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Abstract

By recourse to i) the Hellmann-Feynman theorem and ii) the Virial one, the information-optimizing

principle based on Fisher’s information measure uncovers a Legendre-transform structure associ-

ated with Schrödinger’s equation, in close analogy with the structure that lies behind the standard

thermodynamical formalism. The present developments provide new evidence for the information

theoretical links based on Fisher’s measure that exist between Schrödinger’s equation, on the one

hand, and thermodynamics/thermostatistics on the other one.

KEYWORDS: Virial theorem, Hellmann-Feynman theorem, Fisher Information, MaxEnt, Reci-

procity relations.
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I. INTRODUCTION

The thermodynamical formalism is characterized by its Legendre transform structure [1, 2].

Legendre transformations allow us to express fundamental thermal equations in terms of

a set of independent variables chosen to be convenient for a given problem [1, 2]. In a

more general context, Legendre transform structures arise naturally in physical theories or

models that are based upon entropic or information theoretical optimization principles. An

example is that of references [3–6], that purports to rederive on such a basis the principles of

statistical mechanics. Here we will explore Schrödinger’s non-relativistic equation for links

with the Legendre transform framework.

The background for the present considerations was provided by Jaynes, who established in

the 50’s a perdurable link between Information Theory, Thermodynamics, and Statistical

Mechanics [7, 8]. At its core one finds a variational technique involving extremization of

Shannon’s logarithmic information measure

S = −
∑

k

pk ln pk,

subject to constraints imposed by the a priori knowledge at hand concerning the system

of interest. By identifying Shannon’s measure with the thermodynamic entropy a new

foundation for statistical mechanics was thereby obtained based on a general statistical

inference prescription [7, 8]. The ensuing methodology is usually known as the MaxEnt-one

[7, 8]. The MaxEnt approach provides an insightful interpretation of the role played by the

Legendre transform referred to above, that is summarized in the Appendix.

An approach similar to the one advanced by Jaynes was successfully developed many years

later replacing Shannon’s S above by Fisher’s information measure (FIM) I [10–13] (see

Section III below). Such developments provided an additional perspective within the so-

called Wheeler’s program of establishing a foundation for the basic laws of physics based on

concepts from information theory [14]. Considerable effort has been expended recently on

exploring the physical implications of Fisher information. Indeed, the Fisher Information

measure has been successfully applied to the study of several physical scenarios (as a non-

exhaustive set, see for instance [12, 15–28]).

Both thermal-information connections, Shannon’s and Fisher’s, are made by means of a set

if first-derivative relations (the Legendre structure) that involve i) the Lagrange multipliers
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that emerge from the variational process, ii) the information quantifier (S or I), and iii) the

expectation values that constitute the input, a-priori information on the system of interest.

In the Fisher’s case a Schrödinger-like equation is involved, a fact of paramount importance

for our present purposes.

We will show that the virial and Hellmann-Feynman theorems, essential quantum features,

straightforwardly lead to a Legendre-transform structure. After a preliminary presentation

in Section II we recapitulates the essential ingredients of Fisher’s thermodynamics [21] in

Section III. Our main result are derived in Section IV.

II. PRELIMINARIES

A. Virial theorem

For any quantum system in stationary state, with a Hamiltonian does not involve time

explicitly,

H = −
h̄2

2m
~∇ + U(~x) (1)

the virial theorem states that [29]

〈

−
h̄2

m
~∇

〉

=
〈

~x.~∇U(~x)
〉

(2)

where the expectation value is taken for stationary states of the Hamiltonian.

B. Feynman-Hellmann theorem

The Feynman-Hellmann theorem (HFT) [30–34] establishes the relationship between pertur-

bations in an operator on a complex inner product space and the corresponding perturbations

in the operator’s eigenvalues. It shows that to compute the derivative of an eigenvalue with

respect to a parameter of the operator we need only know the corresponding eigenvector

and the derivative of the operator. More to the point, the Hellmann-Feynman (HF) theorem

refers to a parameter dependent eigen-system. It asserts that, in the case of a hermitian op-

erator H(λ) (whose eigenvectors are ψi), a non-degenerate eigenvalue Ei varies with respect

to the parameter λ according to the expression
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∂Ei

∂λ
= 〈ψi|

∂H

∂λ
|ψi〉. (3)

The theorem has a rich history and many applications, that can be consulted in [34]. The

FH theorem can be proved to hold for exact eigenstates and also for variationally determined

states [30].

III. THE FISHER THERMAL FORMALISM

A. Basics results

This formalism was advanced in Ref. [13]. One considers a system that is specified by a phys-

ical parameter θ, while the quantity f(θ) determines the normalized probability distribution

function (PDF) for it. Fisher’s Information Measure (FIM) I gets defined as

I =
∫

dx f(x, θ)

{

∂

∂θ
ln [f(x, θ)]

}2

. (4)

Fix attention upon translational families, which are mono-parametric distribution ones of

the form

f(x, θ) = f(x− θ),

known up to the shift parameter θ. All members of the family possess identical shape, and

for them FIM adopts the simpler form

I =
∫

dx f(x)

{

∂

∂x
ln [f(x)]

}2

. (5)

We are interested in a system that is specified by a set of M physical parameters µk. More

to the point

µk = 〈Ak〉 , with Ak = Ak(x) (k = 1, ...,M).

The set of µk-values represents the empirical information at hand. If the pertinent proba-

bility distribution function (PDF) is f(x), then

〈Ak〉 =
∫

dx Ak(x) f(x), k = 1, . . . ,M. (6)
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These mean values will play the role of extensive thermodynamical variables [13]. The

relevant PDF f(x) for us is the one that extremizes (5) subject to i) the prior conditions (6)

and, of course, ii) the normalization condition

∫

dx f(x) = 1. (7)

Accordingly, the extremization problem that we face is

δ

(

I − α
∫

dx f(x)−
M
∑

k=1

λk

∫

dx Ak(x) f(x)

)

= 0 (8)

where we have (M + 1) Lagrange multiplier. Variation leads to





1

f 2

(

∂f

∂x

)2

+
∂

∂x

(

2

f

∂f

∂x

)



+ α +
M
∑

k=1

λk Ak(x) = 0 (9)

It is convenient [13, 20, 36] to introduce a function ψ(x) via the identification ψ(x)2 = f(x)

so that Eq. (9) acquires a wave equation form (SWE)

−
1

2

∂2

∂x2
ψ −

M
∑

k=1

λk
8
Ak ψ =

α

8
ψ, (10)

which can be formally interpreted as a Schrödinger equation for a particle of unit mass

moving in the effective, “information” pseudo-potential [Cf. Eq. (6)]

U = U(x) = −
1

8

M
∑

k=1

λk Ak(x). (11)

The Lagrange multiplier (α/8) plays the role of an energy eigenvalue E = α/8. The Lagrange

parameters λk are fixed, of course, by recourse to the input prior information. Notice that

the eigen-energies α/8 yield automatically the value of the Lagrange multiplier associated

to normalization. The square of the solutions ψ is the desired PDF

ψ(x)2 = f(x). (12)

B. Finding a convenient way of using FIM

It is now important to establish a new form of expressing Fisher’s information measure as a

function of ψ. One substitutes (12) into Eq. (5) to find
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I =
∫

dx f

(

∂ ln f

∂x

)2

=
∫

dx ψ2

n

(

∂ lnψ2

n

∂x

)2

= 4
∫

dx

(

∂ψn

∂x

)2

(13)

which can be re-expressed as

I = − 4
∫

ψn

∂2

∂x2
ψn dx = −4

〈

∂2

∂x2

〉

(14)

Now, using the SWE (10) one obtains

I =
∫

ψn

(

α +
M
∑

k=1

λk Ak

)

ψn dx. (15)

Finally, the prior conditions (6) and the normalization condition (7) allow one to express I

in the quite convenient fashion

I(〈A1〉 , . . . , 〈AM〉) = α +
M
∑

k=1

λk 〈Ak〉 . (16)

C. Fisher thermodynamics

The connection between the solutions of Eq. (10) and thermodynamics has been established

in Refs. [13] and [15]. We summarize now the main details. The reciprocity relations

(41) and their Fisher-counterparts are an expression of the Legendre-transform structure of

thermodynamics [9, 21] and constitute its essential formal ingredient [1]. It is of the essence

that they also hold for the Fisher treatment. Standard thermodynamic makes use of the

derivatives of the entropy S with respect to both the λi and 〈Ai〉 quantities (for instance,

pressure and volume, respectively).

Analogous properties of ∂I/∂λi and ∂I/∂〈Ai〉 are valid as well [13]. We start with (16) and

consider its Legendre transform, that we call α, i.e.,

α(λ1, . . . , λM) = I(〈A1〉 , . . . , 〈AM〉)−
M
∑

k=1

λk 〈Ak〉 , (17)

so that
∂α

∂λi
= −〈Ai〉, (18)
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and recall two expressions obtained in [13], namely,

∂I

∂ 〈Ak〉
= λk, (19)

and

∂I

∂λi
=

M
∑

k

λk
∂〈Ak〉

∂λi
(20)

which is a generalized Fisher-Euler theorem. It is instructive to glance at the Appendix at

this point to note that entirely similar relations are obeyed by the ordinary Gibbs-Boltzmann

entropy S. On the basis of such an observation, it seems natural to consider that the three

reciprocity relations above should allow one to speak of a “Fisher-thermodynamics” [15].

Curiously enough, it can be shown that the HF theorem can be looked at as a reciprocity

relation of the type (18) [35].

IV. A QUANTAL-FISHER CONNECTION

We begin here to develop the original contents of this presentation. Let us consider now

that Eq. (10) is an ordinary Schrödinger wave equation for a particle of unit mass in which

the Lagrange multiplier (α/8) plays the role of an energy eigenvalue E = α/8. Remark that

U(x) is taken now to be an actual, physical potential, not an effective, “information” one.

This is the starting point.

We emphasize now the fact that our FIM I is now seen to be proportional to the expectation

value of the Laplace operator, namely,

I =
∫

dx f

(

∂ ln f

∂x

)2

= − 4
∫

ψn

∂2

∂x2
ψn dx = − 4

〈

∂2

∂x2

〉

, (21)

where ψn are the eigenfunctions of

[

−
1

2

∂2

∂x2
−

1

8

∑

k

λk Ak

]

ψ =
1

8
α ψ. (22)

We take it for granted that, as customary, the potential U admits of a series-expansion

(powers of xk) of the form
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U(x) = −
1

8

∑

k

λk Ak ≡ −
1

8

∑

k

λk x
k =

∑

k

akx
k; −λk/8 = ak. (23)

Thus, the Ak in the preceding Sections become here xk−moments and one assumes that the

expansion is good enough if M terms of them are included. The λk are now the expansion-

coefficients and not Lagrange multipliers. A Fisher’s measure is to be constructed with these

coefficients. Recourse to the Virial theorem (2) allows us to cast the FIM-expression (21) in

the fashion

I = −
M
∑

k=1

k

2
λk 〈Ak〉 . (24)

Now, replacing (24) into (16) and solving for α one finds

α = −
M
∑

k=1

(

k

2
+ 1

)

λk 〈Ak〉 , (25)

having thus obtained two expressions that pave a direct road towards our present goal.

A. Hellmann-Feynman and Virial theorems imply reciprocity relations

In this subsection we are going to show that Eqs. (24), (25), and the Hellmann-Feynman

theorem (3) jointly lead to Fisher-reciprocity relations. It being clear up this point that the

λ’s are expansion-coefficients, we will speak herefrom only “λ-language”.

In one dimensional scenarios, the eigenfunctions ψ(x) of (10) are real. We appeal now to

the Hellmann-Feynman theorem and obtain

∂

∂λk

(

α

8

)

= 〈ψ|
∂H

∂λk
|ψ〉 = 〈ψ| −

1

8
Ak|ψ〉 −→

∂α

∂λk
= −〈Ak〉, (26)

thus discovering that the HF theorem immediately implies the reciprocity relation (18).

It is clear that differentiating (25) with respect to λn yields

∂α

∂λn
= −

(

n

2
+ 1

)

〈An〉 −
M
∑

k=1

(

k

2
+ 1

)

λk
∂ 〈Ak〉

∂λn
. (27)

The two relations (26) and (27) result now in
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n

2
〈An〉 = −

M
∑

k=1

(

k

2
+ 1

)

λk
∂ 〈Ak〉

∂λn
. (28)

We go back to (24) at this point and differentiate it with respect to λn to arrive at

∂I

∂λn
= −

n

2
〈An〉 −

M
∑

k=1

k

2
λk

∂ 〈Ak〉

∂λn
. (29)

At this stage, recourse to the relation (28) allows one to recover the Euler relations

∂I

∂λn
=

M
∑

k=1

λk
∂ 〈Ak〉

∂λn
. (30)

We also have

∂I(< A1 >, . . . , < AM >)

∂λn
=

M
∑

k=1

∂I

∂ 〈Ak〉

∂ 〈Ak〉

∂λn
, (31)

so that, comparing (30) and (31) we immediately obtain

∂I

∂〈An〉
= λn. (32)

The three expressions (26), (30) and (32), obtained by application of the Hellmann-Feynman

theorem and the Virial one to Fisher’s information measure, are reciprocity relations that

in turn constitute a manifestation of an underlying Legendre-invariant structure, analogous

to that of thermodynamics, our main result here.

V. CONCLUSIONS

In this work we have shown that, if Fisher’s measure I is associated to a Schrödinger wave

equation (SWE), as it happens whenever one extremizes it subject to appropriate constraints,

two theorems intimately linked to the SWE, the Hellmann-Feynman and Virial ones, au-

tomatically lead to Jaynes-like reciprocity relations involving the coefficients of the series-

expansion of the potential function. One may then dare to assert that a Legendre-transform
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structure seems to underly the one-dimensional non-relativistic Schrödinger’s equation, a

rather surprising finding.

Acknowledgments- This work was partially supported by the Project FQM-2445 of the

Junta de Andalucia, Spain.
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VI. APPENDIX: MAXENT AND LEGENDRE STRUCTURE

The classical MaxEnt probability distribution function (PDF), associated to Boltzmann-

Gibbs-Shannon’s logarithmic entropy, is given by [7, 8]

f(MaxEnt) = f(x) = exp

{

−

[

Ω +
M
∑

i=1

λiAi(x)

]}

, (33)

with [7, 8]

Ω(λ1, . . . , λM) = ln

{

∫

dx

[

exp

(

−
M
∑

i=1

λiAi(x)

)]}

≡ −λo, (34)

∂Ω(λ1, . . . , λM)

∂λj
= −〈Aj〉, (j = 1, . . . ,M), (35)

and

S = Ω +
M
∑

i=1

λi 〈Ai〉, (36)

entailing

dS =
M
∑

i=1

λi d〈Ai〉. (37)

The Euler theorem holds [8]
∂S

∂λi
=
∑

k

λk
∂〈Ak〉

∂λi
, (38)

and, using (36), one arrives to

dS =
M
∑

i=1

λi d〈Ai〉 =⇒
∂S

∂〈Ai〉
= λi

S = S(〈A1〉, . . . , 〈AM〉). (39)

Effecting now the Legendre transform

Ω = Ω(λ1, . . . , λM) = S −
M
∑

i=1

λi 〈Ai〉, (40)

one immediately ascertains that reciprocity holds, namely,

∂S

∂〈Aj〉
= λj and

∂Ω

∂λj
= −〈Aj〉; j = 1, . . . ,M, (41)
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where the second set of equations, together with (34), yield the Lagrange multipliers as a

function of the input information regarding expectation values [8]. The reciprocity relations

(38) + (41) are a manifestation of the Legendre-transform structure of thermodynamics

[1, 9] and its most salient structural mathematical feature.
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