each node (circles), we display its de-
gree and its phase; averaging over classes of nodes with
the same degree k (squares), we represent the phase Θk

vs. the inverse of the degree k−1. The analytical cal-
culation predicts a linear dependence irrespective of the
details of the degree distribution P (k). The phases are
obtained after integration of Eq. (1) with ωi = 1 and
τij = 0.1.

A. C. elegans

The heterogeneous mean field formalism describes the
relationship between dynamics and topology in uncor-
related networks. Such relationship can be illustrated
in a real (correlated) network analyzing the dynamics of
Eq. (1) using the connectivity of the neural system of the
C. elegans. Because of its small and well-characterized
nervous system and amenability to genetic manipulation,
the nematode C. elegans offers the promise of under-
standing the mechanisms underlying a whole animal’s
behavior at the molecular and cellular levels. In fact,
this goal was a primary motivation behind the develop-
ment of C. elegans as an experimental organism 40 years
ago. Yet it has proven surprisingly difficult to obtain
a mechanistic understanding of how the C. elegans ner-
vous system generates behavior, despite the existence of
a ’wiring diagram’ that contains a degree of information
about neural connectivity unparalleled in any organism.
This neuronal network can be represented as an adja-
cency matrix of 275 nonpharyngeal neurons, out of a to-
tal of 302 neurons [23]. We assume that the nervous
system of the C. elegans can be modeled as a network,
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where nodes represent the center of the cell bodies, and
the links represent synapses.

Here we propose to use the dynamical model of dif-
fusive oscillators proposed to get a functional response
(phase correlation) and after, investigate the relationship
between this functional network and its topological coun-
terpart.

In the upper panel of Fig. 9, each symbol indicates the
position of a neuron and its phase obtained integrating
the time delay diffusive coupled system given by Eq. (1)
(open circles) and the Kuramoto-like system given by
Eq. (9) (solid circles). In the bottom panel of Fig. 9 we
plot the phases versus the in-degree kin for neurons in
the C. elegans and rewired networks (averaged over 100
realizations of the rewiring algorithm) keeping the same
(kin, kout) for each neuron. Even though the network is
correlated, the analytical result captures the dependence
of the phase with the degree. In the rewired networks
the phase is well approximated by the relation Θ(k) =
b/k+ a. The averaged phases obtained in Fig. 9 shows a
good agreement with Eq. (22).

B. Autonomous System Network

Another real network that can be use to test our the-
ory is the Internet network at the Autonomous System
level. The ASP2P Internet data set considered is com-
posed of autonomous systems (AS) [24] in the peer-to-
peer (P2P) category, where two ASs freely exchange traf-
fic between themselves and their customers, but do not
exchange traffic from or to their providers or other peers
[25]. The network obtained results in 1217 nodes and
4058 links [26]. In Fig. 10 we show the phase of each
node (circles) as a function of the inverse of its degree.
The average phase Θk of classes of nodes with degree k
(squares) shows a good agreement with Eq. (22), denoted
by the dashed line.

The relationship between the topological and func-
tional network we have found by means of the het-
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FIG. 9. (Upper panel) Nonlinear phase clusterization in the
C. elegans. Each symbol indicates the position of a neuron
and its phase (open circles) and the Kuramoto-like system
where the interaction network corresponds to the directed
neural network of the C. Elegans (solid symbols). (Bottom
panel) Phase clusterization in the directed C. elegans neu-
ral network versus the in-degree kin for neurons in the C.
elegans (circles) and rewired networks (squares) keeping the
same (kin, kout) for each neuron. The phases are obtained
after integration of Eq. 1 with ωi = 1 and τij = 0.1.



8

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6

θ
i 
, 
Θ

k

1/k

FIG. 10. Dependence of the phase θi (open ciecles) and the
average phase Θk (squares) of a node on its in-degree k for
the Internet network at the autonomous system level. Dashed
line stad for the prediction given by Eq. (22).

erogeneous mean-field approximation is in good agree-
ment with a recent study of complex oscillator networks
with non-delay interactions in the presence of noise [27].
In this case, the presence of noise allows to determine
the correspondence between the dynamical correlation
among the oscillators and the latent topology. Similarly

to our case, a relationship of the correlated dynamics
with the inverse of the degree is found for uncorrelated
networks.

VI. CONCLUSIONS

We provide the exact formal solution of a system of
N elements delay coupled in a network, that is, given
a coupling network in Eq. 1, we solve for the locking
frequency and the phases as long as the network has a
single in-component. We illustrate the solution in a mo-
tif of three nodes and in an ER topology exploring in
both cases the dependence on the delay and the nonlin-
earity within the interactions. We investigate the role
played by the heterogeneities in the frequencies and the
delays finding a linear relationship in the dispersion of
the phases. We obtain perfect synchronization by mean
of a self-adapting algorithm that dynamically adjust the
frequencies. We also extend our analysis to classes of
uncorrelated directed networks by means of the hetero-
geneous mean-field approximation. We have found the
solution for the locking frequency and phases, which ap-
proximates the dynamics for these classes of networks
and obtain an accurate agreement for real topologies.
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