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General coevolution of topology and dynamics in networks
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We present a general framework for the study of coevolution in dynamical systems. This phe-
nomenon consists of the coexistence of two dynamical processes on networks of interacting elements:
node state change and rewiring of links between nodes. The process of rewiring is described in terms
of two basic actions: disconnection and reconnection between nodes, both based on a mechanism
of comparison of their states. Different rewiring rules can be expressed in this scheme. We assume
that each process, rewiring and node state change, occurs with its own probability, independently
from the other. The collective behavior of a coevolutionary system is characterized in the space of
parameters given by these two probabilities. As an application, for a voterlike node dynamics we
find that reconnections between nodes with similar states lead to network fragmentation. The criti-
cal boundaries for the onset of fragmentation in networks with different properties are calculated on
this space. We show that coevolution models correspond to curves on this space, describing coupling
relations between the probabilities for the two processes. The occurrence of network fragmentation
transitions are predicted for diverse models, and agreement is found with some earlier results.

PACS numbers: 89.75.Fb, 87.23.Ge, 05.50.q, 64.60.Ak, 89.75.Hc

Many complex systems observed in nature can be de-
scribed as dynamical networks of interacting elements
or nodes where the connections and the states of the
elements evolve simultaneously [1–5]. The links repre-
senting the interactions between nodes can change their
strengths or appear and disappear as the system evolves
on various timescales. In many cases, these modifications
in the topology of the network occur as a feedback effect
of the dynamics of the states of the nodes: the network
changes in response to the evolution of those states which
in turn determines the modification of the network. Sys-
tems that exhibit this coupling between the topology and
states have been denominated as coevolutionary dynam-
ical systems or adaptive networks [1, 3, 4].

Coevolution dynamics has been studied in the context
of spatiotemporal dynamical systems, such as neural net-
works [6, 7], coupled map lattices [8, 9], motile elements
[10], as well as in game theory [1, 3], spin dynamics [11],
epidemic propagation [12–15], and models of social dy-
namics and opinion formation [16–21].

In many systems where this type of coevolution dy-
namics is implemented, a transition is often observed
from a phase where most nodes are in the same state
forming a large connected network to a phase where the
network is fragmented into small disconnected compo-
nents, each composed by nodes in a common state [22].
This network fragmentation transition is related to the
difference in time scales of the processes that govern the
two dynamics: the state of the nodes and the network
of interactions [18]. In these models, the time scales of
the processes of interaction between nodes and modifica-
tion of their links are coupled and controlled by a single
parameter in the system.

The phenomenon of coevolution raises one of the
fundamental questions in dynamical networks, namely

whether the dynamics of the nodes controls the topology
of the network, or this topology controls the dynamics of
the nodes. In this paper we propose a general framework
to approach this question. We consider that the process
by which a node changes its neighbors, called rewiring,
takes place with a probability Pr, and that the process
by which a node changes its state occurs with a probabil-
ity Pc. We assume that these two processes that govern
the evolution of a dynamical network are independent.
As a consequence of this assumption, the collective be-
havior of the system can be studied on the space of the
parameters (Pr, Pc) representing the time scales for both
processes. A coevolutionary dynamics can be described
by formulating a specific coupling condition or functional
relation between the probabilities Pr and Pc of the two
competing processes in the network. We shall show that
the collective behavior and the existence of a network
fragmentation transition for given coevolution functions
can be predicted from the general phase diagram of the
system on the space of parameters (Pr, Pc).

Each process in a coevolutionary system, rewiring of
the network and change of states, may have its own
dynamics. Here we focus on the mechanisms for the
rewiring process of the coevolution phenomenon. For
simplicity, we consider that the number of connections
in the network is conserved. Then, we assume that the
rewiring process consists of two basic actions: discon-
nection and reconnection between nodes. Both connect-
ing and disconnecting interactions are often found in so-
cial relations, biological systems, and economic dynamics
[4, 5, 16, 21].

In general, either action, disconnection or reconnec-
tion, is driven by some mechanism of comparison of the
states of the nodes. We define a parameter d ∈ [0, 1]
that measures the tendency to disconnect between nodes
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in identical states; i.e., d represents the probability that
two nodes in identical states become disconnected and
1− d is the probability that two nodes in different states
disconnect from each other. Similarly, we define another
parameter r ∈ [0, 1] that describes the probability to
connect between nodes in identical states; then, 1 − r
is the probability that two nodes in different states con-
nect to each other. A rewiring process can be charac-
terized by the label dr, where d indicates the probability
for the disconnection action between nodes sharing the
same state, and r assigns the probability for reconnection
between nodes possesing the same state. Thus, we can
construct a plane dr where any rewiring process subject
to disconnection-reconnection actions between nodes can
be represented as a point on this plane.
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FIG. 1: Discrete rewiring processes on the disconnection-
reconnection action space, dr. Either action can occur via
three mechanisms: similarity (S), randomness (R), or dis-
similarity (D). The two-letter labels describe the resulting
rewiring processes. Rewirings that lead to a fragmentation
transition in our model are colored in grey.

In a simpler approach, we may consider a discrete ex-
pression of the plane dr as follows. We assume that ei-
ther action of the rewring, disconnection or reconnection,
can be driven by three distinct mechanisms: similarity S
(interaction between nodes sharing the same state), ran-
domness R (interaction between nodes regardless of their
states), and dissimilarity D (interaction between nodes
having different states). Then both r and d can only take
the values 0(D), 0.5(R), and 1(S). This gives rise to nine
possible rewiring processes based on the combinations of
these actions and their mechanisms, as shown in Fig. 1.
For example, dr = RS denotes a rewiring where node i
is disconnected from node j chosen at random and then
reconnected to a node m that possesses a state equal to
that of i. The RS process corresponds to that assumed
in Ref. [16], while the rewiring employed in Refs. [17–20]
can be regarded as type DR. Note that only the process
RR is completely independent of the states of the nodes.
For the node state dynamics, we choose a simple imi-

tation rule such as a voterlike model that has been used
in various contexts [16, 23–26]. The state of node i is de-
noted by gi, where gi can take any of G possible options.
Then, consider a random network of N nodes having av-
erage degree of edges k̄, i.e., k̄ is the average number of

neighbors of a node. Let νi be the set of neighbors of
node i, possessing ki elements. The states gi are initially
assigned at random with a uniform distribution.
Let us assume that the network topology is subject to

a rewiring process dr. The coevolution dynamics in this
system is defined by iterating the following steps:

1. Chose randomly a node i such that ki > 0.

2. With probability Pr, apply rewiring process dr:
break the edge between i and a neighbor j ∈ νi
that satisfies mechanism d, and set a new connec-
tion between node i and a node l /∈ νi that satisfies
mechanism r.

3. Chose randomly a node m ∈ νi such that gi 6= gm.
With probability Pc, set gi = gm.

Step 2 describes the rewiring process that allows the
acquisition of new connections, while step 3 specifies the
process of node state change; in this case the states of the
nodes becoming similar as a result of connections. We
have verified that the collective behavior of this system
is statistically invariant if steps 2 and 3 are interchanged.
In this paper we concentrate on the discrete rewiring

processes indicated in Fig. 1. The network size N , the
average degree k̄, and the number of options G remain
constant during the evolution of the system. In our sim-
ulations we fixed N/G = 10. Thus, the parameters of
our model are the probability of rewiring, Pr, and the
probability of changing the state of a node, Pc.
The chosen imitation dynamics of the nodes tends to

increase the number of connected pairs of nodes with
equal states, while some rewiring processes may favor the
fragmentation of the network. Therefore, the time evolu-
tion of the system should eventually lead to the formation
of a set of separate components, or subgraphs, discon-
nected from each other, with all members of a subgraph
sharing the same state. We call domains such subgraphs.
To characterize the collective behavior of the system,

we employ, as an order parameter, the normalized aver-
age size of the largest domain in the system, Sm. Figure 2
shows Sm as a function of the probability Pr for the nine
rewiring processes in Fig. 1 on a network having k̄ = 4,
with a fixed value of the probability Pc.
We observe that most rewiring processes in our model

lead to collective states characterized by values Sm → 1
and corresponding to a large domain whose size is com-
parable to the system size. However, the rewiring pro-
cesses DS and RS exhibit a transition at some criti-
cal value of Pr, from a regime having a large domain,
to a state consisting of only small domains for which
Sm → 0. Those rewirings dr with r = S can sustain
a stable regime consisting of many small domains (SS
leaves the initial network structure statistically invari-
ant). The critical point P ∗

r
for the domain fragmentation

transition in each case is estimated by the value of Pr for
which the largest fluctuation of the order parameter Sm

occurs. For the rewiring process RS on a network with
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FIG. 2: Sm as a function of Pr for the 9 rewiring processes in
Fig. 1, with fixed Pc = 0.6. Network parameters areN = 3200
and k̄ = 4. Only rewiring processes DS (triangles) and RS

(solid circles) exhibit a fragmentation transition. Error bars
indicate standard deviations obtained over 100 realizations of
initial conditions for each value of Pr. Inset: Scaling collapse
found with the exponent α = 0.5, for the rewiring process RS

with Pc = 0.6. Sizes N are 3200 (circles), 1800 (triangles),
800 (diamonds), 400 (squares), 200 (solid circles

k̄ = 4, a finite size scaling analysis is shown in the in-
set in Fig. 2, where NαSm is plotted versus N(Pr −P ∗

r
),

with P ∗

r
= 0.541 ± 0.007, and for various system sizes.

We find that the data collapses in the critical region
when α = 0.50 ± 0.05. A similar scaling analysis for
the rewiring DS in Fig. 2 yields P ∗

r
= 0.380± 0.007 and

α = 0.20 ± 0.05. Thus, there exists a universal scaling
function F such that Sm = N−αF (N(Pr − P ∗

r
)) associ-

ated to each process RS and DS.

For a given rewiring process, the collective behavior
of the coevolving system can be characterized in terms
of the quantity Sm on the space of parameters (Pr, Pc).
Figure 3 shows the phase diagrams arising on the plane
(Pr, Pc) when the rewiring process RS is employed on
networks having different values of k̄. For each value of
k̄, two phases appear in the system as the parameters Pc

and Pr are varied: one phase consists of the presence of
only small domains and characterized by Sm → 0, and
the other is distinguished by the formation of a large
domain and characterized by larger values of Sm. These
two regimes are separated by a critical curve (P ∗

c
, P ∗

r
), as

indicated in Fig. 3.

Figure 3 expresses the general phase diagram of a co-
evolving system subject to a given node state dynamics
and a given rewiring process. Diverse coevolution mod-
els can be represented in this diagram by formulating
specific coupling relations between the rewiring and the
node state dynamics. In general, such a coupling can be
expressed as a functional relation Pc(Pr) that describes
a curve on the space of parameters in Fig. 3. For ex-
ample, consider the relation Pc = 1 − Pr on the phase

P
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FIG. 3: Critical boundaries on the space of parameters
(Pr, Pc) for the fragmentation transition associated to the
rewiring process RS, on a network with k̄ = 2 (line with
squares); k̄ = 4 (circles); k̄ = 8 (diamonds). Each curve indi-
cates the corresponding boundary that separates the regions
where a state having a large domain (above the curve) and
a state consisting of many small domains (below the curve)
occur. All the numerical data points are averaged over 100 re-
alizations of initial conditions. The slashed line is the relation
Pc = 1− Pr, and the dotted line is Pc = 1.72Pr sin(πPr).

diagram in Fig. 3. This corresponds to the coevolution
model proposed in Ref. [16]. In this case, the transi-
tion from a large domain regime to a fragmented phase
on a network characterized by a value of k̄ should occur
when this straight line intersects the corresponding crit-
ical boundary curve in Fig. 3. These intersections yield
the values P ∗

r
= 0.171 for k̄ = 2, P ∗

r
= 0.458 for k̄ = 4,

and P ∗

r
= 0.722 for k̄ = 8, which agree with the critical

values found in [16].
The phase diagram of Fig. 3 predicts the critical val-

ues (P ∗

r
, P ∗

c
) for the network fragmentation transition in

more complicated coevolution models. For example, con-
sider the nonlinear relation Pc = aPr sin(πPr) on the
space of parameters of Fig. 3. For a = 1.72, this func-
tion crosses the critical boundary associated to k̄ = 4 in
Fig. 3 twice, at the values P ∗

r
= 0.25, corresponding to a

recombination of the network, and P ∗

r
= 0.77, signaling

a fragmentation transition. In the range of parameters
Pr ∈ (0.25, 0.77), the function lies within the one-large
domain region of the phase diagram. Thus, in a coevolu-
tion model described by this function on a network char-
acterized by k̄ = 4, a regime of one large domain should
exist for this range of parameters. For k̄ = 2, only a
fragmented phase occurs for this coevolution function.
Figure 4 shows Sm as a function of Pr for the two co-

evolution models presented in Fig. 3 for a network with
k̄ = 4. For the model in Ref. [16], the fragmentation tran-
sition takes place at the value P ∗

r
predicted from Fig. 3.

Similarly, for the nonlinear model we confirm the exis-
tence of a one-large domain phase confined in the region
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Pr ∈ (0.25, 0.77).

FIG. 4: Sm as a function of Pr for different coevolution curves
subject to rewiring process RS, on a network with k̄ = 4.
Pc = 1 − Pr (squares); Pc = 1.72Pr sin(πPr) (circles). For
each value of Pr, 100 realizations of initial conditions were
performed.

In conclusion, we have presented a general framework
for the study of the phenomenon of coevolution in dy-
namical networks. Coevolution consists of the coexis-
tence of two processes, node state change and rewiring
of links between nodes, that can occur with independent
probabilities Pr and Pc, respectively. We have focused on
the process of rewiring, which we have described in terms
of the actions of disconnection and reconnection between
nodes, both based on a mechanism of comparison of their

states. For a voterlike node dynamics, we found that only
reconnections between nodes with similar states can lead
to network fragmentation.
The collective behavior of a coevolving system can be

represented in the space of parameters (Pr , Pc). We have
calculated the critical boundaries on this space for the
fragmentation transition in networks having different val-
ues of k̄. The size of the region for the fragmented phase
in the space (Pr, Pc) decreases with increasing k̄. This
suggests that fragmentation is more likely to be observed
in networks where k̄ ≪ N . We have shown that coevo-
lution models correspond to curves Pc(Pr) on the plane
(Pr, Pc). The occurrence of network fragmentation as
well as recombination transitions for diverse models can
be predicted in this framework.
We have limited our study to the case when then num-

ber of connections in the coevolving network is conserved.
This condition is expressed in step 2 of the algorithm,
where both actions of disconnection and reconnection oc-
cur with probability one. This condition can be gener-
alized by considering different probabilities for each of
these actions. Thus, our framework provides an scenario
for studying coevolving dynamical networks with no con-
servation of the total number of links.
Other extensions to be investigated in the future in-

clude the characterization of the emergent topological
properties of the network on the continuous plane dr,
the consequences of preferential attachment rules for the
reconnection action, the consideration of variable connec-
tion strengths, and the influence of the node dynamics on
the collective behavior of coevolving systems.
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A. Spadaro, Advances in Complex Systems 3, 283 (2000).

[2] S. Bornholdt and T. Rohlf, Phys. Rev. Lett. 84, 6114
(2000).

[3] M. G. Zimmermann, V. M. Egúıluz, and M. San Miguel,
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