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Abstract—Communication delays are problematic for teleop-
erated systems. They give rise to a trade-off between speed and
robustness, which cannot be overcome by means of linear con-
trollers. In order to solve this problem, in this paper we present
a novel approach that combines passivity-based techniques and
reset control principles. In this way, it is possible to obtain
simultaneously the robust stability properties of passive control
and the performance improvement enabled by reset strategies.
Experimental and simulation results are presented which confirm
the good behavior achieved with this method.

Index Terms—Nonlinear control, passivity, reset control, tele-
operation.

I. INTRODUCTION

The main advantage of reset control is the possibility of
overcoming linear fundamental limitations [8] by means of a
simple strategy. It is well known that many control problems
are subject to fundamental, unsolvable trade-offs between
competing design objectives; for example, bandwidth versus
robust stability [2]. These limitations are particularly severe
for plants having right-half-plane poles or zeros, or time-
delays such as those appearing in teleoperation. Most of these
trade-offs hold for every possible linear controller but, in
principle, it might happen that nonlinear or hybrid controllers
perform better and improve simultaneously speed of response
and robustness. This is the purpose of reset control, which is
based on a very simple idea: in a standard tracking problem it
consists of resetting to zero (or, more generally, to other value)
the state of the controller at certain instants, for example when
the tracking error is zero.

The idea of reset control dates back to the Clegg Integrator
[13] and to the first order reset element (FORE)[17]. Since
then it has been clear that reset control may improve perfor-
mance, but its design has to be done with care, as it might also
introduce instability. In [9] a certain stability condition (the
Hβ condition) was introduced for finite-dimensional systems,
which was later extended to time-delay systems [7]. New
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techniques for reset stability can be found in [23], and a recent
performance analysis in [1].

On the other hand, bilateral teleoperation is an area that
has motivated an enormous amount of research in the last two
decades [16]. Modern teleoperation is usually based on ap-
plying passivity-based control techniques [28] to teleoperated
systems. Using passivity tools has a number of advantages:
they provide a multi-domain and modular approach to mod-
eling, and transparent control principles based on energy and
power concepts. The passivity ideas can be adapted to the
teleoperation framework, where a human operator (actuating
a master device) manipulates a remote machine (slave device)
which is possibly interacting with the environment. If some
time delay exists, a communication channel transmitting ve-
locity and force (which provides the operator with a feeling of
telepresence that is essential in applications [21], [18], [20],
[22]) is no longer passive. As an alternative, wave variables –
which are obtained from velocities and forces via the scattering
transformation, see [3], [24]– should be transmitted, thus
making the delayed line behave like an analog lossless LC
line. This is called line-passivation.

It turns out that after line passivation, and with passive
controllers at the master and slave sides, the overall teleop-
eration system becomes passive. Since it is assumed that the
external elements –human operator and environment– behave
in a passive way, this means that the system is stable for
all possible constant values of the time delay. This delay-
independent stability property can also be extended to time-
varying delays [11], and therefore it is possible to use internet
as the communication channel, as has already been shown in
several applications [25], [26], [27], [30].

Delay-independent stability can be interpreted partly as an
advantage and partly as a drawback: on the one hand, it is an
advantage because the designer does not have to worry about
the delay. On the other hand, it is a drawback because, if the
passive controllers are stable for very large delay values, they
tend to provide worse performance than other (non passive)
controllers, which are unstable for large delays but stable for
small nominal delays.

Realizing that the source of the problem is the time-delay,
which introduces a linear trade-off between speed and robust-
ness, it becomes clear that using the reset-control principle in
teleoperation might enable us to combine the robustness of the
passive solutions with the fast position tracking performance
provided by a proper design of the reset action. This is the
basic idea of this paper, which is based on the authors’
previous work in the fields of reset control [4], [5], [6], [7],
[10], [29] and teleoperation [14].

A preliminary version of this paper [15] was presented
at the IECON’08 conference. Many substantial modifications
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have been included in this new version: first, a theoretic
justification of the use of reset in teleoperation is provided.
Second, a PI+CI reset strategy [6], [29] is chosen instead
of the previous simple full reset, thus enabling an additional
tuning of the reset action in order to obtain a good transient
response while simultaneously eliminating the steady state
error. Third, contact with the environment has now been taken
into consideration in the simulations; and fourth, experimental
results with a real plant are provided.

As a consequence, the paper is organized as follows. Section
II provides an overview of the system, summarizing what was
already explained in [15] about passive teleoperation. Then,
section III shows how the use of reset is capable of overcoming
the fundamental limitations of linear controllers, namely when
time delays are present. In section IV the proposed reset
strategy is presented, and experimental results are provided
in section V. Finally, conclusions are given in section VI.

II. PASSIVE TELEOPERATION AND SYSTEM OVERVIEW

The block diagram that describes the overall system is
plotted in Fig.1. It consists of the following subsystems: a
master device commanded by an operator, a master impedance
controller (represented as the parallel of a spring Km and
a damper Bm), the scattering transformations corresponding
to master and slave sides, the communication channel, a
slave impedance controller (Ks, Bs) and a slave device in
contact with the environment. The interchanged variables
are either power variables (forces fi and velocities ẋi, with
i ∈ {h,m, s, e} and the additional subindex d for delayed
variables); or wave variables (um, us, wm, ws) which result
from the scattering transformation of the former.

The communication channel contains the time delays, which
will be considered constant and known throughout the paper.
This is a frequent assumption when deriving theoretical results
for the first time; these may be extended for time-varying
delays later1. It is well known that a time delay provokes a
loss of passivity, which can be arranged using the scattering
theory [3] or the equivalent wave-variables [24] formulation
given by the equations:

(
um

ẋmd

)
=

( √
2B−1/2 −I

B−1 −√
2B−1/2

)(
fm
wm

)
(1)

and

(
ws

ẋsd

)
=

( √
2B−1/2 −I

−B−1
√
2B−1/2

)(
fs
us

)
(2)

where the matrix B > 0 is the line impedance. The actually
transmitted variables are the wave variables:

us(t) = um(t−ΔT ), wm(t) = ws(t−ΔT ), (3)

1Here we limit ourselves to constant time delays; only in the last example
in subsection V-B, and as a preliminary experimental validation, we apply the
method to unknown, time-varying delays.
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Bm Km Bs Ks
MASTER

DEVICE

SLAVE

COMM. DEVICESCATT.SCATT.

Fig. 1. Teleoperation scheme

where ΔT ≥ 0 is the communication delay, unknown but
considered constant. This configuration behaves as a lossless
system with respect to the storage (hamiltonian) function

Hc(t) =
1

2

∫ t

t−ΔT

(‖um(τ)‖2 + ‖ws(τ)‖2
)
dτ, (4)

that is, the integral of the power of the waves for the duration
of the transmission. It easily follows that

−f�
s (t)ẋsd(t) + f�

m(t)ẋmd(t) = Ḣc(t) (5)

This fact is true for all ΔT , so, from the point of view
of passivity, we do not have to worry about its actual value.
The interconnection of passive subsystems leads to an overall
system that is itself passive [28], and hence a stable behaviour
is guaranteed.

As wave reflections can occur at both sides of a teleoper-
ation scheme, there is a need for impedance matching [24],
which can be achieved if both sites are placed under velocity
control. This is one of the motivations for using the two
symmetric “impedance controllers” mentioned before, which
are placed at each end of the transmission channel. Thus,
each side is receiving force information and providing velocity
signals.

The master side of the setup consists of a master device,
its impedance controller, and the corresponding scattering
transformation. The master device interacts with the human
operator, allowing him to specify the desired movement of
the plant (velocity command), while receiving some force
feedback representing information about the operating con-
ditions. Similarly, the slave side consists of the slave device,
its impedance controller, and the scattering transformation.

The master and slave devices will be considered as me-
chanical systems whose equations can be written in the port-
hamiltonian notation as:

ż = [J(z)−R(z)]∂H(z)
∂z + g(z)u

ẋ = gT (z)∂H(z)
∂z

(6)

where z are the states, ẋ the outputs (velocities), u the
inputs (forces), H the hamiltonian function, and J,R the
interconnection and dissipation structures respectively.

The equations of the impedance controllers can be written
as

fm = Km

∫
(ẋm − ẋmd)dt+Bm(ẋm − ẋmd)

fs = Ks

∫
(ẋsd − ẋs)dt+Bs(ẋsd − ẋs)

(7)

which are two Proportional-Integral (PI) controllers with trans-
fer functions
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Fig. 2. Step responses with and without reset

fm =
(
Km

s +Bm

)
em, em = ẋm − ẋmd

fs =
(
Ks

s +Bs

)
es, es = ẋsd − ẋs

(8)

In this way, we are not only transmitting energy through the
strings Km,Ks, but also dissipating some of it in the dampers
Bm, Bs. Consequently, artificial damping is injected, which is
a requisite to ensure a passive behavior when it is possible
that the plant interacts with the environment. The parameters
of this controller are the stiffness constants of the springs,
Km and Ks, and the viscous frictions, Bm and Bs. If the
latter are chosen to be equal to the scattering parameter of the
transmission line, B, no wave reflections will take place [24].

III. ADVANTAGES OF RESET CONTROL

A. Introduction to Reset Control

A general reset controller with linear base dynamics can be
described by the following continuous-impulsive equations:

R :

⎧⎨
⎩

ẋr = Arxr +Bre, e �= 0
x+
r = Aρxr, e = 0

u = Crxr +Dre
(9)

where (e, xr, u) are input, state and output vectors, respec-
tively, and the second equation represents the impulsive or
reset actions, applied when the input e(t) crosses zero. Typ-
ically, Aρ takes the form Aρ = diag (1, . . . 1, 0, . . . 0) so
that some of the controller states are affected by reset while
others remain unaltered. The Base Linear Compensator (BLC)
is the linear system obtained from (9) after removing reset,
Rbl(s) = Cr (sI − Ar)

−1
Br +Dr.

The purpose of reset control can be easily understood by
means of the following example, taken from [7]. Consider
a plant with a transfer function P (s) = e−ΔTs s+1

s(s+0.2) , in
feedback interconnection with a reset controller with a BLC
given by 1

s+1 . The continuous and impulsive modes of the
reset controller are given by (9) with (Ar , Br, Cr, Dr) =
(−1, 1, 1, 0) and with Aρ = 0. With a delay ΔT = 0.15,
the time responses to a step input are those shown on Fig. 2.
It can be seen that the use of reset enables to maintain the fast
transient response while reducing the overshoot.

B. Fundamental Limitations of Linear Control Systems

If a plant has poles or zeros in the right half plane, or time-
delays, it is called a non-minimum phase system and it is sub-
ject to some fundamental limitations [2]. Let us factor the loop
transfer function of one such system as L(s) = Lm(s)La(s),

where Lm(s) is the minimum phase part and La(s) the non-
minimum phase part. We normalize this factorization so that
|La(iω)| = 1 (all-pass). In teleoperation applications this part
can be identified with the transmission delay ΔT , so let us
assume La(s) = e−sΔT .

Following [2], we characterize the bandwidth by the gain
crossover frequency ωc given by |L(iωc)| = |Lm(iωc)| = 1
(La is all-pass). Let us denote the slope of |Lm(iω)| = |L(iω)|
in dB/dec as n(ω), and let nc = n(ωc) be the “crossover
slope”. Two measures of robust stability are given by the
guaranteed phase margin, φm, and by the crossover slope
nc. The loop formed around L(s) is more robustly stable as
φm is larger (60o better than 45o) and nc is more negative
(−20dB/dec better than −10dB/dec). Two relations hold:

argL(iωc) ≥ −π + φmargLm(iω) ≈ n(ω)

20

π

2
(10)

The first inequality ensures the guaranteed phase margin
φm and the second one is the Bode’s relation, which says
that, for minimum phase systems, angle and modulus slope
are not independent (−90o corresponds to −20dB/dec). If we
use argL = argLm+argLa, with argLa = −ωΔT , and Bode’s
relation (with = instead of ≈), we reach

ωcΔT ≤ π−φm+argLm(iωc) = π−φm+
nc

20

π

2
=: c(φm, nc)

(11)
where the restriction on the bandwith ωc imposed by the coeffi-
cient c(·, ·) gets larger as the robustness requirements (φm, nc)
are stronger. For example, if (φm, nc) = (45o,−10dB/dec)
then c = π/2 ≈ 1.57, but if (φm, nc) = (60o,−20dB/dec)
then c = π/6 ≈ 0.52. Therefore, the previous inequality
establishes an unavoidable limitation for linear systems, a
tradeoff between bandwith and robust stability.

C. Overcoming Fundamental Limitations with Reset

How can reset control contribute to solve this problem?
Checking the previous steps of the inequality ωcΔT ≤ c,
it follows that the limitation could be alleviated if we could
replace argLm(iωc) by a quantity less negative (larger) than
nc

20
π
2 . Unfortunately, no linear system is able to solve this,

because the non-minimum phase factor is the cause of the
problem (La(s) = e−sΔT in our case) and the minimum phase
factor Lm(s) is restricted to the approximate Bode relation.

Thus, the only way to achieve a significative reduction
of the limitation is by using some new type of nonlinear
system Lr (the reset controller). It will be useful to define an
approximate frequency response Lr(ω) of Lr by describing
function analysis. The reset system Lr can be used instead
of Lm, or combined in series with it, Lr(ω)Lm(iω). As the
angles and decibel slopes nr, n of the factors in Lr(ω)Lm(iω)
behave additively, then it follows that the Bode’s relation is
drastically beaten (and the limitation outperformed) if

argLr(ω) >>
nr(ω)

20

π

2
(12)

Fortunately, it is well documented that a variety of reset
controllers (FORE, Clegg, etc.) satisfy the previous relation.
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For example, the Clegg integrator LCI (an integrator with
reset) has an approximate describing function LCI(ω) =
1.62
ω e−i 38o , i.e., arg LCI(iω) = −38o and nCI(ω) =

−20dB/dec, which means a valuable improvement of about
52o in phase lag [13].

Consider a very simple example: let us compare two feed-
back loops with delay ΔT , the first one with a standard
integrator Lm(s) = 1/s and the second one with the Clegg
or reset integrator Lr = LCI . In both cases the modulus
slope has to be nc = −20dB/dec. Let us impose a phase
margin φm = π/3 = 60o. As we have seen, the linear control
system is subject to the limitation ωc ΔT ≤ π/6 ≈ 0.52.
On the other hand, the reset control system is restricted to
ωc ΔT ≤ π−φm+argLr = π−π/3−π38/180≈ 1.43. Thus,
for the same phase margin and delay, the reset system outper-
forms the linear one. The bandwith limitation ωcΔT ≤ 0.52
is improved to ωcΔT ≤ 1.43 by a factor 1.43/0.52 = 2.75
(almost three times larger) provided by reset control.

D. Clegg Integrator with Advanced Reset

This subsection presents a new reset integrator, called
advanced Clegg integrator, that improves the Clegg integrator,
providing also −20dB/dec but with a phase lag even less
negative than −38o, that can be made close to −25o. The
simple idea is replacing the reset condition e(t) = 0 by a
new condition u(t) = 0 where u(t) is obtained by passing
e(t) through some block C(s) providing phase advance. This
idea of advance reset is applied in the subsequent sections to
the teleoperation control systems. So, consider now the Clegg
Integrator with advanced reset:

ẋ(t) = e, u(t) �= 0,
x+ = 0, u(t) = 0, u(t) = L−1 [C(s) E(s)]

(13)

where L,L−1 are the direct and inverse Laplace transforms
and C(s) is an anticipative block, for example C(s) = Kp +
Kds, which introduces a phase lead or phase advance on e(t)
(if C(s) ≡ 1 then u = e, and we recover the standard Clegg
Integrator). The describing function of an Advanced Clegg
Integrator with a phase advance of φ = φ(ω) = argC(iω) is

LACI(ω) =
1

ω

[
4 cos2 φ

π
− i

(
1− 4 cosφ sinφ

π

)]
(14)

In Fig. 3 its modulus-times-frequency (|LACI | · ω) and
phase (argLACI) are plotted as functions of the phase advance
φ introduced by C(s). Notice that for φ = 0 (point ′C′)
we get the Clegg Integrator, 1.62

ω e−i38o . Since the modulus
always takes the form k

ω (−20dB/dec), the key feature is
the phase. The largest achievable phase ( ′A′) is about −25o,
corresponding to an advanced reset of φ ≈ +30o. Thus, if we
are able to design the phase lead block C(s) so that it provides
φ ≈ +30o, we will obtain LACI ≈ 1

ω e
−i25o , which is the same

attenuation as an integrator but with 90o−25o = 65o of phase
improvement, a very valuable issue regarding fundamental
limitations.

However, there are some restrictions to this: the phase lead
can not be held constant φ ≈ +30o for all frequencies, and
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Fig. 3. Frequency plots of the advanced Clegg integrator. X axis units:
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the describing function is only an approximation. Despite
these minor aspects, the main advantage of a reset integrator
remains, and can be summarized as the ability to provide
−20dB/dec with a much smaller phase lag than the standard
integrator.

IV. RESET PROCEDURE

A. Master PI+CI controller

In this section a reset strategy for improving performance
of the impedance controllers is presented. Recall that their
transfer functions are given by equation (8), thus defining
them as Proportional-Integral (PI) controllers with respect
to the velocity error. The proposed reset procedure entails,
to begin with, partially resetting the integral value of the
master PI, and leaving the slave PI unchanged (i.e., linear).
In this way, the master PI=P+I is, using the terminology in
[6], [29], transformed into a PI+CI controller. PI+CI means
a proportional-integral controller plus a “Clegg” [13] or reset
integrator. The overall master controller can be then written in
the form (9) with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋI = ẋCI = em, c �= 0[
x+
I

x+
CI

]
=

[
x−
I

0

]
, c = 0

fm = Km[(1 − p) p]

[
xI

xCI

]
+Bmem

(15)
with c the condition determining the reset instants, (xI , xCI)
the states of the linear and Clegg integrators, respectively; and
(1− p, p) the parameters that multiply the integrators’ states.

The PI+CI controller proposed here is an evolution of the
P+CI originally used in [15]. The PI+CI adds a new integrator
(and hence a new state) to the controller, and resets only one of
the integrators after a reset instant. This can be implemented as
two parallel integrators (see Fig. 4), one of them being a Clegg
integrator and the other a normal one. The outputs of these two
integrators are multiplied by p and 1 − p respectively, being
0 < p < 1. Thus, the modification of parameter p provides a
simple way of tuning the controller.
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The reason for performing only “partial” reset is that a
totally reset integrator loses the fundamental property of
eliminating the steady-state error. Since feedback control is
performed on the velocity signal, full reset leads to a loss of
information about the slave position that cannot be recovered.
When this happens, position drift appears, a well-known prob-
lem in bilateral teleoperation. However, when partial reset is
used, position information is being kept in the linear integrator
(the non-reset integrator placed in parallel to the reset one).

This can be more formally explained as follows. A steady
state is achieved if all the forces and velocities in Fig. 1 are
zero. According to [12] and references therein, the steady-state
tracking-position error, referred to as “position drift”, is zero
if:

Δxm =

∫ t

0

(ẋm − ẋmd) = 0, (16)

where t is some time at steady-state. Let us assume that
the error is initially zero, i.e. Δxm(0) = 0. Now consider
the master impedance controller in Fig. 4, where gain k and
integral time T are related to (Bm,Km) in Fig. 1 by k = Bm

and T = Bm

Km
. The general equation for (0 < p < 1) is

y = fm = Bm(ẋm − ẋmd) +Km (xI(1 − p) + xCIp) (17)

where xI =
∫ t

0 (ẋm − ẋmd)dt and xCI =
∫ t

tk
(ẋm − ẋmd)dt,

where tk is the last reset time. Now, when in steady state,
the controller depicted in Fig. 4 has zero input (velocities)
and zero output (force). The problem is whether there may
exist nonzero steady-state values xI , xCI compatible with zero
input and output. We will discuss three possible cases: PI, CI
and PI+CI.

When a PI is used as matching controller, the fact that the
output is zero under zero input yields (16) directly because
Δxm corresponds to the state of the PI controller. On the other
hand, if a CI controller (this is, a PI+CI with p = 1) is used,
Δxm can be non-null under zero output and zero input due
to the fact that every reset action is deleting the controller’s
memory; null reset state entails

∫ t

tk
(ẋm− ẋmd) = 0, where tk

is the instant of the last reset action. The advantage of using a
PI+CI with p < 1 is that (16) is guaranteed. This is based on
the fact that the reset state (xCI ) cannot keep a non-null value
under zero input. In principle, there may exist a combination
(xCI , xI ) of non-null states in (15) that yield zero output (fm)
with zero input. However, a sustained zero input entails that the
reset law holds and that the reset state is made zero. Therefore,
at steady-state, the linear state (xI ) has to be zero, and since
Δxm = xI , (16) holds and the steady-state tracking-position
error is zero, as in the linear (PI) case.

Hence, the PI+CI manages to improve the transient response
while retaining the zero steady-state error property. This entails
a trade-off between transient and steady state performance, and
the parameter p offers an intuitive way of adjusting it. This
can be done by a simple trial-and-error procedure, decreasing
its value from p = 1 until the steady state performance is good
enough, this is, with an overshoot and settling time which are
both small enough to be acceptable.

Fig. 4. Structure of a PI+CI

The option of resetting the master side controller and not
the slave one is backed by several sets of simulations and
experiments. In them, the effect of resetting the master has
been found to be much more important, while reset of the
slave has little influence. The explanation is related to the
fact that the signal round trip (from the velocity specified
by the operator ẋm to force feedback fm in Fig.1) is closed
by the master controller forming an external loop around
the plant (slave) that contains the time-delays. On the other
hand, the slave PI forms an inner loop not affected by delay.
As the expected performance improvement due to reset is
more effective under fundamental limitations (time-delays),
the master controller, and not the slave, is the one that should
be reset. The value of p should be chosen so that it is close
enough to 1 to reduce overshoot, but not so high as to affect
the capability of eliminating the steady state position error.

Remark 1. Passivity of the PI+CI
We make use of the result that states that the parallel

connection of two passive systems is itself passive [28]. Since
a PI+CI is the parallel connection of a PI compensator and
a CI compensator (see Fig. 4), its passivity results from
the passivity of both subsystems as follows. Without loss of
generality, gains have been restructured in order to show a
simpler and easier to understand proof. First, passivity of a
PI can be proven with the classical result for linear systems
[19]: a system with a transfer function H(jω) is passive if
Re[H(jω)] ≥ 0 for all ω ∈ R. The PI transfer function is
given by:

HPI(jω) = k

(
1 +

1

T ′jω

)
(18)

where T
′
= T

1−p and T is the integration time constant. Its
real part is given by

Re[HPI(jω)] = k ≥ 0, (19)

Therefore, the PI compensator is passive. On the other hand,
using the Prop. 1 in [10], passivity of a full reset compensator
results from the passivity of its base linear compensator. The
CI base linear compensator is a linear integrator and its transfer
function is H blc

CI(jω) =
1
jω . Since Re[Hblc

CI(jω)] = 0 ≥ 0 for
all ω ∈ R, the linear integrator is passive and therefore, using
the above mentioned result, the full reset compensator CI is
also passive.

Hence, it is immediate to see that the PI+CI compensator
defined by (15) is passive.
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Fig. 5. Choosing the reset instants

B. Reset instants

The aforementioned passivity property is independent of the
reset instants, provided that there are a finite number of resets
in any finite interval. This enables the designer to choose the
reset instants in the most convenient way for each application.
In the case of teleoperation with a known, constant delay, it
is possible to profit from this freedom by anticipating to this
delay: the reset instants can be chosen so that they correspond
to the times when the velocity error is approaching zero. The
resulting strategy can be visualized in figure 5, where the
evolution of the velocity error, ev(t) = ẋm(t)− ẋs(t−ΔT ), is
plotted. By monitoring the velocity error and its variation, the
reset instants can be chosen as those satisfying the following
condition:

ėv(t1) = −ev(t1)

ΔT
⇔ ev(t1) + ėv(t1)ΔT = 0 (20)

Hence, (20) defines the reset condition c = 0 in (15),
which amounts to applying a PD control on the error signal
ev(t), implementing the C(s) anticipation block introduced
in section III-D. Thus, instead of waiting for the error to be
zero, this situation is predicted and reset is carried out in
advance. This mechanism also holds if the slave interacts with
the environment: in case of a contact, the slave’s velocity is
modified and the reset instants are changed accordingly.

V. EXAMPLES

In order to show that the reset control action is useful in
different applications, two different teleoperated systems with
two different approaches are chosen.

A. Example 1: Simple robot

First we choose a simple model of a one-dimensional robot
used in many simulations of bilateral teleoperation, consisting
of a mass with friction. The “Master Device” and “Slave
Device” blocks depicted in 1 are then given by:

ẋm = 1
mrs+br

(fh − fm)

ẋcr = 1
mrs+br

(fs − fe)
(21)

The force exerted by the human operator, fh, is simulated as
a sinusoidal force command applied to the master device. The
force fm produced by the master side impedance controller
is fed back to the master device, influencing its movement in
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Fig. 6. Teleoperation in free space. Solid lines: master device, dashed: slave.
Top: without reset, medium: with partial reset (p = 0.5), bottom: full reset.

the same way as the operator command. Symmetrically, the
force acting on the slave device is the output of the impedance
controller at the slave side.

Firstly, we will show simulation results that illustrate the
potential of reset control for eliminating overshoot. Two iden-
tical “robots” with mass mr = 1 kg and friction br = 1 kg

s
are considered at the master and slave sides. A constant time
delay of 0.5 seconds is present in both directions of the
communications channel (round trip delay: one second). The
coefficients of the impedance controllers are Km = Ks =
10 kg

s2 , Bm = Bs = 10 kg
s , and the scattering factor is also set

to b = 10 kg
s . This is an aggressive tuning of the controllers,

intended to provide fast transient response; hence the high-gain
values Km and Ks. In Fig. 6 the result of a manoeuvre in free
space is plotted, with the master trajectory as a solid line and
the slave as a dashed line. It can be noticed that the non-reset
controller indeed manages to obtain this fast transient, but at
the cost of a large overshoot. A partial reset controller with
p = 0.5 yields the same fast transient while achieving a 50%
reduction in overshoot. Finally, full reset (p = 1) eliminates
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Fig. 7. Manoeuvre with contact. Solid lines: master device, dashed: slave.
Top: no reset; medium: full reset; bottom: partial reset (p = 0.85).

overshoot almost completely (90− 100% reduction).

However, the steady state behavior is not shown in these
simulations, since the setpoint is always varying. We consider
now a different manoeuvre, including contact with the environ-
ment, where this steady state behavior can be evaluated. We
use the same master and slave devices as before, and place
them initially at the same position, xm(0) = xs(0) = 0 m;
but now there is a wall in the slave location at xs = 0.5 m.
A sinusoidal force with a frequency of 1 rad/s is applied
by the simulated operator at the master side (fh), with an
amplitude of 2N during the first cycle and of 5N during the
second and third ones. After 15 seconds, this force is made
zero, simulating that the operator stops holding the master
device. The coefficients of the impedance controllers are now
Km = Ks = 15 kg

s2 , Bm = Bs = 20 kg
s , and the scattering

factor is also set to b = 20 kg
s . The evolution of the system

is shown in figure 7, for the no-reset, full-reset, and partial-
reset cases (from top to bottom). If no reset is performed, the
plant exhibits considerable overshoot. A reset strategy can be
applied to solve this issue. Since the overall delay is ΔT = 1,
the reset instants satisfy ev + ėv = 0. In this case, a full
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Fig. 8. Feedback forces with partial reset and without reset

reset strategy (Fig. 7, medium) and a partial reset strategy
with p = 0.85 (Fig. 7, bottom) achieve similar results as far
as overshoot reduction is concerned: at time ≈ 3 seconds, the
overshoot is eliminated; at time ≈ 6 seconds, it’s reduced by
more than 50%; and at time ≈ 13 seconds, by more than
60%. In both cases, when moving in free space the overshoot
is reduced and, due to the fact that we are anticipating the
time delay, the slave position tracks the master position more
accurately, so the shapes of the trajectories are more similar.
The difference in performance between both strategies is that
with full reset there’s an error in steady state, which doesn’t
appear with partial reset: in this latter case, after the master
device is released by the operator, this is pushed by the
feedback force until it matches the position of the slave device,
thus eliminating the steady state position error. Obtaining
simultaneously these two features (good tracking with reduced
overshoot, and no error in steady state) is possible due to the
use of partial reset.

In figure 8 the force feedback to the user (fm) is plotted
for the no-reset (dashed line) and reset cases (solid line). As
expected, the use of reset decreases the magnitude of the force
at the reset instants, resembling the physical equivalent of a
charged spring whose deformation is suddenly reduced.

B. Example 2: Gantry crane

Now we apply the reset control scheme to the teleoperation
of a gantry crane. A real plant, Inteco’s 3DCrane model, was
used as slave device in the experiments. The output to be
controlled is the position of the cart moving in the x axis. Its
movement is affected by the oscillations of a payload hanging
from a cable with constant length. Unlike in the previous case,
the master device is not similar to the slave plant; instead,
the desired velocity is directly indicated by the operator. Two
different experiments will be carried out: in the first one, the
operator is simulated in order to obtain a completely repeatable
manoeuvre; in the second one, the manoeuvre is actually
specified by a human operator.

Let us first examine the case where the operator’s command
is simulated as a velocity pulse with an amplitude of 0.2m

s
and 1.5 seconds long. The feedback force has thus no effect
on the velocity setpoint. A constant time delay of 0.25
seconds is considered (round trip delay of 0.5 seconds). The
controllers are aggressively tuned with coefficients Km =
Ks = 60 kg

s2 , Bm = Bs = b = 6 kg
s . The desired and achieved

positions are pictured on figure 9. It can be noticed that the
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Fig. 10. Setup for crane teleoperation

reset action eliminates the overshoot by 80%, while providing
a fast rise time.

Next we perform a human-commanded teleoperation ma-
noeuvre. The operator handles again a SensAble PhanTom
Omni haptic device, and the overall teleoperation setup is
depicted in Fig. 10. The controllers are tuned as before, but this
time the time delay is no longer constant. Instead, the use of a
packet-switched network such as internet is simulated, apply-
ing the passivity-maintaining solution for signal reconstruction
presented in [11] that was applied to crane teleoperation in
[14]. The delay follows a normal distribution, with an average
value of 0.15 seconds for each channel (master to slave and
slave to master), an standard deviation of 0.01, and a 5%
packet loss. The reset controller is hence tuned to anticipate
to an expected round trip delay of 0.3 seconds. In figure 11
it’s shown that the overshoot is completely eliminated.

VI. CONCLUSIONS

This paper reports a study on the application of reset control
techniques to passivity-based teleoperation. The advantages of
reset control for overcoming fundamental limitations, namely
time delays, have been presented and exploited. The proposed
method resets the state of the master impedance controller and
benefits from choosing the reset instants so that the system
anticipates to the communications channel’s time delay.

Several improvements have been made with respect to
the first version of this paper [15], including a theoretical
justification of the reset controllers’ capability of overcoming
linear fundamental limitations. Furthermore, partial reset with
a PI+CI architecture is now used instead of the originally
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Fig. 11. Teleoperating a crane over the internet. Solid lines: master device,
dashed: slave (gantry crane). Top: no reset; bottom: partial reset (p = 0.95)

proposed full reset, thus ensuring cancellation of the steady-
state error. Passivity of the control system has been proven
when the characteristic parameter of the PI+CI controller is
constant.

Simulated and experimental results have been shown which
demonstrate the good performance of the proposed scheme for
different applications. The solution has shown its usefulness
even in internet-based teleoperation with time-varying delays.

Future work will be focused on the possibility of using a
time-varying parameter p, and its implications for passivity.
An extension for unknown, time-varying delays, is another
natural line of research.
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