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Summary 

Cancer susceptibility is due to interactions between inherited genetic factors and 

exposure to environmental carcinogens. The genetic component is constituted mainly 

by weakly acting low-penetrance genetic variants that interact among themselves, as 

well as with the environment. These low susceptibility genes can be categorized into 

two main groups: one includes those that control intrinsic tumor cell activities (i.e. 

apoptosis, proliferation or DNA repair), and the other contains those that modulate the 

function of extrinsic tumor cell compartments (i.e. stroma, angiogenesis, or endocrine 

and immune systems). Genome-Wide Association Studies (GWAS) of human 

populations have identified numerous genetic loci linked with cancer risk and behavior, 

but nevertheless the major component of cancer heritability remains to be explained. 

One reason may be that GWAS cannot readily capture gene-gene or gene-

environment interactions. Mouse model approaches offer an alternative or 

complementary strategy, because of our ability to control both the genetic and 

environmental components of risk. Recently developed genetic tools, including high-

throughput technologies such as SNP, CGH and gene expression microarrays, have 

led to more powerful strategies for refining quantitative trait loci (QTL) and identifying 

the critical genes. In particular, the cross-species approaches will help to refine 

locations of QTLs, and reveal their genetic and environmental interactions. The 

identification of human tumor susceptibility genes and discovery of their roles in 

carcinogenesis will ultimately be important for the development of methods for 

prediction of risk, diagnosis, prevention and therapy for human cancers. 
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Insight, Innovation, Integration 

Mouse models are an excellent strategy to identify QTLs in a genetically and 

environmentally controlled-manner that could be extrapolated to human populations. 

Additionally, they are very useful to validate and refine candidate loci found in humans 

by GWAS. The integration of new technical innovations has improved QTL research: 

the employment of high resolution SNP, CGH and gene expression arrays speeds up 

the refinement of QTLs. Other technical advances such as whole genome sequencing 

are readily making the recognition of orthologous regions between both species 

straight forward, simplifying the refinement of QTLs found in human and mouse, and 

facilitating a cross-species strategy to identify QTL-driver genes.  
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Introduction 

Cancer is a highly heterogeneous disease, both in terms of the time of individual 

cancer development, and the biological properties of each tumor. Only a subset of 

human individuals exposed to the same carcinogen, as for example after radiation 

exposure, 1 actually developed a tumor, and even among those who were susceptible, 

tumors did not appear at the same time. Individual tumors also vary enormously in 

terms of tumor evolution and behavior (i.e. local growth, distant dissemination, 

treatment response, and relapse or tumor dormancy). 2-5 Thus, individuals that share 

the same apparent histopathological type of tumor and TNM (Tumor, Node, 

Metastasis) stage, and also receive the same treatment, could have tumors with 

completely different evolutionary histories. 

 One of the most important aspects that remain to be clarified in this field is the 

identification of the genetic and molecular components that determine the diverse 

tumor behaviors among different patients who seemingly have the same 

histopathological disease. It is assumed that most part of the genetic component that 

contributes to this variability is mainly constituted by the sum of actions of weakly 

acting low-penetrance genes, whose allelic forms interact among themselves and with 

the environment to determine the clinical variability among individuals. These genes 

(also called modifier genes), mostly follow a trend of quantitative inheritance6. 

Additionally, a major part of cancer growth is due to non-cell autonomous processes 

that consist in an aberrant tissue growing in an uncontrolled manner within the context 

of the physiology of a complex organism7. Therefore, it is a disease that not only 

depends on the properties of the tumor cells themselves, but also on other 

compartments like the immune and endocrine systems, stroma, vasculature, and 

others, all of which play key roles in the development and evolution of cancer. 

Consequently, differences in tumor behavior are not only determined by intrinsic factors 

to the tumor cells (such as proliferation, apoptosis, etc), but also by extrinsic factors 

outside the tumor compartment per se. Modifier genes could regulate both the 

molecular and cellular functions of these different compartments, and this fact could 

explain the differences in tumor behavior among patients who seemingly suffer the 

same disease. The identification of those modifier genes is one of the major challenges 

of the future in cancer research. In this review we use mainly breast cancer as 

paradigm to illustrate this issue. 

 Genetics analysis strategies are the only tools that allow us to consider the 

global scenario, because the susceptibility loci can contain risk genes controlling either 

intrinsic or extrinsic factors6, 8. Genome Wide Association Studies (GWAS) have 

permitted the identification of different susceptibility regions, genes and pathways, but 
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the reproducibility between studies is difficult, probably due to the high heterogeneity of 

human genetics and its complex interaction with environmental factors6, 8. Crosses 

among inbred mouse strains of defined genetic backgrounds that exhibit strong 

differences in cancer susceptibility, have simplified the identification of Quantitative 

Trait Loci (QTL) and their interactions responsible for variable tumor behavior. Although 

the refinement of the QTLs to the gene level using mouse models was a very difficult 

task, the new high-throughput technologies recently developed in Genetics, Genomics 

and Bioinformatics help to tackle this complicate duty with success. All these new 

technologies are improving our understanding of the genetic component/networks that 

control the variability in tumor risk, development and clinical evolution. The final goal is 

to obtain a better understanding of the molecular factors that determine the variability 

of the disease, which will finally result in the development of more personalized clinical 

applications for the benefit of the patient.  

  

 

Cancer Heritability  

Cancer hereditability is still nowadays very poorly understood. No more than a modest 

portion of cancers present an obvious trend of heredity (the considered “real” 

hereditary cancers). This is actually the situation of breast cancer where just a small 

portion of tumors could be identified by the inheritance of mutated variants of high 

penetrance genes like BRCA1 and BRCA2. However, mutations of these genes only 

account for a small percentage of the human tumor predisposition, resulting in quite 

rare hereditary cancer syndromes. These kinds of uncommon, but severe alleles have 

been additionally implicated in most forms of hereditary cancer syndromes. Hereditary 

susceptibility to breast cancer has become connected with germline mutations in at 

least eighteen genes. 9 A huge number of distinct loss-of-function mutations have been 

discovered within BRCA1 as well as BRCA2 genes; most of these variations are 

usually individually rare, and each one confers quite high susceptibility for breast and 

ovarian malignancies. Uncommon germline mutations of other genes are also 

connected with elevated risk of breast cancer, ranging from two-fold for CHEK2 to ten-

fold for P53. Interestingly, all of these genes function in networks that are crucial to 

DNA repair and preservation of genomic integrity. In most cases, the inherited mutation 

is followed by somatic loss of the corresponding wild type allele, resulting in the 

mistakes in DNA repair that finally lead to cancer development. 10 However, it is 

important to emphasize that only a low percentage of global cancer risk can be 

attributed to hereditary mutations in the high-penetrance care-taker genes, and present 

obvious patterns of Mendelian inheritance.  
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 The environmental component may play a more essential role in sporadic 

tumors than in hereditary cancer, and in the some cases may over-ride the genetics. 11-

13 Nevertheless, there is significant evidence from large scale epidemiological studies 

indicating that the chance of developing sporadic cancer also has a significant 

hereditary component. One of these studies, which was carried out on several 

thousand pairs of twins, demonstrated that when one twin developed cancer, the other 

had a significantly increased risk of generating the same type of disease, but without 

any obvious Mendelian inheritance pattern. In fact, many scientific studies have 

concluded that common cancers are polygenic diseases with a quantitative genetic 

pattern.11-14  

 Even in families carrying specific mutant alleles of high-penetrance risk genes 

with potent effects such as BRCA1 and BRCA2, phenotypes tend to be influenced by 

the hereditary background, becoming much more comparable between affected twins, 

but varying among more distant family members with the same gene alteration; 6,14,15 

this would indicate that low-penetrance genes could also modify the behavior of 

hereditary cancer. A deeper knowledge of the genetic component would be essential to 

estimate the individual genetic susceptibility to develop cancer, to improve early 

detection and diagnosis of the disease, and to understand the fundamental biochemical 

and physiological pathways governed by those low-susceptibility genes as a critical 

step for the development of new cancer treatments. 16  

 

Cancer has a Non-Cell Autonomous Disease Component 

Cancer is in part a non-cell autonomous process; it is an aberrant tissue that grows in 

an uncontrolled manner in the context of the physiology and pathophysiology of a 

complex organism. Tumor growth, as that of any other tissue, depends not only on the 

intrinsic properties of the parenchymal component (tumor cells), but also on other 

organism compartments such as the immune and endocrine systems, stroma, vascular 

system, etcetera (Figure 1). All of them play key roles in the development and evolution 

of cancer. Consequently, tumor behaviour (i.e. susceptibility, development and clinical 

evolution) is not only going to be determined by factors intrinsic to the tumor cell, 

involved in processes such as proliferation, apoptosis, DNA repair etc; but it will also be 

influenced by those extrinsic factors from other compartments. Furthermore, these two 

main compartments are not independent, but rather they continuously crosstalk and 

interact with each other, so that the intrinsic factors are capable of recruiting the 

extrinsic ones, and the availability of the extrinsic factors determines the intrinsic 

cellular activity. 
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 The fact is that connections among cancer cells, the stroma and the rest of the 

organism have their roots in the physiological responses that take part in regular tissue 

homeostasis. 17-19 The equilibrium between cell-renewal and cell-reduction is tightly 

governed through connections between parenchyma stem cells and the 

microenvironment to carry out the tissue remodelling or respond to the stress caused 

by tissue injury. Cancer cells virtually do not react in response to normal physiological 

regulators of cell growth, and are constantly sending remodelling signals for the stroma 

to be reorganized in an activated form to permit tumour growth;  to some degree 

tumors behave like a wound that does not heal. 20 Tumor modifier genes could play a 

role in controlling molecular and cellular factors of these two main compartments that 

would explain not only discrete physiological differences among individuals, but also 

differences in the susceptibility, development and the different clinical evolution among 

patients who seemingly suffer the same cancer disease. 

 The relevance of the microenvironment is highlighted by new studies that 

demonstrate how the apparently normal stromal cells can manipulate epithelial cancer 

cell activity in reconstitution experiments, and by recognition of particular somatic 

genetic alterations in the stromal element of the tumor. 21,22 It has been proposed that 

the global microenvironment mostly functions as an epigenetic tumor modifier. 23 In 

fact, the genetic inactivation of Pten in stromal fibroblasts associated with mouse 

mammary glands speeds up the initiation, progression and malignant transformation of 

mammary epithelial tumors. 24 Furthermore, malignant cells can be reverted to a 

quiescent state simply by incorporation into an embryonic microenvironment. 25 This 

suggests the microenvironment is dominating over malignancy. Thus, for tumors to 

advance into a more malignant stage they must change their own microenvironment to 

a promoting one. The change in microenvironment probably originates from oncogenic 

mutations in proliferating tumor cells that send signals to the stroma, but possibly also 

mutations in the stroma itself. 21-24  

 The resulting tumors are complicated structures of malignant cancer cells 

surrounded by vasculature and associated with an active tumor stroma composed of 

several non-malignant cell types, such as fibroblasts and myeloid cells with an 

important role in global tumor behaviour. For example, evidence suggests that tumor 

initiation, progression, as well as metastasis are influenced by particular 

subpopulations of macrophages, 26,27 and also other inflammatory cells, such as B and 

T- lymphocytes and mastocytes, have been shown to play a role in tumor promotion. 28 

In fact, the milieu of the tumor microenvironment is similar to the one found in the 

inflammatory reactions within a restorative healing injury, which stimulates 
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angiogenesis, turnover of the extracellular matrix (ECM), as well as tumor cell motility. 7 

And, as occurs in inflammation, a growing body of data support the perspective that 

extracellular proteinases, like the matrix metalloproteinases (MMPs), mediate 

numerous modifications within the microenvironment in the course of tumor 

development. 29 Additionally, one of the most critical pathways controlling both 

inflammation and tumor microenvironment, is the TGF-beta signalling pathway, 

together with important cell-autonomous effects. GWAS have identified many SNPs 

close to genes that belong to the TGF-beta superfamily, such as CREM1 and SMAD7. 

In addition, constitutively reduced TGFBR1 expression is a powerful modifier of 

colorectal cancer susceptibility. All these data indicate that germline variations of the 

TGF-beta superfamily might account for a very important percentage of colorectal 

cancer susceptibility. 30 

 

 The modulation of stroma function by tumor susceptibility modifier genes is well-

known. The first tumor-modifier gene identified was a modifier of the Apc 

(Adenomatous Polyposis Coli) gene function, located in the QTL named Mom1 

(“Modifier of Min1”, which in turn means “Multiple Intestinal Neoplasia-1”). The gene 

responsible encodes a secretory phosphatase type II phospholipase A (Pla2s). Pla2s 

was proposed to modify polyp number by altering the cellular microenvironment within 

the intestinal crypt. 31 Interestingly, this gene has been widely implicated in the 

inflammatory process, 32 angiogenesis and has pro-atherogenic activity. 33 More 

importantly, later studies demonstrated that the PLA2S gene has a role in human 

cancer pathogenesis of the digestive tract, 34 supporting the importance of mouse tools 

to identify cancer modifier genes in human population. Thus, it is feasible for a number 

of these genetic determinants to be involved in the pathogenesis of different 

physiological and/or pathophysiological events at the same time; this effect is named 

“pleiotropy”. This concept refers to those genes that concurrently have effects on 

different phenotypes. This has been demonstrated not only for the diverse subtypes of 

cancer, such as 8q12 abnormalities that are related with various types of tumors, 35 but 

also for autoimmune diseases 36 or very different pathologic conditions. Many parallels 

exist between different diseases and pathologic situations; for example, hypertension, 

hypercholesterolemia and obesity are included in known metabolic syndrome; or the 

existence of an association between those processes and particular types of cancer; or 

the relationship between certain autoimmune diseases and cancer. 37-39 All of these 

data indicate that complex interactions take place among genes that simultaneously 

control different processes. It is also possible to relate all the disorders that share 

common conditions and the gene interactions that control them. This fact has 
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generated recently the interesting concept of diseasome, 40 which can be represented 

by two networks, first, by the human disease network, in which nodes represent 

disorders, and two disorders are connected to each other if they share at least one 

gene; and second, by a disease gene network where nodes represent disease genes, 

and two genes are connected if they are associated with the same disorder. 40  

 One of the most important challenges in cancer research is to understand the 

underlying basis of heterogeneity of tumor susceptibility, development, and evolution in 

the context of the physiology and pathophysiology of the organism. It would be 

desirable to tackle the cancer problem with tools that permit visualization of  this global 

picture, integrating both intrinsic and extrinsic factors with the behaviour of the tumor 

cell.  Genetic analysis offers a unique tool to embrace the global scenario, because 

each QTL regions could contain both intrinsic and/or extrinsic modifier genes, and can 

help to explain cancer as a complex disease. 

 

Identification of Cancer Susceptibility Genes in Human Populations 

Even though rare alleles with strong effects could be substantial contributors to 

sporadic cancer risk, the searching for tumor susceptibility has been mainly focused on 

the common disease-common variant model that presumes that cancer susceptibility 

originates from the additive effects of combinations of common low-penetrance 

variants. 41 With this model, every susceptibility variant is assumed to contribute a small 

amount of risk, without any variant conferring enough by itself to result in tumor 

development. Cancer origin and evolution have been proposed to be the consequence 

of the merged effects of numerous of such alleles, which may control intrinsic and/or 

extrinsic functions. The search for tumor susceptibility genes has mainly been carried 

out by GWAS, in which allele frequencies at thousands of polymorphic sites (i.e. SNPs) 

are compared in a large number of cases versus a similar number of controls. As 

discussed in later sections, in spite of their limitations, these studies have successfully 

identified some of the common susceptibility variants for different common diseases 

and traits, including cancer 10. 

 

A. Identification of Susceptibility Genes in Breast Cancer 

We will use breast cancer as a model for this discussion,  as major efforts have been 

made to identify  genetic components of both hereditary and sporadic versions of the 

disease. Studies of susceptibility genes in breast cancer initially focused on the 

detection of high-penetrance susceptibility genes through the analysis of linkage in 

family pedigrees comprising several affected members. These familial studies involve 

fewer patients, and need significantly reduced marker density, in comparison with 



 10 

current GWAS, but the two approaches can be complementary. The results of pedigree 

evaluation can offer important and persuasive signs of genetic effects, because they 

are primarily based on genetic transmission of disease-causing alleles between 

affected family members. Inherited variations in the two main susceptibility genes 

already known for breast cancer, BRCA1 and BRCA2, together account for only around 

20% of hereditary breast cancer. 35 A few additional genes have been identified, 42,43 but 

all these known mutations only can elucidate a small portion of familial breast cancers, 

and around less than 5% of the total breast cancer susceptibility. A number of linkage 

studies have described candidate loci that contain breast cancer susceptibility genes. 

However, these loci were not clearly statistically significant presumably due to the fact 

that the number of families affected by each locus was low. In a recent linkage study in 

Spanish breast cancer families, three more regions of interest came out, located on 

3q25, 6q24 and 21q22; 43 it will be very impoprtant to further confirm these results in 

new populations.   

 The majority of the studies to identify susceptibility genes in breast cancer have 

been carried out by GWAS. These studies have identified several common variants 

that have an influence on breast cancer susceptibility, but only four were replicated in 

two or more GWAS (Table 1). 44-51 Meta-analysis of suggestive loci utilizing three 

published GWAS resulted in the detection of an extra locus on 5p12 52 that appeared to 

be linked particularly with estrogen-receptor positive cancers of the breast. It must be 

taken into account that statements for associations with particular categories require 

much more cautious replication studies. For instance, the 2q35 locus was initially 

associated particularly with estrogen-receptor positive breast cancer, but a later study 

reported comparable results irrespective of the estrogen receptor status53 

 Almost all of the individual low-penetrance variations discovered to date have 

weak effects (odds ratios per-allele are less than 1.41) and explain much less of the 

heritability of breast cancer, compared to the known BRCA1 and BRCA2 mutations; 

and maybe a few others such as a common variant within the Fibroblast Growth Factor 

Receptor 2 gene (FGFR2). Nonetheless, a very significant portion of the breast cancer 

susceptibility presently continues to be uncharacterized and may be due to the sum of 

combinations or interactions of low-penetrance genes. These allele variants, together 

with the environmental exposure, may contribute to breast cancer susceptibility. the 

causative environmental exposures continue to be evasive, because many of the 

formerly suggestive environmental and life style risk factors (e.g. nutrition) for breast 

cancer have been recently refuted by large studies in the last decade. 54,55 

 In conclusion, around twenty different presumed breast cancer susceptibility loci 

have already been identified using GWAS studies, but few loci were replicated in 
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different studies. 44 In addition, almost all of these variants identified in breast cancer 

and other studies, have no demonstrated biological or mechanistic relevance to the 

disease, or medical utility for diagnosis or therapy. This could mean that causality 

within this framework can hardly ever be solved by large-scale association or case-

control studies exclusively. 10 A reason for this could be the genetic heterogeneity. A 

number of genes is presumed to play an important role in the susceptibility to breast 

cancer; but those genes could be only important exclusively within a limited amount of 

families, and could be absolutely lost as soon as they are diluted in the general 

population. 16  

 

B. The Challenging of Genome-Wide Association Studies  

Within the last few years, over fifty GWAS have been performed to search for cancer 

susceptibility genes. As discussed by other authors, a few repetitive conclusions can 

be obtained from them: first, only few variants were found in every single GWAS; 

second, each locus has a tiny effect; and third, there is a relative deficit of replication of 

allele variants identified by diverse GWAS. 16 One explanation for this last problem 

could be that, despite having large sample numbers, there is a restricted potential to 

identify modest genetic effects due to the strict levels of significance demanded in 

these studies. Therefore, variants that attain significant p-values, for instance P>10-8, 

are usually real, 56,57 while those associated with significantly more modest P-values 

(e.g. 10-5 or 10-6) might indicate false positives. Furthermore, a large number of those 

variants will not be replicated when screened in other samples. For instance, in GWAS 

the chance that a variant with a P-value of 10-5 shows a genuine association is actually 

lower than one percent. 58,59 

 A different situation that could play a role in clarifying the current incongruence 

of GWAS is the fact that cancer susceptibility is an extremely complicated phenotype 

and, together with the incomplete penetrance of the inherited tumor risk alleles, the 

interaction with environmental risk factors could substantially alter hereditary 

susceptibility. Based on environmental exposures, a person with high genetic 

susceptibility to develop malignancy may well never be affected, while a person at low 

cancer risk, but high exposure,  might suffer the affliction 60 (Figure-2). This question is 

still widely debated for breast cancer, which has been linked to nutritional 61 as well as 

reproductive factors, 62 and alcohol, 63 along with other exposures. Inability to take into 

account this kind of variable in GWAS may well decrease the strength of analysis or 

even reduce our ability to discover genuine causative susceptibility loci. 64 This may 

also clarify the fact that, even though the hereditary element of developing prostate 

cancer was estimated to be around 40% 11, early studies including quite large high risk 
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families have not been confirmed these data. 65 This might be due to genetic 

heterogeneity (i.e. the causal polymorphisms that are the responsible for the phenotype 

vary among families). 

 Additionally, even though quite a few studies have discovered genes with 

important phenotypic effects, 44,47,68-69 as we indicated above, the majority of cancer risk 

is most likely due to a selection of genes with additive effects. It is however also 

possible that many genes regulate cancer susceptibility mainly via non-additive 

interactions. These interactions could be multiplicative or conditional, in such a way 

that the principal effect of one gene would depend on the existence of a specific allele 

within a second locus, and so on, forming a network of gene interactions where the 

next interaction is only possible only if particular allelic form is already present. It might 

be also possible that those numerous weak-interacting loci would simply achieve 

suitable levels of significance within particular series of patient samples, depending on 

the hereditary background or environmental factors (Figure 2). Thus, on top of this 

currently complicated situation of the GWAS scenario would be the spectrum of 

hereditary interactions that depend on the genetic background, a fact that has been 

clearly demonstrated in animal models like the mouse and others. 6,70-72 Moreover, 

genome-wide studies in mouse models of cancer have discovered loci that arise as a 

result of genetic interactions that are not viewed as individual QTL with major effects, 

utilizing common methods of analysis. 70-73 These studies demonstrated, first, the 

power of mouse models to simplify the problem, and second, that more advanced 

statistical methods used to discover interactions among loci in linkage analyses might 

be required to discover the locations of multiple weak susceptibility alleles. 6,74,75 

 In summary, extrapolation of the final results obtained from GWAS to other 

human populations raises the uncomfortable possibility that a specific SNP discovered 

as a tumor modifier in a particular population, however lacks any effect (or even might 

work in the opposite direction) within another ethnic background. For that reason, even 

though hereditary background in individual patients is consequently capable of 

controlling illness development, as it has been evidently demonstrated in animal 

models 76,77 very few of these human low susceptibility genes have been convincingly 

identified. Therefore, even though the present flood of GWAS show the strength of this 

strategy, there are natural restrictions of this whole-genome association analysis that 

circumvent the capture of most pertinent scientific data. Thus, GWAS are afflicted by 

implicit limitations and cannot provide us with an entire understanding of the intricate 

genetic and environmental interactions connected with common disease phenotypes. 

In fact, today no individual method is good enough to permit an extensive knowledge of 

cancer etiology and pathogenesis, in particular within the extremely complicated area 
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of human genetics. But there have been great improvements in QTL research within 

the last ten years, mainly by utilizing mouse cancer models. Mouse QTL analysis as 

well as GWAS will become complementary strategies that will improve the knowledge 

of the actual genetic basis of the human disease. 8  

 

The Mouse as a Complementary Approach 

The use of mouse models can complement human GWAS by allowing a higher level of 

control over hereditary variance and environmental exposure. An intercross or a 

backcross carried out between two inbred mouse strains with divergent tumor 

phenotypes generates offspring where each mouse is genetically and phenotypically 

unique for different quantitative sub-phenotypes controlled by different interacting QTL. 

These strategies reproduce a simplified model of cancer as a polygenic complex 

disease. 8 Furthermore, these approaches are facilitated by the production of a large 

number of inbred and outbreed strains of various Mus species which have different 

evolutionary genealogies, together with recombinant inbred strains, congenics, 69 

consomics, 78 and genetically engineered mice (GEM), all of them constituting a unique 

genetic resource among animal models that can greatly simplify the identification of 

susceptibility genes. Certainly, the enormous number of GEMs available, in particular 

through programs like the Knock-Out Mouse Project (KOMP) whose goal is to mutate 

all protein-encoding genes and make all these mice available to the scientific 

community 79  provide important tools to narrow down QTL candidate genes. Knockouts 

are used in this context to test the candidature of a driver gene at a QTL by what it has 

been named the QTL-knockout interaction test, by which the interaction between the 

null allele and the QTL is tested, and compared with the interaction with the wild type 

allele 80. The use of a GEM strain carrying a knock-out or a knock-in allele located in a 

QTL, can help to validate the participation of that gene in the QTL effect by linkage 

analysis 81. 

 Additionally, there is increasing evidence showing that hereditary risk factors 

have a comparable role in complex disease pathogenesis within human and mouse 

models regardless of interspecies dissimilarities. Rodents develop cancer that appears 

to be amazingly similar in most cases to human tumors, and they accumulate 

mutations in a comparable spectrum involving the same genes and pathways. 82 These 

facts suggest that, at least some of the numerous QTLs containing tumor risk genes 

that have been mapped in the mouse may be highly relevant to the human scenario 

and serve as an effective method of complementing observations within human 

populations. 6 This has been demonstrated for example, for plasma levels of 

cholesterol. 83 Mouse QTLs have already been proven to be equivalent to human 
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disease susceptibility loci in a number of cases including cancer, 84-87 and although 

mouse QTL analysis is not without drawbacks, there have been in the last few years 

important technical advances (see below) (Figure 3). Certainly, the introduction of 

novel techniques and resources can help to unravel the exceptionally complicated 

interwoven factors influencing cancer etiology. These data suggest that mouse studies, 

carried out in parallel with human sample analysis, may accelerate development of a 

deeper understanding of the hereditary risk component of complex diseases 8 (Figure 

4). 

 

Technological Advances for Identification of QTLs in Mouse Models  

Although mouse quantitative trait locus mapping has demonstrated to be an effective 

tool to identify trait risk, this strategy is not without drawbacks. 8 These have prompted 

numerous researchers to examine substitute approaches for candidate gene detection. 

77 Among the drawbacks are low mapping resolution, and secondly, the difficulty of 

identifying specific genes and nucleotides associated with complex genetic traits; 

thirdly,  modelling multiple QTL,  although easier than in GWAS carried out in human 

populations, requires complex statistical strategies. Technological improvements in the 

meantime have partially resolved several of these issues (Figure-3), including: 

 -Analysis of haplotype structure and in silico mapping: Understanding of those 

pieces of the genome that are the same by ancestry (i.e., have the same haplotype 

organization) among mouse strains is a useful approach to refining loci of interest. The 

strategy utilizes genetically more complex mice from natural origin such as partially 

inbred and outbred strains like Mus spretus 86 or heterogeneous stocks generated by 

combinations of various inbred mouse strains. In both cases this strategy may quickly 

minimize the number of candidate genes that have to be tested . 86,88,89 The main idea 

is to identify frequent haplotype sections that segregate inside the genetically 

characterized candidate locus to restrict the quest for presumed genes of interest. 88-91 

 Heterogeneous stock mice like MF1 92 have been developed through the 

arbitrary reproduction of  progeny from normally four to eight inbred strains. 93,94 QTL 

should be found in a region in which sequence divergence matches genetic origin. 

Therefore, whenever QTLs have been mapped in heterogeneous stock populations , 

the markers of strain distribution structure within the initial QTL can be joined with 

mapping data to refine the area which contains the functional variant.  
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This strategy has been utilized to carry out mapping at an exceptionally high resolution 

and to identify candidate genes, 88-90,95 In summary, due to the fact that heterogeneous 

stocks are produced from known ancestral inbred strains, it is possible, by some 

Statistical Genetics and in silico analysis, to obtain the origin of every allele and to map 

QTL at sub-centimorgan resolution.  

 Similarly to the use of heterogeneous stocks of mice artificially generated, is the 

utilization of natural outbred stocks which accumulate recombinants with time, so they 

provide a substantial increase in mapping resolution, possibly sufficient enough to 

identify candidate genes. Specifically, outbred Mus spretus have been utilized with 

successful results to discover Aurora Kinase A (Aurka/Stk6) 96,97 as a skin tumor 

susceptibility gene; 86 and an outbred population of CD1 mice has been utilized to chart 

a predisposing region for lung cancer. 98 These kinds of natural outbred stocks may 

well provide greater resolution than artificial versions; however they miss the benefits 

from parental information within the heterogeneous stocks. In addition, these 

approaches require many animals as well as high density genotyping; in fact, genome-

wide mapping in heterogeneous stocks demands a minimum of 6000 genetic markers 

(i.e. SNPs). It is very important to consider that to reduce false-positive results to 

appropriate levels with such amount of markers it is necessary to utilize strict 

significance thresholds for the p-value. 99,100 

 Recently the Collaborative Cross project was launched to generate the largest 

panel of recombinant inbred (RI) strains with more than one thousand RI lines of mice. 

These strains originated from the crosses among five inbred and three wild-derived 

strains. This strategy will allow high resolution mapping equivalent to the 

heterogeneous stocks, together with the reproducibility of the inbred strains. The main 

aim is to reach a mapping resolution of about a megabase. Additionally, the genetic 

variation will be homogeneously distributed along all the genome without regions where 

there is no variation, so every single gene can potentially be tested for involvement in a 

particular phenotype.101,102 

 -Analysis of tumors using whole genome array comparative genomic 

hybridization (aCGH) and loss of heterozygosity (LOH) analysis by SNP arrays: High 

penetrance germline susceptibility genes, are often linked to somatic loss of the wild 

type allele in tumors (the "two hit" Knudson hypothesis). The same could happen with 

at least some of the low-penetrance susceptibility genes that control intrinsic cellular 

activities. Cancer low-susceptibility genes could drive copy number gains in tumors in 

an allele-specific manner, while cancer resistance alleles may possibly be lost as a 

result of deletion or mitotic recombination leading to loss of heterozigosity (LOH). 

These types of allele-specific somatic losses and gains can be used to identify cancer 
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risk genes; 87,103 this technique facilitated the recognition of Stk6 as a low-penetrance 

tumor susceptibility gene. 86  

 -Genome-wide expression arrays. The observation that most part of SNPs are 

located outside coding regions has led numerous investigators to hypothesize that 

many QTLs are probably attributed to delicate alterations in gene expression instead of 

to missense or nonsense mutations, as is the case for Kras2 in cancer induced by 

urethane. 81 This idea has consequently resulted in the screening for genes in QTL 

regions that exhibit differential expression regarding the strains of interest. 104 This 

particular strategy, initially specified as genetical-genomics, 105 offered a good impartial 

method for quickly screening hundreds of possible candidate genes at the same time to 

reduce the list for additional evaluation to a workable quantity. 90,106 Within this 

technology researchers could include co-regulated networks of expression and QTL 

evaluation: this allows identification of a group of genes that are operating collectively 

to impact a susceptibility phenotype based on the network of genes that are 

significantly correlated with each other, and their expression levels controlled by 

common genetic loci. In some informative circumstances, it would be possible to find 

the susceptibility locus, the candidate gene is affected in cis by that locus, and 

downstream genes which are influenced in trans. Thus, adding automatic finding and 

manual curation it is possible to define networks of genes with a common function and 

that are controlled by a common mechanism. 72, 74, 75  

 -The next generation of sequencing techniques together with the culmination of 

the human 107,108 as well as mouse 109 genome sequencing projects: Thanks to the 

completion of the human genome project it is possible to identify most genes within a 

specified location. Next-generation sequencing will make it possible to investigate 

particular candidate genes without prior genomic screening. The power to discover and 

define candidate loci has continued to grow considerably since the whole genomes of 

many species have been sequenced. 110,111 This has allowed recognition of 

evolutionary conserved sequence domains, and much more recently has allowed direct 

visualizations of SNPs among some of the widely used inbred mouse strains through 

the use of chip-based sequencing, as well as large-scale polymorphism screening. 112 

Interestingly, sequence accessibility throughout species has allowed additional 

speeding of candidate gene recognition for all those traits which have already been 

mapped in several species. Recognition of orthologous chromosomal sections and 

their breakpoints inside genetically identified loci might help to refine QTL localization 

and candidate gene databases by restricting searches to those regions shared 

between the two species. 8,106 
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Future Perspectives for Human Cancer Risk  

As we have discussed, the majority of studies in human families with higher 

cancer susceptibility continue to be centred on the chance that a single or even a small 

number of powerful genes could be the cause of the "missing" hereditary element of 

tumor risk. Even though there may well still be a number of high penetrance genes 

remaining to be discovered, mostly, we will be confronted with the difficulties of the 

existence of numerous low-penetrance modifier genes and their interconnections, as it 

has already been suggested using mouse models of cancer that combinations of these 

low-penetrance modifier genes may be responsible for the variable risk of both 

hereditary and sporadic cancer. 6 In the last years, the efforts to identify this cancer 

genetic component in the human population have been mainly focused on the use of 

GWAS. Although these studies have been proven to be a very useful tool for the 

identification of some common genetic variants, how much this technique has 

contributed to clarification of the "missing heritability" of different complex diseases is a 

matter of controversy. 10,113,114 There have been substantial attempts to recognize low 

penetrance cancer susceptibility genes by GWAS 44,115,116 Even though this research 

has found a few allelic variants which influence cancer risk, the majority of them will 

probably be challenged by this method, because of the tiny impact that any single one 

confers on the total tumor risk. These low penetrance-genes are subject to strong 

interactions among themselves as well as with the natural environment, and the results 

can be quite inconsistent within different populations under the influence of diverse 

environmental elements. Therefore, the actual identification of low penetrance cancer 

risk genes within the human population is a challenging endeavour because of the 

huge heterogeneity within human genetics and the environment. This could explain 

why the majority of the heritable portion of tumor and complex traits has not yet been 

identified by GWAS. For the same reasons, even though some of the genetic loci 

discovered through GWAS initially possess robust statistical significance regarding 

association with specific tumors, the informative potential of these loci to predict 

individual tumor susceptibility is restricted by their small impact on global cancer risk, 

so the clinical importance of this kind of variant will be very limited. Therefore, with our 

current information, we can say that single SNPs will have limited utility in predicting if 

someone will suffer from cancer. But, although the diagnostic benefit of any genetic 

polymorphism alone is limited, we can anticipate that understanding of the combined 

interactions among those allelic variants that collectively possess considerably more 

potent consequences on risk would likely exert a significantly larger effect on the 

prognosis as well as on cancer therapy and its general clinical management. 
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Concluding Remarks 

Even though mouse models have become an invaluable tool for QTL mapping, a 

refining of QTL locations remains problematic.  This task is beginning to be tackled 

successfully with the help of newly developed technologies such as high throughput 

gene expression arrays together with systems genetics approaches, 74 whole genome 

SNP arrays and aCGH with allele specific analysis, 86 and high-coverage whole 

genome sequencing that will probably become the technique of reference as soon as it 

results cost-effective. In the following years, as a result of the application of these 

technical innovations we ought to start to see the refinement of several loci containing 

mouse cancer risk alleles and also the identification of clusters of them, jointly with their 

interactions, that may help selecting presumed genes and pathways to become 

analyzed in human populations. 6 Moreover, considering the current speed of technical 

advancement, it is quite possible that in the near future, with the advent of new 

technologies such as whole genome sequencing, positional cloning may be 

unnecessary and fine mapping of significant loci may lead straight to their identification.  

 Mouse models not only are a good tool to identify QTL regions that can be 

extrapolated to human populations, but also offer a parallel system for immediate 

testing and verification of the results obtained from human epidemiology and GWAS. 

Also, moving back and forth between mouse and human systems will be a good 

strategy to recognize the causal genetic variant of a presumed candidate gene (Figure-

4). Moreover, it is known that the environmental influences and way of life options have 

an important effect on tumor susceptibility in the humans. Gene-Environment 

interactions could also be investigated using  mouse models, and will allow us to 

recognize how genes work together with particular environmental influences 

recognized by epidemiological studies. Enrolling together systems genetics and 

epidemiology ought to enable us to clarify the connections involving hereditary 

background and environmental factors that are the reason for part of the "obscure" 

cancer heritability. 75  

 The knowledge acquired by means of these genetics studies will have a 

significant effect on medical sciences, and should certainly lead to improved prognosis 

prediction and therapy of human cancer, leading to a more individualized clinical 

management of the disease. 
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Figure Legends 

 

Fig. 1. Cancer is not purely a cell-autonomous disease: There are connections 

between cancer cells and immune and endocrine systems, vasculature and stroma 

surrounding them that modify the tumor behaviour and susceptibility.  

 

Fig. 2. Tumor risk is the consequence of the interaction between constitutional genetics 

and environmental exposures. The combination between the genetic background 

(modifier genes, mainly low susceptibility cancer genes) and the environmental factors 

varies among individuals and might explain the different tumor susceptibility and 

behaviour observed in patients.  

 

Fig. 3. Recent technical advances have improved QTL research: The use of genetically 

more complex mice (outbred and artificial strains) in combination with high resolution 

SNPs arrays and new techniques of statistical genetics greatly improve the definition of 

new QTLs. In tumor cells, the analysis of changes in copy number and expression by 

whole genome comparative hybridization and expression arrays allow the further 

refinement of QTL. 

 

Fig. 4. Mouse models are a good tool to identify QTLs in an environmentally controlled 

way that could be extrapolated to human population. At the same time they are very 

useful to verify and refine candidate loci found in humans by GWAS. Technical 

advances such as whole genome sequencing are readily making the recognition of 

orthologous chromosomal regions between species straight forward simplifying the 

refinement of QTLs found in both kind of studies.  
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Table-1: Main regions found by human GWAS for breast cancer susceptibility  

________________________________________________________________ 

Susceptibility Region    Reference  

5q11.2; 8q24; 10q26; 11p15.5; 16q12.1  Easton et al., 2007 44 

2q35; 16q12      Stacey et al., 2007 45 

Three ERBB4 SNPs     Murabito et al., 2007 46 

10q26 (intron 2 of FGFR2)    Hunter et al., 2007 47 

6q22.33      Gold et al., 2008 48 

6q25.1       Zheng et al., 2009 49 

1p11.2; 14q24.1     Thomas et al., 2009 50 

3p24; 17q23      Ahmed, et al., 2009 51 

5p12       Stacey et al., 2008 52 

2q35        Milne et al., 2009 53 

_________________________________________________________________ 

 


