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ABSTRACT

Microbial symbionts form abundant and diverse components of marine sponge
holobionts, yet the ecological and evolutionary factors that dictate their community
structure are unresolved. Here, we characterized the microbial symbiont communities of
3 sympatric host species in the genus Ircinia from the NW Mediterranean Sea, using
electron microscopy and replicated 16S rRNA gene sequence clone libraries. All Ircinia
host species harbored abundant and phylogenetically diverse symbiont consortia,
comprised primarily of sequences related to other sponge-derived microbes. Community-
level analyses of microbial symbionts revealed host species-specific genetic
differentiation and structuring of Ircinia-associated microbiota. Phylogenetic analyses of
host sponges showed a close evolutionary relationship between /. fasciculata and 1.
variabilis, the 2 host species exhibiting the most similar symbiont communities. In
addition, several symbiont OTUs were exclusive to . variabilis and 1. oros, the 2 host
species inhabiting semi-sciophilous communities in more cryptic benthic habitats. The
generalist nature of individual symbionts and host-specific structure of entire
communities suggest that: 1) a “specific mix of generalists” framework applies to
microbial symbionts in Ircinia hosts, and 2) factors specific to each host species
contribute to the distinct symbiont mix observed in Ircinia hosts, including habitat-

specific conditions (e.g., irradiance and competition) and host evolutionary relatedness.
INTRODUCTION

Sponges are sessile, filter-feeding invertebrates that inhabit diverse marine

ecosystems and host remarkable microbial symbiont populations (Taylor et al., 2007;
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Webster & Taylor, 2011), in some hosts accounting for up to 35% of sponge biomass
(Vacelet et al., 1975) and consisting of hundreds to thousands of symbiont taxa (Webster
et al., 2010; Lee et al., 2011). These diverse symbiont communities may enhance sponge
holobiont metabolism through non-metazoan processes, including photosynthesis (Erwin
& Thacker, 2008), nitrification (Lopez-Legentil et al., 2010b) and sulfate reduction
(Hoffmann et al., 2005), and can produce defensive secondary metabolites (Flatt et al.,
2005) that decrease the susceptibility of host sponges to predation and fouling (Paul &
Ritson-Williams, 2008). In turn, sponge-associated microbes may benefit from the unique
microenvironment within host tissues, potentially nourished by the ammonia-rich end
products of animal metabolism and protected from open-ocean grazing pressures.
Although empirical evidence for symbiont benefit is scarce (Taylor et al., 2007), the high
biodiversity of sponge-associated microbes and their exclusivity to host sponges suggest
these niche habitats are fertile grounds for the evolutionary diversification of marine
microorganisms. To date, few host sponges have been investigated for microbial
symbionts and future research in sponge microbiology will further reveal the impact of
these symbioses on the ecological success of host sponges and the global biodiversity of
marine microorganisms (Taylor et al., 2004).

The study of sponge microbiology has benefited greatly from the application of
modern DNA sequencing technology, allowing for greater access to elusive symbiont
communities via culture-independent characterization and revealing striking trends in the
distribution and specificity of microbial symbionts. Perhaps most prominent is molecular
evidence for sponge-specific microbial lineages, distinct clusters of sponge-derived

sequences that represent major components of sponge-associated microbial communities
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but are absent, or found in extremely low abundances (i.e., rare biosphere; Webster et al.,
2010; Lee et al., 2011), in ambient bacterioplankton (Taylor et al., 2007). While specific
to host sponge microenvironments, these symbiont lineages often exhibit a generalist
distribution among sponge hosts, occurring in taxonomically distinct hosts from distant
geographic regions (Olson & McCarthy, 2005; Hill et al., 2006; Sipkema et al., 2009) and
prompting early hypotheses on uniform microbial communities in marine sponges
(Hentschel et al., 2002). Typically, sponge-specific clades are common in high-microbial-
abundance (HMA) sponge hosts and absent in low-microbial-abundance (LMA) sponge
hosts (Hentschel et al., 2006; Weisz et al., 2007; Schmitt et al., 2011), where symbiont
communities are less diverse and contain more specialized (host species- or genus-
specific) microbes (Gernert et al., 2005; Holmes & Blanch, 2007; Schmitt et al., 2008).
An additional benefit of sequence-based approaches to characterize the sponge
microbiota is the accessibility of individual datasets and cumulative databases for
comparative studies and meta-analyses. A comprehensive review of sponge-derived 16S
rRNA gene sequences revealed that nearly one-third (32%) of all symbiont sequences
were associated with sponge-specific phylogenetic clades (Taylor et al., 2007).

From a host perspective, the composition and structure of microbial symbiont
communities have been reported as species-specific, despite the presence of sponge-
specific clusters within these communities (Webster et al., 2010; Lee et al., 2011). The
apparent conflict of distinct, host-specific symbiont communities that consist of shared,
sponge-specific symbiont lineages is explained by: 1) the selective presence (and relative
abundance) of putatively cosmopolitan symbionts among host sponges, and 2) the high

genetic diversity within sponge-specific sequence clusters. Indeed, the widespread
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distribution of many sponge symbionts does not imply these symbionts are a ubiquitous
component of all HMA sponge hosts. For example, symbionts from the sponge-specific
cluster SC8 (Chloroflexi) exhibit an inter-ocean distribution, recovered from a Great
Barrier Reef sponge (Rhopaloeides odorabile; Webster et al., 2001b) and two Bahamian
sponges (Agelas digitata and Plakortis sp.; Taylor et al., 2007), and yet are absent in the
HMA sponge Ircinia ramosa collected at the same depth and habitat (within 100 m?) as
R. odorabile (Webster et al., 2010). Further, the definition of a sponge-specific symbiont
lineage does not require a sequence identity minimum to delineate sequence clusters
(Hentschel et al., 2002). Thus, the high genetic diversity exhibited within these microbial
sequence clusters, in some cases exceeding 20% sequence divergence, can encompass
multiple microbial OTUs from the species to the family level.

The factors that drive the observed differences in symbiont communities among
host sponge species are not fully resolved, with previous reports suggesting a role for
both environmental and host-specific factors. Multiple environmental factors have been
hypothesized to influence microbial symbiont composition in marine sponges, including
abiotic (temperature, nutrient levels, heavy metals) and biotic (competition, predation,
disease) factors (Webster et al., 2001a; Mohamed et al., 2008b; Webster et al., 2008a;
Webster et al., 2008b; Anderson et al., 2010; Turque et al., 2010; Angermeier et al.,
2011; Webster et al., 2011); however, several studies have shown that different host
species from the same habitat harbor distinct symbiont communities (Lee et al., 2009b;
Radwan et al, 2010), including the first 2 studies applying pyrosequencing technology to
the characterization of sponge-associated microorganisms (Webster et al., 2010; Lee et

al., 2011). Together, these results indicate that environmental conditions may influence

ScholarOne Supp%rt 1-434/964-4100

Erwin PM, Lopez-Legentil S, Gonzalez-Pech R, Turon X (2012) A specific mix of generalists: Bacterial symbionts in Mediterranean Ircinia spp.

FEMS Microbiol Ecol 79: 619-637



O©oOoONOOPAWN =

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

FEMS Microbiology Ecology Page 6 of 55

Pre-Peer Review Manuscript Submitted to FEMS Microbiology Ecology, Blackwell Publishing
The definitive version is available at http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6941.2011.01243.x/abstract

symbiont community structure in some host sponges, yet environmental factors alone are
not sufficient to fully explain the observed patterns of symbiont community structure.
Host-specific factors may also affect the composition of microbial symbiont in marine
sponges, although few studies have targeted congeneric hosts from the same habitat (Lee
et al., 2009b) or utilized molecular techniques to resolve host sponge phylogenies
(Erpenbeck et al., 2002; Thacker & Starnes, 2003; Thacker et al. 2007; Sipkema et al.,
2009).

To investigate the structuring and specificity of microbial symbionts in closely
related HMA host sponges, we studied 3 sympatric species in the genus Ircinia from the
Mediterranean Sea. The genus [rcinia is a chemically diverse and symbiont rich sponge
taxon that exhibits high species richness, occurring in shallow to deep-water habitats of
tropical and temperate marine environments. The chemical diversity of Ircinia spp.
includes diverse terpenoid compounds, most commonly sesterterpenoids (Cafieri et al.,
1972; Liu et al., 2006). These secondary metabolites have been shown to exhibit both
ecological functioning (e.g., anti-predatory activity; Pawlik et al., 2002) and biological
activity (e.g., anti-tumor cytotoxicity; Choi et al., 2004). The microbial diversity of
Ircinia spp. is consistent with other HMA host sponges, composed largely of sponge-
specific sequences from Acidobacteria, Actinobacteria, Chloroflexi, Nitrospira,
Poribacteria and Proteobacteria (Schmitt et al., 2007; Schmitt et al., 2008; Mohamed et
al., 2008a, Mohamed et al., 2008b, Mohamed et al., 2010; Webster et al., 2010; Yang et
al., 2011). These studies have focused on the microbiota in Caribbean and Indo-Pacific

host species, whereas the molecular diversity of microbial symbionts in Mediterranean
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Ircinia hosts has been addressed by a single study that focused specifically on
cyanobacteria (Usher et al., 2004).

In this study, we characterized the microbial communities in the common
Mediterranean species, Ircinia fasciculata, I. variabilis and I. oros, using 16S rRNA gene
sequence clone libraries and compared the richness, diversity, structure and specificity of
symbiont communities among these congeneric and sympatric hosts. Phylogenetic
analyses were conducted to compare symbionts in Mediterranean Ircinia spp. with
previously described sponge-associated microbes, including sequences derived from
Caribbean /rcinia spp. In addition, we resolved the phylogenetic relationships among the
3 host sponges using ribosomal and mitochondrial DNA markers, thus allowing for the

determination of symbiont specificity within a well-defined host phylogenetic context.

MATERIAL AND METHODS

Sample Collection

The marine sponges Ircinia fasciculata (PALLAS 1766; Fig. 1a), I. variabilis
(ScHMIDT, 1862; Fig. 1b) and 1. oros (SCHMIDT, 1864; Fig. 1c) were collected from
shallow (< 20 m) littoral zones at 3 neighboring sites (< 12 km apart) along the Catalan
Coast (Spain) in the northwestern Mediterranean Sea. I. fasciculata colonies were
sampled at Punta de S’Agulla (Blanes; 41° 40’ 54.87” N, 2° 49’ 00.01” E), 1. variabilis at
Mar Menuda (Tossa de Mar; 41°43° 13.62” N, 2° 56’ 26.90” E) and 1. oros at Punta
Santa Anna (Blanes; 41° 40’ 21.48” N, 2° 48’ 13.55” E) by SCUBA during 3 consecutive
days in March 2010. At each site, ambient seawater samples (500 ml) were collected

simultaneously and in close proximity (< 1 m) to sampled sponges. Sponge and seawater
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samples were transported in an insulated cooler to the laboratory (ca. 2 hrs. transit time),
where sponge samples were preserved in 100% ethanol and stored at -20 °C and seawater

samples were concentrated on 0.2 pum filters and stored at -80 °C.

Transmission Electron Microscopy (TEM)

To visualize the microbial diversity present in 1. variabilis, 1. fasciculata and 1.
oros, small ectosomal and choanosomal tissue pieces (ca. 4 mm’) were dissected and
fixed in a solution of 2.5% glutaraldehyde and 2% paraformaldehyde, buffered with
filtered seawater. Samples were incubated in the fixative mixture overnight at 4°C and
subsequently rinsed with filtered seawater to remove fixative, then dehydrated in a
graded ethanol series and embedded in Spurr resin at room temperature. A Reichert
Ultracut microtome was used to produce ultra-thin sections (ca. 60 nm) that were
contrasted with uranyl acetate and lead citrate for ultrastructural observation (Reynolds,
1963). TEM observations were performed at the Microscopy Unit of the Scientific and
Technical Services of the University of Barcelona on a JEOL JEM-1010 (Tokyo, Japan)

coupled with a Bioscan 972 camera (Gatan, Germany).

DNA Extraction

Metagenomic DNA extracts were prepared separately for 3 individuals of each
host sponge species (including ectosomal and choanosomal tissue) and 3 samples of
concentrated seawater (1 from each collection site) using the DNeasy® Blood & Tissue
Kit (Qiagen®). Full-strength and 1:10 diluted DNA extracts were used as templates in

PCR amplifications.
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16S rRNA Gene Sequence Clone Libraries

The universal bacterial forward primer 8F (5’-AGA GTT TGA TCA TGG CTC
AG-3")(Reysenbach et al., 1994) and reverse primer 1509R (5’-GGT TAC CTT GTT
ACG ACT T-3")(Martinez-Murcia et al., 1995) were used to amplify approximately
1,500 bp fragments of bacterial 16S rRNA gene sequences from all sponge and seawater
extracts. Total PCR reaction volume was 50 pl, including 10 pmol of each primer, 10
nmol of each ANTP, 1X Reaction Buffer (Ecogen) and 5 units of BIOTAQ™ polymerase
(Ecogen). Thermocycler reaction conditions were an initial denaturing time of 2 min at
94°C, followed by 30 cycles of 1 min at 94°C, 0.5 min at 50°C, and 1.5 min at 72°C, and a
final extension time of 2 min at 72°C. To minimize PCR amplification biases, a low
annealing temperature and low cycle number were used and 3 separate reactions were
conducted for each sample. PCR amplification products were gel-purified and cleaned
using the QIAquick Gel Extraction Kit (Qiagen®). Triplicate PCR products were
combined and quantified using a Qubit™ fluorometer and Quant-iT™ dsDNA Assay Kit
(Invitrogen™). Purified PCR products (25 ng) were ligated into plasmids using the
pGEM®-T Vector System (Promega).

Individual clones were PCR-screened using vector primers and clones with
approximately 1,500 bp inserts were purified and sequenced at Macrogen Inc. A single
sequencing reaction was performed for all clones to recover the 5’-end of 16S rRNA gene
sequences using the primer 800R (5’-TAC CAG GGT ATC TAA TCC-3’). Ambiguities
on sequencing reaction ends were excluded by trimming sequences at the 5’-end to the

highly conserved E. coli site 54 and at the 3’-end to E. coli site 754, yielding sequences
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ranging from 613 to 725 bp (average length = 683 bp) that were used for diversity
calculations and phylogenetic metrics. In addition, bi-directional sequencing reactions
with vector primers were performed to recover near full-length 16S rRNA gene
sequences (range = 1,423 to 1,523 bp; average = 1,491 bp) of representative clones (n =
39) for phylogenetic analyses. Representative clones consisted of bacterial OTUs that
were either: 1) ‘common’ — occurring at least twice in clone libraries, or 2) “‘unique’—
exhibiting greater than 5% sequence divergence from any known sequence. Raw
sequence data were processed in Geneious (Drummond et al., 2010) and low quality
sequencing reads were discarded. Sequences were screened for sequencing anomalies
(e.g., chimeras) using Mallard (Ashelford et al., 2006) and a reference 16S rRNA gene
sequence from E. coli (GenBank accession no. U00096). Putative sequence anomalies
were subsequently confirmed or refuted using Pintail (Ashelford et al., 2005) and two
related reference 16S rRNA gene sequences. All confirmed chimeras were removed from
the dataset. High quality sequences are archived in GenBank under accession nos.

JN655200-JN655511.

Operational Taxonomic Unit (OTU) Assignment and Composition

Clone library sequences were ascribed to OTUs calculated at different sequence
identity percentages (99%, 97%, 95%, 90%, 85% and 80%) using the nearest neighbor
algorithm, as implemented in the mothur software package (Schloss et al., 2009). The
observed OTU richness (Sqps) for each microbial community was compared across
different OTU thresholds, calculated as total (combined sequence data by source) and

average values (separated sequence data by samples). All subsequent OTU-based metrics
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were conducted using an OTU classification at 99% sequence identity. Representative
sequences from each 99% OTU were analyzed by using a nucleotide-nucleotide BLAST
search (Altschul et al., 1990) to find the most closely related sequence, and by using the
Ribosomal Database Project II (Cole et al., 2007) sequence classifier to assess taxonomic

affiliations.

Microbial Community Diversity

The diversity of recovered bacterial communities in /rcinia spp. and ambient
seawater were compared using multiple metrics for OTU richness, dominance and
evenness, calculated in the mothur software package. Richness calculations included
observed species richness (99% OTUs), rarefaction analysis and expected species
richness using the Chaol estimator (Schao1) to determine both the sampled diversity and
total expected diversity of bacterial communities. In addition, the effect of increase
sequencing effort on OTU richness was estimated using the Boneh calculation (Boneh et
al., 1998). Dominance metrics included Simpson’s inverse index (1/D) and the Berger-
Parker index (d), the former a reciprocal version of Simpson’s heterogeneity index (D =
> pi*, where p; is the proportion of individuals in species i) interpretable as the number of
equally common species that would produce the observed heterogeneity, and the latter a
simple metric that calculates the relative abundance of the most dominant OTU.
Evenness calculations included the Simpson’s evenness measure (£,p), based on
Simpson’s inverse index (1/D), and Smith & Wilson’s evenness index (Evar). Both
indices provide an evenness measure independent of species richness that ranges 0 to 1;

however, E|,p places equal weight on both common and rare taxa, while with Evar
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common species received higher weighting (i.e., greater influence on the evenness
measure) than rare species.

Genetic diversity of symbiont communities was compared among host species
and seawater sources using nonparametric tests for homogeneity of molecular variance
(HOMOVA) and an analysis of molecular variance (AMOVA; Stewart & Excoffier,
1996). These tests provide OTU-independent assessments of genetic variation and
differentiation within and among bacterial communities inhabiting Ircinia spp. and
seawater. HOMOVA tests whether the genetic variation observed within each population
(i.e., bacterial community) differs among sources (i.e., host sponge species or seawater),
thus providing a comparative measure of genetic diversity within each population.
AMOVA tests whether the genetic diversity observed within each population differs from
the total genetic diversity resulting from pooling the populations, thus providing a
comparative measure of genetic differentiation among populations. Distances were
calculated for AMOVA using the Tajima and Nei algorithm with oo = 0.05. Using the
Arlequin software package, version 3.5 (Excoffier & Lischer, 2010), a hierarchical
partitioning of genetic variation was assessed across different levels (among sources,
among replicates within sources and among sequences within each replicate) and
pairwise variation among sources was computed as Fsr, with statistical significance based
on 1000 permutations. Distributions of unique lineages among bacterial communities
were examined using a phylogenetic lineage-sorting test (P-test; Martin, 2002), also

referred to as the parsimony test (Schloss, 2008).

Microbial Community Structure & Similarity
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To determine the distribution of bacterial OTUs within each community, OTU
rank-abundance plots were constructed and compared to a fitted log series and geometric
series distributions by calculating the Kolmogorov-Smirnov test statistic (Dax). The
significance of Dy,x statistics were determined by comparison to critical values calculated
at a=0.05 and 0.01. Community similarity among sources was calculated as Bray-Curtis
similarity values and visualized in complete linkage similarity dendrograms using
PRIMER v6 (Plymouth Marine Laboraroty, UK) computer software. Finally, the integral
form of LIBSHUFF ([-LIBSCHUFF; Schloss et al., 2004) was used to test pairwise
differences in microbial communities from each source. |-LIBSHUFF analysis was
chosen because it represents a relatively ‘generic’ test of differences between microbial
communities, based on both membership and structure (Schloss, 2008). [-LIBSHUFF
analyses were implemented in the mothur software package, with significance values
determined by 100,000 randomizations and adjusted using Bonferroni corrections to
maintain an experiment-wise critical value of 0.05 across multiple pairwise comparisons

(Sokal & Rohlf, 1995).

Phylogenetic analysis

Phylogenetic analyses of 16S rRNA gene sequences were conducted to determine
the affiliations between sequences recovered from Ircinia spp. herein and previously
characterized sponge symbionts. In particular, sequences from recent studies
characterizing sponge-associated bacterial communities in /rcinia species from the
Caribbean were targeted. Publicly available datasets for /. felix (Schmitt et al., 2007;

Schmitt et al., 2008) and 1. strobilina (Mohamed et al., 2008b; Yang et al., 2011) were
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retrieved from GenBank and grouped into 99% OTUs, following the methods employed
for the clone libraries herein. Representative sequences from each OTU for 1. felix (n =
102) and 1. strobilina (n = 156), top matching sequences from BLAST searches (n =
189), and near full-length 16S clones (n = 39) and partial 16S clones (n = 87) from this
study were aligned to the greengenes reference database (DeSantis et al., 2006) using the
mothur software package, with an outgroup sequence from Archaea (Haloarcula
vallismortis, GenBank accession no. D50581). Maximum likelihood phylogenetic trees
were constructed in RAXML (Stamatakis et al., 2005) using the General Time Reversible
model with a gamma distribution of variable substitution rates among sites (GTR+G).
Data were resampled using 100 bootstrap replicates and a thorough ML search was
conducted to optimize the topology and recover the best-scoring tree. Due to the variable
length of 16S rRNA gene sequences being compared (422 to 1,526 bp), a binary
backbone constraint tree was constructed from long (>1,000 bp) sequences and used to
restrict topology changes when introducing short (<1,000 bp) sequences into the
phylogeny. This method allowed for: 1) accurate reconstruction of deeper nodes, based
on the most informative sequences, and 2) precise placement of short 16S gene sequence
fragments near terminal nodes, for comparative analysis with previous Ircinia sp. datasets

(e.g., excised and sequenced DGGE bands; Schmitt et al., 2007).

Molecular Identification of Host Sponges

Sponge samples were identified to species using morphological observations,
including gross morphology and fiber characteristics. In addition, ribosomal and

mitochondrial molecular markers were used to objectively test morphological
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characterizations, as some controversy surrounds the taxonomic status of Ircinia
fasciculata and I. variabilis (Pronzato et al., 2004) and these species exhibit high
phenotypic plasticity that can confound their identification in the field (Maldonado et al.,
2010). A segment of nuclear ribosomal DNA corresponding to the 3’-end of the 5.8S
subunit, the entire second internal transcribed spacer (ITS-2) region and the 5’-end of the
28S subunit were PCR-amplified following the methods of Erwin & Thacker (2007). A
segment of mitochondrial DNA corresponding to the cytochrome oxidase subunit I (COI)
was PCR-amplified using a degenerated version of the universal barcoding forward
primer dgLCO1490 (5’-GGT CAA CAA ATC ATA AAG AYA TYG G-3’)(Meyer et al.,
2005) and the reverse primer COX1-R1 (5’-AAT ACT GCT TTT TTT GAT CCT GCC
GG-3). This primer combination yielded a segment of mtDNA encompassing both the
standard barcoding fragment (i.e., “Folmer” partition)(Folmer et al., 1994, Herbert et al.,
2003) and the I3-M11 partition (Erpenbeck et al., 2006), which spans the internal loop 3
to the transmembrane domain 11. The resulting PCR amplification products were gel-
purified and cleaned using the QIAquick Gel Extraction Kit (Qiagen®) and ligated into
plasmids using the pPGEM®-T Vector System (Promega). Individual clones were PCR-
screened using vector primers, purified and sequenced at Macrogen Inc. Bi-directional
sequencing reactions were performed for all clones using vector primers to recover the
entire cloned amplicons. Raw sequence data were processed in Geneious and low quality
sequencing reads were discarded. High quality sequences are archived in GenBank under
accession nos. JN655171-JN655199.

For COI fragments, 2 to 4 clones were recovered per sponge individual (5 to 9

clones per species) and used to construct consensus sequences. For rDNA fragments, 2 to
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3 clones were recovered per sponge individual (6 to 8 clones per species) and consensus
sequences were processed separately for each clone, due to the potential for intragenomic
variation among the multiple ITS-2 copies in tandemly repeated rDNA clusters
(Worheide et al., 2004). Consensus sequences for IDNA fragments were aligned using
MAFFT (Katoh et al., 2002) with outgroup sequences from Smenospongia aurea
(Dictyoceratida; Thorectidae)(Erwin & Thacker, 2007). Alignment of consensus COI
sequences was unequivocal, due to the protein coding nature of these sequences, and
included the congeneric Caribbean species /. strobilina (GenBank accession no.
GQ337013; Erpenbeck et al. 2009) and the outgroup species Hippospongia lachne
(Dictyoceratida; Spongiidae)(EU237484; Lavrov et al., 2008). Pairwise genetic distance
matrices (uncorrected p-distance) were constructed using the software package mothur.
For rtDNA fragments, maximum likelihood (ML) phylogenies were constructed using
PHYML (Guidon & Gascuel, 2003) and the Hasegawa-Kishino-Yano model with a
gamma distribution of variable substitution rates among sites (HKY+GQ), as suggested by
FINDMODEL (http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html)
based on the Akaike information criterion; data were resampled using 100 bootstrap
replicates. Neighbor-Joining trees were constructed using Geneious and the HKY model

of nucleotide substitution; data were resampled using 1000 bootstrap replicates.

RESULTS

Transmission Electron Microscopy

Electron microscopy observations of host sponge tissue revealed a high density of

bacterial cells (Fig. 1). Characteristic of high-microbial-abundance (HMA) sponges,

ScholarOne Sup%grt 1-434/964-4100

Erwin PM, Lopez-Legentil S, Gonzalez-Pech R, Turon X (2012) A specific mix of generalists: Bacterial symbionts in Mediterranean Ircinia spp.

FEMS Microbiol Ecol 79: 619-637



Page 17 of 55

366
367

368

O©oOoONOOPAWN =

369
13 370
15 371
18 372
20 373
22 374
o5 375
27 376
29 377
32 378
34 379
380
39 381
41 382
44 383
46 384
48 385
51 386
53 387

55 388

FEMS Microbiology Ecology

Pre-Peer Review Manuscript Submitted to FEMS Microbiology Ecology, Blackwell Publishing
The definitive version is available at http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6941.2011.01243.x/abstract

examined sections were comprised primarily of bacterial cells, with only occasional
sponge cells (archeocytes) and structural elements (spongin and collagen fibers). In /.
fasciculata and 1. variabilis, ectosomal (peripheral) tissue sections revealed dense
populations of “Candidatus Synechococcus spongiarum” identifiable by their
characteristic spiral thylakoid membranes encompassing the perimeter of the cells. S.
spongiarum cells dominated the ectosomal regions of host tissue and were observed to be
actively dividing, exhibiting several stages of binary fission (Fig. 1d,e). In /. oros, no S.
spongiarum symbionts or other cyanobacterial cells were observed in ectosomal tissue,
rather a high density of heterotrophic bacteria occurred consisting of multiple bacterial
morphotypes, some of which were also showing active cell division (Fig. 1g). Sections
from deeper tissue regions (choanosome) of 1. variabilis revealed the absence of S.
spongiarum cells and the proliferation of heterotrophic bacteria cells, many with similar

morphotypes to those observed in 1. oros ectosomal tissue (Fig. 11).

Microbial Community OTUs and Coverage

Bacterial 16S rRNA gene sequences recovered from 1. fasciculata (n =177), L
variabilis (n = 80), I. oros (n = 82) and ambient seawater (n = 73) grouped into 124
OTUs, defined by 99% or greater sequence similarity. Grouping sequences according to
lower identity thresholds reduced the number of OTUs within each source community;
however, the same trend in comparative OTU richness among communities was observed
(Fig. S1). Coverage estimates revealed that sampled sponge-associated bacterial
communities represented the majority of expected diversity (76.3% in 1. variabilis, 80.5%

in I. fasciculata, 81.7% in 1. oros) and doubling the sampling effort conducted herein
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were predicted to produce few (5 to 6) new OTUs. In contrast, recovered seawater
bacterial communities represented less than half (43.8%) of the total expected diversity
and doubling the sampling effort was predicted to produce 12 new OTUs, indicating
more extensive sampling is required to fully characterize bacterioplankton diversity.
Similarly, rarefaction analyses showed the sponge-associated bacterial communities
beginning to reach OTU saturation, whereas seawater bacterial communities continued to

rapidly accumulate new OTUs (Fig. S2).

Microbial Community Composition

Sponge-associated microbial communities exhibited high diversity and were
comprised of 9 phyla, including representatives from 4 classes of Proteobacteria (Alpha-,
Beta-, Gamma- and Deltaproteobacteria; Table 1). Sequences affiliated with
Proteobacteria and Bacteroidetes were recovered from all 3 Ircinia host species and
seawater, whereas Acidobacteria, Nitrospira, Chloroflexi and Gemmatimonadetes were
exclusively found in Ircinia-associated communities. Within the sponge-associated
microbiota, Deltaproteobacteria-affiliated sequences comprised an abundant component
of microbial communities in all 3 host species (>15% total clones), although phylum-
level differentiation of symbiont communities among hosts was apparent, with a high
relative abundance of Cyanobacteria in I. fasciculata, Nitrospira in I. variabilis and
Acidobacteria in I. oros (Table 1). Ambient seawater microbes represented 10 phyla and
included 4 phyla not detected in sponge-associated communities (Chlorophyta,

Firmicutes, Planctomycetes and Verrucomicrobia; Table 1).
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The vast majority of 16S rRNA gene sequences recovered from /. fasciculata
(87.0%), 1. variabilis (85.0%) and 1. oros (81.0%) matched most closely to other sponge-
derived bacterial sequences, generally at high sequence identity levels (> 97%; Fig. 2).
Sequences from Ircinia spp. not associated with sponge-derived clones were most
commonly matched to sequences from marine sediment (n = 19), corals (n = 4) and
seawater (n = 3). Most sequences obtained from ambient seawater bacteria (98.6%) were
closely related to sequence from other bacterioplankton sources, with nearly all
sequences (90.3%) matching at very high sequence identity levels (> 99%; Fig. 2). In
fact, only 3 sequences from seawater clone libraries did not exhibit a top match to another
bacterioplankton clone, with 2 matching to coral-associated bacteria and 1 to a bacterium

from a sulfate-reducing bioreactor.

Microbial Community Diversity

Seawater bacterioplankton communities were clearly differentiated from the
sponge-associated bacterial communities, exhibiting higher OTU richness (observed and
expected), lower dominance indices and higher evenness indices (Table 2). The most
dominant OTU is the seawater community accounted for 8.0% of the total community
and singleton OTUs (n = 41) accounted for over 80% of all OTUs. In fact, only 5 OTUs,
(9.4%) were recovered more than twice in seawater clone libraries.

Among the 3 host sponges, bacterial communities in /. variabilis and I. oros
exhibited very similar richness and evenness values (Table 2), suggesting a similar
diversity of symbionts among these host species. Dominant OTUs in /. variabilis and 1.

oros accounted for 15% of each community, with the top 3 most abundant OTUs
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accounting for one-third of the total community. Approximately half of the OTUs
recovered from I. variabilis (n =19, 55.9%) and 1. oros (n =15, 45.5%) were singletons.
By comparison, the bacterial community in 1. fasciculata exhibited lower OTU richness
and a less even (more dominant) community structure (Table 2), driven by a single OTU
(corresponding to the cyanobacterium Synechococcus spongiarum) that accounted for
over one-fourth of all recovered clones. The top 3 bacterial OTUs accounted for nearly
half (48.1%) of all recovered clones and singleton OTUs were common (n = 15, 51.7%).
Notably, although 1. fasciculata hosted a comparatively less diverse community,
overlapping confidence intervals for index values were observed among all /rcinia hosts
(Table 2), indicating similar symbiont diversity across the 3 host species.

Genetic diversity analyses revealed similar trends to OTU-based metrics (Table
3). Microbial communities in seawater exhibited significantly higher genetic variation
compared to those in Ircinia sponges (HOMOVA, P < 0.005), indicating higher genetic
diversity in the bacterioplankton communities. No significant differences in genetic
variation among communities were observed in pairwise comparisons of host sponge
species (HOMOVA, P > 0.237), indicating similar levels of genetic diversity in Ircinia-
associated bacterial communities. AMOVA revealed significant genetic differentiation
among all 4 sources (P < 0.001), which accounted for the majority (62.1%) of genetic
variation, and among replicates within each source (P < 0.001), which accounted for the
remaining genetic variation (37.9%). Further, distinct phylogenetic lineages of symbionts
(P-test, P <0.001) were observed among all pairwise comparisons between source

communities (Table 3).
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457  Microbial Community Structure and Similarity

458 In addition to differences in diversity between bacterioplankton and sponge-

459  associated communities, minimal overlap in OTU composition was observed between

O©oOoONOOPAWN =

460  seawater and sponge-derived sequences. Of the 124 bacterial OTUs recovered, only 2
13 461  OTUs were shared between sponges and seawater (Fig. 3), both in 1. variabilis, and

15 462  accounted for a small portion of the total . variabilis (2.5%) and seawater (5.3%) clone
18 463  libraries. Comparisons among the sponge-associated bacterial communities revealed

20 464  varying levels of OTU overlap and host-specificity (Fig. 3). Four bacterial OTUs were
22 465 recovered from all 3 host sponge species and represented dominant symbionts,

o5 466  accounting for nearly one-fourth of all clones from each host library (23.4% in 1.

27 467  fasciculata, 27.5% in I. variabilis, and 23.2% in 1. oros). An additional 7 OTUs were

29 468  shared between I. fasciculata and 1. variabilis, accounting for an additional 40.3% and
32 469  31.3% of each library, respectively, and 6 OTUs were shared between /1. variabilis and L.
34 470  oros, accounting for 15.0% and 32.9% of each library, respectively. No additional

37 471  microbial OTUs were shared between /. fasciculata and I. oros. Finally, the majority of
39 472  OTUs recovered for each host species’ community consisted of specific symbionts (i.e.,
41 473  recovered from a single host species)(n = 18 in I. fasciculata, n =15 in I. variabilis, n

44 474 =23 in I oros) and represented rare OTUs, commonly appearing only once (65.5% of
46 475  specific OTUs) or twice (25.5%) in clone libraries. Rank-abundance analyses showed

48 476  that the presence of few, dominant OTUs and numerous, rare OTUs were consistent with
51 477  alog-series distribution of OTUs within each clone library (Dp.x, P > 0.05), and differed

53 478  significantly from a geometric distribution (Dpx, P < 0.01).
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Consistent with patterns of symbiont OTU overlap among host sponges, overall
bacterial community similarity values were lowest between /. fasciculata and I. oros
(16.7%) and the symbionts in these two hosts differed significantly in community
structure (LIBSHUFF, P < 0.001; Table 3). The microbiota in /. variabilis exhibited
higher similarity to /. fasciculata symbiont communities (36.6%), where no significant
difference in symbiont structure were detected (P > 0.639; Table 3), than to microbial
symbionts in /. oros (31.1%), where significant differences in community structure were

detected (P < 0.05; Table 3).

Phylogenetic analysis

Phylogenetic analysis revealed that sequences recovered from the 1. fasciculata, I.
variabilis and I. oros formed 56 monophyletic sequence clusters (Fig. 4). Nearly half
(48.2%) of these clusters were comprised exclusively of sponge-associated bacterial
sequences, with an additional 11 clusters (19.6%) consisting of sponge and coral-
associated clones. The remaining 18 clades (32.1%) contained non-symbiotic
representatives, most commonly derived from sediment (rz = 8) and seawater
bacterioplankton (n = 5). Previously described bacterial sequences from Caribbean
Ircinia spp. were present in 21 of the 56 clades (37.5%), with 1. felix from Florida (n =
16) and /. strobilina from the Bahamas (» = 12) more commonly presenting related
symbionts than /. strobilina from Florida (n = 3). Only 1 of the 56 clades (1.8%) was
comprised of sequences exclusively from Ircinia spp. (Fig. 4c). Notably, symbiont
sequences from the unrelated host sponge species Aplysina aerophoba (Order Verongida)

from the Mediterranean, Ancorina alata (Order Astrophorida) from New Zealand,
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Rhopaloeides odorabile (Order Dictyocertida, Family Spongiidae) from Australia and
Xestospongia muta (Order Haplosclerida) from the Caribbean were also prevalent in
these 56 clusters (32.1%, 19.6%, 14.3% and 10.7% of clusters, respectively; Fig. 4).
Phylogenetic analysis was also used to compare the host-specificity of bacteria
observed among the 3 Ircinia spp. with host-specificity on a broader scale. The 4
common bacterial OTUs (i.e., generalist symbionts) present in all 3 Mediterranean [rcinia
spp. were related to sequences derived from unrelated host sponge species, non-sponge
(coral) hosts and environmental (sediment) clones (Fig. 4). These generalist symbionts
corresponded to 1 Deltaproteobacterium (IRC001) and 3 Gammaproteobacteria
(IRC006, IRC012 and IRC019), with only IRC006 forming a sequence cluster comprised
exclusively of sponge-derived clones. The remaining generalist symbiont OTUs formed
sequence clusters with not only sponge-derived clones, but also coral-derived (IRC001)
and sediment-derived (IRC012 and IRCO016) bacteria. Further, even the bacterial OTUs
identified as specific to a single species of Ircinia in the clone libraries constructed herein
(Fig. 3) were closely related to sequences derived from unrelated sponge hosts and
environmental samples (Fig. 4), suggesting a more generalist distribution of these

symbionts.

Molecular Identification of Host Sponges

Consensus COI sequences from 1. fasciculata (n = 3) and I. variabilis (n = 3) and
L. oros (n = 2) individuals yielded a 1,213 bp fragment encompassing the standard
barcoding region (“Folmer” partition; 676 bp) and the [3-M11 region (537 bp). No intra-

specific variation was observed among host species and /. fasciculata and I. variabilis
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exhibited identical sequences across the entire fragment length (Table 4). I. oros was
clearly differentiated from /. fasciculata and I. variabilis, exhibiting 1.8% sequence
divergence across the entire fragment with higher variability observed in the Folmer
partition (Table 4). Interestingly, I. fasciculata and 1. variabilis sequences were more
closely related to the Caribbean species /. strobilina (0.6% divergence) than the
sympatric Mediterranean species 1. oros (1.8% divergence). The outgroup species
Hippospongia lachne, representing a different family in the order Dictyoceratida,
exhibited 4.2 to 4.6% sequence from Ircinia spp (Table 4).

Consensus rDNA sequences from 1. fasciculata (n = 6), 1. variabilis (n =7) and I.
oros (n = 8) clones yielded a 650 to 654 bp fragment encompassing the 3’-end of the 5.8S
subunit (50 bp), the entire ITS-2 region (243 to 248 bp) and the 5’-end of the 28S subunit
(356 to 357 bp). Low levels of intra-genomic polymorphisms (IGPs) were observed and
variable sites occurred in all rDNA subunits and regions as inconsistent point mutations
(i.e., occurring at different positions). Similar to COI sequences, partial 28S rDNA
sequences differentiated 1. oros from 1. fasciculata (1.16% divergence) and 1. variabilis
(1.10% divergence), but did not resolve the latter two species, as intra-specific variation
within /. fasciculata (average = 0.28%, range = 0.00 — 0.56%) and I. variabilis (average =
0.16%, range = 0.00 — 0.56) was equal or greater than inter-specific variability among
these species (average = 0.22%, range = 0.0 — 0.56%). ITS-2 sequences exhibited the
highest variability and clearly differentiated /. fasciculata from I. variabilis (2.97% +0.38
divergence), with variability among species (range = 2.43 — 3.63%) consistent greater
than variability within 1. fasciculata (range = 0.40 — 2.02%) and I. variabilis (range =

0.00 — 0.00%). Phylogenetic analysis of combined ITS-2 and 28S rDNA sequences
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resolved each species into monophyletic clades with high bootstrap support and showed
1 fasciculata and I. variabilis were more closely related to each other than to 1. oros (Fig.
S3), similar to the microbial symbiont communities inhabiting these hosts species (Fig.

5).

DISCUSSION

The Mediterranean sponges /1. fasciculata, 1. variabilis and I. oros were shown to
host dense communities of phylogenetically diverse microbial symbionts, as occurs in
congeneric hosts in the Caribbean and more distantly related HMA host sponges.
Microbial communities associated with Ircinia spp. were clearly differentiated from
ambient bacterioplankton communities, in terms of richness, diversity and composition,
and were comprised primarily of sponge-specific symbionts related to bacterial sequences
derived from related and unrelated host sponge species. Despite the generalist nature of
these symbionts among sponge hosts, each species of Ircinia harbored a unique microbial
consortium. These differences in symbiont communities among congeneric and sympatric
sponges suggest that factors specific to each host play a role in structuring microbial
symbiont communities in marine sponges.

Determining significant and ecologically relevant differences in complex
microbial communities is aided by the application of modern sequence-based and
phylogenetic statistical methods (Hughes et al., 2001; Martin, 2002; Schloss, 2008). In
the present study, the microbial communities in /. fasciculata, 1. variabilis and I. oros
exhibited variable levels of symbiont overlap and specificity. Nearly one-fourth of each

symbiont community was shared among all 3 sponge hosts, representing 4 dominant
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bacterial OTUs; however, the majority of bacterial OTUs were exclusive to a single host
species. Coupling symbiont clone libraries with phylogenetic metrics revealed species-
specific differences in symbiont communities among /. fasciculata, 1. variabilis and I.
oros. While each host species harbored a similar diversity of microbial symbionts, each
symbiont community was comprised of specific phylogenetic lineages and exhibited clear
genetic differentiation based on host species. Further, symbiont community structure
differed significantly between I. oros and the other two hosts, but not between 1.
fasciculata and I. variabilis. Consistent with these results, 1. fasciculata and I. variabilis
shared the most symbiont sequences (63.7% of clones) and OTUs (n = 11) of all pairwise
comparisons among hosts.

Host-specific symbiont structuring in Ircinia sponges is particularly notable since
the vast majority these microbial symbiont communities were closely related (>97%
identity) to sequences derived from other host sponges. These hosts included congeneric
hosts from the Caribbean, as well as more distantly related sponges from the
Mediterranean (e.g., Aplysina aerophoba) and the Great Barrier Reef (e.g., Rhopaloeides
odorabile). Indeed, symbionts characterized as ‘specific’ to one Ircinia host species
herein were commonly observed in sponge hosts from different oceans when compared to
other sponge-derived microbial sequences. For example, IRC046 represents an
Actinobacteria-affiliated symbiont OTU exclusively associated with /. oros in the current
study, yet matched closely (99%) to a symbiont sequence from the Indo-Pacific sponge
Theonella swinhoei. These observed generalist patterns of specificity among host sponges
for individual symbionts, combined with the host species-specific structure of symbiont

assemblages revealed by community-level analyses, suggest that each host Ircinia species
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harbors a specific mix of generalist sponge symbionts. A similar trend was observed in a
meta-analysis of bacterial symbionts in 10 host sponges that revealed significant pairwise
differences in symbiont communities among all host species, despite the predominance of
generalist (i.e., sponge-specific) symbionts comprising each microbiota (Taylor et al.,
2007).

The persisting question is which factors account for the observed similarities and
dissimilarities in microbial community structure among different host sponges. To
classify the numerous physical, chemical and biological conditions that may structure
symbiont communities, a framework is presented that divides putative factors into 4
categories based on their source (external environment vs. host sponge related) and
prevalence among host sponge species (shared vs. exclusive; Fig. 6). The influence and
number of factors in each category depends on the geographic and taxonomic scope of
each study. Congeneric and sympatric host species were examined herein, thus numerous
factors were shared among these species, including regional environmental conditions
and a common evolutionary trajectory, and these factors cannot account for the reported
differences in symbiont communities among hosts. However, factors exclusive to
different host species, including habitat-specific conditions and host-specific factors, and
their variable influence on each host may represent a source of differentiation for Ircinia-
associated microbial communities.

The host species investigated exhibit different zonation patterns within littoral
benthic landscapes and environmental factors specific to distinct habitats may play a role
in structuring symbiont communities. 1. variabilis and I. oros occur preferentially in

semi-sciophilous communities, commonly inhabiting vertical relief structures where
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much of the sponge diversity in these habitats exists. In contrast, /. fasciculata is more
prevalent in photophilic communities, characterized by high irradiance conditions and
dense algal growth. Irradiance levels are primary factor in structuring sponge
assemblages in the Mediterranean, likely as an indirect consequence of stimulating algal
growth and competitive pressures (Uriz et al. 1992). The distribution of host species
within the local landscape may thus have ecological consequences for sponge-symbiont
interactions and dictate symbiont composition by imposing functional performance
pressures. For example, the dense populations of cyanobacteria in /. fasciculata may
contribute to host nutrition and growth via the transfer of photosynthetic by-products
(Arillo et al., 1994; Erwin & Thacker 2008, Freeman & Thacker 2011), thereby
enhancing competitive ability and allowing this species to thrive in algal-dominated
habitats.

In addition to habitat-specific factors, a recent and shared evolutionary past may
influence the composition of symbiotic microbial communities in sponge hosts, as
suggested by the observed correlation between Ircinia host phylogenies and symbiont
community similarity. Vertical transmission of microbial symbionts, or direct parent-to-
offspring passage, has been observed in several marine sponges (Usher et al., 2001;
Ereskovsky et al., 2005; Oren et al., 2005; Enticknap et al., 2006; Caralt et al., 2007;
Sharp et al., 2007; Steger et al, 2008; Lee et al., 2009a; Webster et al., 2010), including
Ircinia hosts (Schmitt et al., 2007; Schmitt et al., 2008), and provides a mechanism to
maintain a similar microbiota mix in related sponges where successive host generations
are seeded as larvae with diverse microbial symbionts. Thus, while periodic horizontal

transmission of microbial symbionts (i.e., environmental acquisition) may contribute to
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the homogenization of symbiont communities in unrelated sponge hosts (Schmitt et al.
2008), recurrent vertical transmission may dictate symbiont composition over shorter
evolutionary time scales due to legacy effects of the microbial inheritance.

External environmental factors and host sponge related factors are not mutually
exclusive and may act in concert to structure microbial symbiont communities in marine
sponges. In the case of Ircinia hosts from the Mediterranean, a shared evolutionary past
may contribute more strongly to symbiont structure compared to habitat-specific
conditions, considering that the microbiota of /. variabilis exhibited higher similarity to
the more closely related species, 1. fasciculata, than to the neighboring species, 1. oros.
However, a portion of the microbial community in /. variabilis was exclusively shared
with 1. fasciculata (7 OTUs) or I. oros (6 OTUs), suggesting an interactive effect of these
factors to produce an intermediate or transitional community between the clearly
differentiated symbiont communities in /. fasciculata and I. oros.

Discerning the contribution of common ancestry among hosts to the microbial
structure of symbiont communities requires accurate resolution of host phylogenies based
on molecular data. To date, no universal molecular marker has been discovered that
offers species-level resolution for all sponge taxa, as barcoding genes commonly
employed in the molecular identification of other animal taxa (e.g., COI) are conserved
and unable to distinguish different species in some sponge groups (Erpenbeck et al.,
2007; Lopez-Legentil et al., 2010a; Poppe et al., 2010). Consistent with these findings,
the current study showed that COI mtDNA sequences were unable to differentiate /.
fasciculata and I. variabilis, despite extended coverage of the 13-M11 partition, a region

of the COI gene suggested to offer greater resolution for lower metazoan taxa (Erpenbeck
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et al., 2006). The utility of the I3-M11 region in differentiating related sponge species
(Reveillaud et al. 2011) and as a population genetics marker for intra-specific
differentiation in sponges (Lopez-Legentil & Pawlik, 2009; Xavier et al., 2010), suggest
that this gene region is either highly conserved within the genus Ircinia or that 1.
fasciculata and 1. variabilis are very closely related species. Indeed, some degree of
controversy surrounds the taxonomic status of I. fasciculata and I. variabilis (Pronzanto
et al., 2004) and these species can be difficult to differentiate in the field, resulting in
some ecological studies grouping these two putative species into a single taxon
(Maldonado et al., 2010).

Analysis of the second internal transcribed spacer region (ITS-2) of the nuclear
ribosomal operon revealed consistent genetic differentiation between /. fasciculata and 1.
variabilis, indicating some molecular markers can delineate these species, and resolved
each Ircinia host into well-supported monophyletic clades. ITS-2 sequences have also
been utilized in previous phylogenetic analyses (Erwin & Thacker 2007) and population
genetics of marine sponges (Wdrheide et al., 2002; Duran et al., 2004). The results herein
suggest this region offers higher fine-scale phylogenetic resolution than COI sequence
data for some sponge taxa. While few species of Ircinia have been investigated using
molecular phylogenetics (Poppe et al., 2010), it is interesting to note that COI sequences
in I. fasciculata and I. variabilis were more closely related to I strobilina from the
Caribbean (0.6% sequence divergence) than to the sympatric species 1. oros (1.8%).
Clearly, additional phylogenetic studies and greater sampling of the high species diversity
within this genus are required to resolve the relationships among these species and

determine how these relationships affect symbiont community structure.
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The sponge-specific nature of individual symbionts, host-specific structure of
symbiont communities and diverse environmental and host-related factors that dictate the
structure of sponge-associated microbes result in a complex picture of host-symbiont
specificity in HMA sponges. Based on the generalist nature of individual symbionts and
host-specific structure of entire communities, our results suggest a ‘specific mix of
generalists’ framework applies to host-symbiont specificity in Ircinia spp. from the
Mediterranean, and possibly other HMA sponge hosts. Further, by comparing symbiont
communities in congeneric species from the same environment, the results herein suggest
that factors specific to the each host species play a role in structuring microbial symbiont
communities in marine sponges, including host evolutionary history and habitat-specific
abiotic and biotic environmental factors. Additional research on the spatio-temporal
dynamics of microbial symbionts in sponges and controlled experimental manipulations
of sponge holobionts are required to further unravel the multiple and potentially

interactive factors that structure the complex sponge microbiota.
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TABLES

Table 1. Composition of microbial communities in Ircinia spp. and ambient seawater.

Percentage of total clones is shown by bacterial phyla (classes of Proteobacteria shown in

parentheses). Values in parenthesis depict the number of 99% OTUs within each lineage.

Phylum (Class) L fasciculata 1. variabilis 1. oros Seawater Total
Proteobacteria 45.4 (16) 61.3(22) 56.1 (17) 56.2 (28) 54.5 (65)
(a-proteobacteria) 6.54) 11.3 (6) 12.2 (4) 31.5(16) 15.0 (26)
(B-proteobacteria) - 1.3(1) - 2.7(2) 1.0 (3)
(y-proteobacteria) 20.8 (10) 33.8(11) 28.0 (10) 22.0 (10) 26.1 (31)
(8-proteobacteria) 18.2(2) 15.0 (4) 15.9(3) - 12.4 (5)
Cyanobacteria 32.5(2) 7.5 (1) - 1.4 (1) 10.2 (3)
Acidobacteria 5203) 5.0(03) 18.3 (3) - 7.3 (8)
Bacteroidetes 9.1(3) 3.8(2) 3.7(2) 9.6 (7) 6.7 (14)
Bacillariophyta - 2.52) 9.8 (5) 82 (4) 5.4 (11)
Nitrospira 2.6 (1) 15.0 (1) 24 (1) - 5.1(2)
Actinobacteria - 3.8(2) 3.7(2) 12.3(3) 4.8 (7)
Chloroflexi 3903) - 4.9 (2) - 22(5)
Chlorophyta - - - 4.1 (3) 1.0 (3)
Gemmatimonadetes 1.3 (1) 1.3 (1) 1.2 (1) - 1.0 (3)
Firmicutes - - - 1.4 (1) 0.3 (1)
Planctomycetes - - - 1.4 (1) 0.3 (1)
Verrucomicrobia - - - 1.4 (1) 0.3 (1)
Uncertain Classification - - - 4.0 (2) 1.0 (2)
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Table 2. Diversity metrics comparing the richness, dominance and evenness of microbial

communities in /rcinia spp. and seawater. Lower and upper 95% confidence intervals are

shown in parentheses where available.

Diversity Metric

Measure

1L fasciculata

1. oros

1. variabilis

Seawater

Richness

Dominance

Evenness

Observed OTUs
Sobs
Expected OTUs
Schaot
Berger-Parker

d

Simpson Index
1/D

Smith & Wilson
EV'dl’

Simpson Index
Eip

29

40
(32 - 64)

26.0%

10.3
(7.1-19.1)

0.14

0.32

33

43
(36— 65)

14.6%

19.4
(13.6 - 34.0)

0.24

0.48

34

53
(40 - 91)

15.0%

19.9
(14.0 - 33.9)

0.20

0.47

51

188
(105 — 394)

8.2%

58.4
(36.0 - 155.2)

0.70

0.64
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Table 3. Pairwise statistical comparisons of genetic diversity and community structure of

bacterial communities in Ircinia fasciculata (IF), I. variabilis (IV), I. oros (10) and

seawater (H20).

Test Statistic IF -1V v-10 10 -IF IF-H20 IV-H20 10-H20

AMOVA Fgr 0.0312 0.0203 0.0444 0.0827 0.0794 0.0692
P-Value skskok skskok skskok skskok skskok skskok

HOMOVA B 0.0018 0.0500 0.0697 1.3499 1.2813 0.8456
P-value 0.862 0.321 0.237 Hokk HoHk **

P-Test Score 17.0 40.0 27.0 15.0 16.0 33.0
P-Value skesksk sksksk sksksk skesksk skesksk sksksk

LIBSHUFF  ACyy 0.0018 0.0043 0.0181 0.0686 0.0787 0.0911
ACyx 0.0014 0.0031 0.0367 0.0850 0.0661 0.0691
P-Value XY 0639 * skoksk skskok skskok skoksk
P-value yx 0.802 0.172 oAk *okok Hokok oAk

* =P <0.05, ** =P <0.005, *** = P<0.001
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994  Table 4. Pairwise genetic distance (p-distance) among [rcinia spp. and Hippospongia
995  lachne (Order Dictyoceratida, Family Spongiidae) for the 5’-end ‘Folmer’ partition

996  (upper right; 676 bp fragment) and the [3-M11 partition (lower left; 537 bp fragment) of

O©oOoONOOPAWN =

997  the mitochondrial gene cytochrome oxidase subunit I. Values shown as percentages.

13 998

L fasciculata 1 variabilis L strobilina L. oros H. lachne
17 L fasciculata - 0 0.74 1.18 5.47

1 variabilis 0 - 0.74 1.18 5.47
20 1. strobilina 0.37 0.37 - 1.33 5.33

L oros 2.61 2.61 224 - 5.47
23 H. lachne 3.17 3.17 2.79 3.54 -
24 999

57 1000
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FIGURE LEGENDS

Figure 1. In situ photographs and electron micrographs of the external morphology of
host sponge species (A—C) and density and diversity of bacterial symbionts (D-G).
Underwater photographs highlight the distinct coloration, growth forms and surface
texture of 1. fasciculata (A), I. variabilis (B) and I. oros (C) individuals sampled in this
study. Representative micrographs show the density the symbiotic cyanobacterium,
Synechococcus spongiarum, in ectosomal (peripheral) tissues of 1. fasciculata (D) and 1.
variabilis (E) that is absent in 1. oros tissue (G). Heterotrophic bacterial symbionts
dominate the choanosomal (interior) tissue of 1. variabilis (F) and exhibit similar
morphotypes to symbiotic bacteria present in /. oros (G). Scale bars represent 2 cm (A—

C),2 um (D, E) and I um (F, G).

Figure 2. Similarity of bacterial 16S rRNA gene sequences recovered from Ircinia
fasciculata (A), 1. variabilis (B), I. oros (C) and seawater (D) to sequences in the
GenBank database. Top matches from BLAST searches are grouped by sequence identity
bins and sequence source: sponge-associated, coral-associated, seawater, sediment and

other.
Figure 3. Specificity of microbial communities in 1. fasciculata, 1. variabilis and I. oros.

Pie charts depict the percentage of total clones corresponding to each specificity

category; numbers denote the total OTUs accounting for each partition.
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Figure 4. Phylogeny of bacterial 16S rRNA gene sequences from Ircinia fasciculata, I.
oros, I. variabilis and ambient seawater. Tree topology was constructed using maximum
likelihood criteria and numbers on nodes depict bootstrap support (< 50% not shown).
Terminal nodes denote the sequence source, bold values correspond to sequences from
this study and indicate the OTU and host species followed by the total number of clones
(in parentheses). For condensed clades (white triangles), the total number of sequences
(in parentheses) and bootstrap support (%) are shown. Gray boxes delineate clusters
containing sequences from Ircinia spp. herein, with black triangles indicating Ircinia-
derived sequences from other studies. Asterisks (*) indicate clones for which near full-

length sequences were recovered. BAH = Bahamas, FLO = Florida.

Figure 5. Phylogenetic tree of host sponges (left) and similarity dendrogram of bacterial
symbiont communities (right) in 1. fasciculata, I. variabilis and I. oros. Tree topology
was constructed using maximum likelihood (ML) analysis of ITS-2/28S rDNA gene
sequences. ML (upper) and neighbor-joining (lower) bootstrap support values are shown
on internal node labels; bold values indicate support for species-level clades (gray boxes).
Scale bar represents 0.03 substitutions per site. Dendrogram (right) was constructed from
Bray-Curtis community similarity values among microbial symbionts in each host
species. Scale represents percentage similarity values. Arrows point to outgroup taxa
(left) and seawater bacterial communities (right). Full sponge phylogeny available as

supplemental material (Fig. S3).
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Figure 6. Theoretical framework of the putative factors that structure microbial symbiont
communities in marine sponges. Factors are first divided based on their source, occurring
in the ambient external environment or within the host sponge microenvironment. Factors
are further categorized by their impact on the host sponges investigated (shared among all
hosts vs. exclusive to one or a subset of hosts) to distinguish factors that may homogenize

(shared) or differentiate (exclusive) microbial symbiont communities among hosts.
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