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Abstract.
InAs/GaAs quantum dots exposed to Sb after growth exhibit spectral changes. We study

in the present paper an idealized nanostructure consisting of a homogeneous distribution of the
quaternary GaInAsSb surrounded by a barrier of GaAs. We find that the valence band offset is
a critical parameter in modelling its electronic structure. Depending on this value, we predict a
transition from type-I to type-II band alignment at a different Sb concentration. The addition
of Sb to reduce the transition energy while keeping a type-I alignment is only of benefit at low
Sb concentration.

1. Introduction
Light sources operating efficiently at 1.55 µm are highly desired by the telecommunication
industry. Laser diodes based on semiconductor quantum wells are able to work at high rates,
with low power consumption and high temporal and spatial coherence. An excellent candidate
technology for lasing at the telecommunication window of interest relies upon InGaAsP/InP
multi-quantum-wells. It would be however preferable to replace the InP substrate by an
inexpensive one. The most extended approach to achieve this goal consists on growing InAs
self-assembled quantum dots (QDs) on top of GaAs substrates. Even though the bandgap of
InAs at low temperature lays at ∼ 3.0 µm, the emission of InAs/GaAs QDs occurs at ∼ 1.3 µm
or shorter wavelengths. This blue shift results mainly of confinement and strain effects. The
effect of the strain can be partially alleviated using a metamorphic layer [1] or a strain-reducing
layer. Alternatively, it is possible to increase the emission wavelength by replacing As atoms
by Sb ones, given that InSb presents an even narrower bandgap than InAs. This approach has
been very promising, giving rise to room temperature emission at 1.6 µm from InAs/GaAs QDs
covered with GaAsSb[2].

We constraint the current study to analyse the impact of Sb on the electronic structure of an
InAs/GaAs QD. We leave size effects and the impact of metamorphic and strain-reducing layers
for future work. We propose a model for describing such a QD exposed to Sb: a lens shaped
volume of 10 nm radius and 8 nm height sited on top of a 0.5 nm wetting layer. Its composition
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consists of a homogeneous distribution of the quaternary GaxIn1−xAsySb1−y. The amount of
Sb in the alloy is limited to 0.5, since higher values are difficult to achieve experimentally. The
surrounding barrier material is pure GaAs. Further details on actual samples of InAs/GaAs
containing Sb can be found in [3, 4].

2. Method
The whole theoretical study has been performed with the Nextnano++ software package.[5] The
strain distribution is computed by minimising the strain energy of the whole structure given the
lattice mismatch between the QD material and the barrier. The QD electronic structure is
then obtained by means of the 8×8 Kane’s Hamiltonian in the framework of the effective mass
approximation. Strain effects on the electronic structure are accounted for by adding the Bir-
Pikus Hamiltonian to the Schrödinger equation. Further details can be found in Ref. [5].

We have followed the recommendations of Vurgaftman et al. [6] to set all material parameters,
except the valence band offset (VBO). During the study, VBO has been shown to be critical in
determining a type-I or type-II heterostructure band-alignment, which has a major impact on the
electronic confinement energies. This has motivated to perform the calculation of the electronic
structure for three different sets of VBO values: i) the recommended values of Vurgaftman et al.
[6], ii) the theoretical values reported by Wei and Zunger [7] and iii) the recently revised VBO of
Li et al. [8]. In the following, we will refer to these parameter sets as set A, B and C, respectively.
The conduction and valence band alignment with respect to GaAs is shown in Figure 1 panels
a) and b), respectively. Only GaSb presents a type-II conduction band alignment with respect
to GaAs. However, if we introduce the strain due to the lattice mismatch, the band edges shift
and the layout changes notably. In Fig. 1 c) can be seen that InSb/GaAs also exhibits a type-II
band alignment.

Figure 1. Band edges alignment for the
conduction a) and valence b) bands. Three
different set values for VBO are plotted:
Vurgaftman et al. [6] (blue), Wei and Zunger
[7] (red) and Li et al. [8] (black). The band
edges line up under lattice mismatch strain is
represented for conduction c) and valence d)
bands.

Figure 2. Spatially direct (thick red line) and
indirect transitions (upper-half solid lines), and
valence and conduction band-offsets (lower-
half solid and dashed lines) calculated at the
bottom surface of the quantum dot (inset).

The values of the quaternary parameters have been derived by interpolation of the four
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ternaries resulting of combining the four binary compounds involved in the alloy. We have taken
the bowing parameters from Ref. [6], even for VBO, when available.

3. Results and discussion
To get a first insight into the confinement exerted by the QD on the electron and hole states, it is
helpful to analyse the confinement potential at the points where the particle wavefunction tends
to localise. In general, the electron wavefunction fills most of the QD’s volume, while the hole
often resides in the lower half of it. Thus, the e-h transition energy can be roughly approximated
by the energy difference between the valence and conduction band edges at the centre of the
bottom surface of the QD. These values differ from those of Fig. 1 c) and d) in the strain values,
which now are the QD local strain ones. The effective energy gap (E′g) as a function of the Sb
concentration is shown in Fig. 2. The minimum at y ∼ 0.75 is not related to the minimum of the
ternary InAsSb bandgap, since the latter takes place at y ∼ 0.4 [9]. It results from the increase
of the strain net value due to the bigger lattice mismatch associated with the incorporation of
Sb. In addition, the spatially indirect transition from the GaAs conduction band to the QD’s
top valence band is also of relevance here. We have labeled such energy as Ẽg in Fig. 2 1

The indirect transition crosses the direct one when sets A and C are considered. The crossing
indicates at which Sb concentration the nanostructure could exhibit a type-II conduction band
alignment. Finally, the effective band offsets are also included in Fig. 2. Within this qualitative
picture, the holes are significantly more confined, the more Sb and conversely, the electrons.

The actual values of the electron-hole (e-h) transition energy are shown in Figure 3. There, we
can see that the naive description based upon the confinement potential describes qualitatively
well the dependence of the e-h energy on the Sb content. At low Sb content, the transition energy
exhibits a red shift. This is followed by either a blue shift (for parameter set B) or a steeper
red shift (for parameter set A and C). The latter is associated with the type-I to type-II band
alignment transition. This transition takes place at y=0.43 and y=0.4 (y=0.22 and y=15.0)
for x=0 and x=0.25, respectively, when set A (C) is considered. The values corresponding to
set B have not been computed, being greater than y=0.5. The model predicts an emission at
wavelengths greater than 1.2 µm for type-II QDs. For practical applications on light emitters,
a type-II heterostructure is undesirable. The e-h overlap gets reduced in spatially indirect
transitions and hence the oscillator strength and device performance. One could think that
removing the Ga atoms from the QD could help in shifting the e-h transition energy towards
red. This is not the case, as it is shown by the dashed lines in Fig. 3. At low y, there is a red
shift of ∼ 100 meV. However, as more Sb is incorporated in the dot such shift becomes smaller.
Although Ga atoms shift the band edges towards blue, the lattice mismatch in the quaternary
with x=0.25 is smaller than in InAsSb. Thus, at y ∼0.5 the transition energy becomes almost
equal, for both Ga concentrations of 0% and 25%.

Ripalda et al. reported in Ref. [3] a photoluminescence spectrum peaked at 1.25 µm for
InAs/GaAs QDs exposed to Sb and covered with GaAs. Our numerical results are consistent
with such experimental observations for QDs with a composition of GaxIn1−xAsySb1−y with
0< x < 0.25 and 0.1 . y . 0.25. This conclusion should be taken cautiously. We have not
computed the excitonic transition energy, which should appear red-shifted with respect to the
energies of Fig. 3 as a result of the electrostatic Coulomb interaction. Typically, the excitonic
correction is ∼ 20 meV in InAs/GaAs QDs[10]. Thus, to our understanding, such corrections
would not have a great impact on the above estimation of the quaternary composition. However,
an exact calculation should confirm our conjecture.

In conclusion, the optimal Sb concentration to get the narrowest transition energy in a
GaxIn1−xAsySb1−y/GaAs QD while preserving a type-I band alignment, results from the balance

1 The conduction band energy in GaAs is taken at the centre of the top surface of the simulation box.
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Figure 3. Electron-hole transition en-
ergy for a Ga0.25In0.75AsySb1−y/GaAs
QD (solid lines) and an
InAsySb1−y/GaAs QD (dashed
lines). The grey colour of the lines
has the same meaning as in Fig 2.

of two effects: i) the red shift due to the narrower band-gap of InSb and ii) the blue shift
associated to the strain induced by the higher lattice mismatch. The VBO parameter plays a
critical role in the estimation of the conduction type-I to type-II transition. The results for set
C show a type-II band alignment even for small concentrations of Sb. Conversely, the same
calculation with set B does not show any type-I to type-II transition for y ≤ 0.5. Finally, the
results for set B show an in-between behaviour.
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