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We carry on a theoretical investigation of the conditions for the appearance and/or modification of spin
ordering in a dilute magnetic semiconductor that is in contact with a ferromagnetic metal. We show that the
magnetic proximity effect has a rather complex physical nature in this system. Allowing for the hybridization
between the ferromagnetic metal and semiconductor electron states, we calculate the spin polarization and spin
susceptibility of carriers in the semiconductor layer near the contact. The peculiar mechanism of indirect
exchange coupling that occurs between local spins dissolved in the semiconductor host when a dilute magnetic
semiconductor is in contact with a ferromagnetic metal is analyzed. The structure of the proximity-induced
ordering of local moments in a dilute magnetic semiconductor is qualitatively described within a mean-field
approach. On the basis of our results, we interpret the experimental data on Fe/�Ga,Mn�As and Py/�Ga,Mn�As
layered structures.
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I. INTRODUCTION

An important trend of investigation of the dilute magnetic
semiconductors �DMSs� based on III-V �GaAs, GaSb� and
IV �Si, Ge� nonmagnetic semiconductors doped with mag-
netic 3d transition-metal �TM� �Mn, Fe, Cr, and Co� atoms is
to obtain alloys that display electrically tunable ferromag-
netism �FM� well above room temperature. However, it is
still difficult to guess which of DMSs are most likely to
display a high-temperature FM needed for spintronic appli-
cations. Although substantial progress has been made in ex-
perimental and theoretical studies of these materials, a deep
understanding of the physics of DMSs has not been
achieved.

It would seem that the manner to raise the Curie tempera-
ture Tc in homogeneous �at the macroscales and nanoscales�
DMSs, in which magnetic ions are more or less randomly
distributed inside the semiconductor host, consists merely in
increasing the concentration of TM ions. There are two
sources of such an enhancement of ferromagnetic order in
the alloy.1 The first is simply due to the rise of concentration
of magnetic moments which is proportional to the concentra-
tion of TM ions in the DMS. The second arises from the fact
that, according to the traditional point of view, an indirect
exchange coupling between local moments dissolved inside
the semiconductor host is mediated by the carriers of the
host. The TM ions in the DMS play a twofold role: they
carry the local moments and also provide the host with
charge carriers. For example, when Mn substitutes for Ga in
a GaAs lattice, it acts as an acceptor in the host, providing
holes that mediate a ferromagnetic interaction between the
local moments of the Mn ions. The strong correlation be-
tween the Curie temperature and the hole concentration p,
approximated by an empirical relation Tc� p1/3, has been

established experimentally for the Ga1−xMnxAs alloys in a
0.02�x�0.085 range of Mn content.2 However, the main
unsolved problem concerns the state of the carriers in DMSs.
The Ruderman-Kittel-Kasuya-Yoshida �RKKY�-type models
of exchange imply that the carriers are itinerant and their
chemical potential lies inside the valence or conduction band
of the semiconductor host. Alternatively, the magnetic po-
laron models of exchange require that the carriers move in
the impurity band and their chemical potential lies inside the
gap of the semiconductor host.

Numerous experimental studies demonstrated that well
above the solubility limit of TMs in a semiconductor host �of
few atomic percents� it is hardly possible to achieve a homo-
geneous alloy. The incorporation of a large concentration of
TM atoms is accompanied by macroscale and nanoscale fluc-
tuations of the TM content of the alloy and the formation of
inclusions of the thermodynamically stable phases �precipi-
tates�. As observed in the epitaxial growth of thin-film
DMSs, a remarkable modulation of dopant density of differ-
ent scales and various morphologies �from TM-rich small
nanosized islands and droplets to long nanocolumns and
micrometer-sized stripes� occurs. The presence of these in-
homogeneities, which are usually not well controlled,
strongly affects the crystal potential and the charge density in
the material and is detrimental to the carrier mobility of most
semiconductors. The structurally inhomogeneous DMSs of-
ten have relatively unconventional magnetic properties, in-
cluding an unusual temperature dependence of the magneti-
zation, transport, and optical characteristics, ascribed to the
coexistence of paramagnetic and ferromagnetic regions and
multiple competing exchange interactions. The clustering of
impurities could locally increase the critical temperature but,
as a rule, limits the achievable temperature of global ferro-
magnetic ordering Tc.

3 While achieving FM above room
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temperature in DMSs by improving the technology of prepa-
ration of well-controlled homogeneous alloys with tradi-
tional constituents or prospecting new materials remains a
challenge, alternative ways to overcome this obstacle be-
come very important.

The exchange coupling between magnetic ions can be re-
markably increased in systems with artificially modulated
doping, for example, the so-called digital magnetic alloys,
due to the appearance of spin-polarized collective states of
carriers �confinement states�.4–9 A promising way to realize
this is to synthesize heterostructures consisting of highly
doped thin layers of TMs embedded into a semiconductor
host. This is attractive because much higher local TM ions
concentration can be obtained rather than that in a bulk ran-
dom alloy. Following this idea Nazmul et al.10 have achieved
a fairly high Tc of about 250 K in Mn � doped GaAs/AlGaAs
heterostructures. In our view, an advance in the field of digi-
tal magnetic alloys is connected with the exploitation of
modern epitaxial techniques to produce structures that dis-
play a sharp profile of the metal � layer along the growth
direction.

One can suggest that the physical properties of DMSs will
be strongly modified if prepared in the form of an ultrathin
film on a metal substrate or sandwiched between metal lay-
ers. Recent measurements of magnetic order and interface
coupling in a hybrid structure Fe/�Ga,Mn�As�100� have con-
firmed this suggestion. Maccherozzi et al.11 observed that
induced magnetic order persists up to room temperature and
extends over a DMS region as thick as 2 nm due to a robust
exchange coupling at the interface between the �Ga,Mn�As
layer and the Fe overlayer. It is evident that the spin order
may be induced in otherwise paramagnetic systems �or may
be enhanced in otherwise weak magnetic systems� owing to
the close proximity to a strong ferromagnet. In agreement
with Ref. 11 the magnetic behavior of the Fe/
�Ga,Mn�As�100� structure is obviously a result of the mag-
netic proximity effect, when the wave function of spin-
polarized states of the ferromagnetic metal �FMM� layer
penetrates into the DMS layer. In such FMM/DMS hybrid
structure, a strong magnetic order of a FMM with the Curie
temperature well above room temperature could successfully
be exploited to amplify the intrinsic Curie temperature Tc of
the DMS, thanks to the proximity effect. It is clear that the
relevant magnetic order would be remarkably enhanced only
near the interface with a FMM, in other words, it would be
short ranged. Nevertheless, if the spin polarization penetrates
from a FMM deeply enough into a DMS �according to Ref.
11, in several nanometers at room temperature�, the idea to
bring a DMS in the close proximity of a strong FMM is
highly fruitful for practical applications.

The goal of the present paper is to shed light on how
magnetic proximity effect influences the exchange interac-
tion between local magnetic moments of a DMS that is in
contact with a FMM. Of course, in real FMM/DMS struc-
tures, the role of the interface in the emergence or modifica-
tion of magnetic ordering in the semiconductor side cannot
be solely attributed to the above mentioned “tunneling”
mechanism of the magnetic proximity effect. The role of the
interface is much more intricate and depends on its character
and peculiarities. For example, in the case of the Fe/GaAs

junction with Schottky barrier, interface localized states ap-
pear intrinsically within the barrier �see Ref. 12�. In the Fe/Si
structures, an intermediate layer of silicide forms at the in-
terface due to unavoidable interdiffusion of the components.
In addition, the boundary between the metal layer and the
DMS layer can cause confinement of quasi-two-dimensional
states of carriers in the semiconductor side of the hybrid
structure.7 These peculiarities can have an impact on mag-
netic properties of the corresponding systems. However, in
spite of their importance in specific situations, the question
about the role of the tunneling mechanism of the magnetic
proximity effect in FMM/DMS nanostructures is itself of a
great interest.

Per se, the complex nature of spin-polarized tunneling
through a metal/semiconductor interface was recognized
rather long ago when dealing with the task of calculating
magnetoresistance and spin diffusion for trilayers of
ferromagnet/insulator/ferromagnet or ferromagnet/
semiconductor/ferromagnet types. It is known that, in such
systems, near the interfaces, the effective-mass approxima-
tion is not valid. Therefore, various numerical methods need
to be developed. Alternatively, one often applies simplified
analytical schemes, where the tunneling probability �trans-
mission coefficient� is determined by matching the wave
function �and its derivative� obtained solving the
Schrödinger equation with a semiphenomenological �as a
rule, one-dimensional� potential at the interface between dif-
ferent materials. For example, in the model of Ref. 13, the
free spin-polarized electrons tunnel through a rectangular
barrier. In more refined quantum interference �electro-
optical� model,14 Bruno introduced the concept of partial re-
flection coefficients for electron waves of different angle
symmetry taking into account spin asymmetry of the reflec-
tions. Unfortunately, these schemes are of little use for solv-
ing our problem that consists in finding out the contribution
to the energy of indirect exchange between the local mo-
ments of the DMS layer induced by the proximity to the
FMM layer.

Let us briefly sketch the approach we use to evaluate the
effect of the FMM/DMS contact on the magnetic ordering in
DMS. Below we consider an interface between semi-infinite
layers of FMM and DMS. The electron states of the DMS
and FMM layers in the absence of the contact are assumed to
be described on the basis of eigenstates of the bulk DMS,
�S�, and bulk FMM, �M�, correspondingly. After the DMS
layer contacts with the FMM layer, these states are perturbed
by an interface potential. In general, the symmetry group of
the interface potential does not coincide with the symmetry
group of both the bulk DMS and FMM. This means, that in
the DMS layer near the interface there are scattering pro-
cesses both from the states �S� to the states �S� �intraband
processes� and from the states �S� to the states �M� �interband
processes�. Specifying the interface potential by means of a
set of phenomenological parameters, i.e., matrix elements of
quasiparticle transitions between the states �S� and �M�, one
can evaluate the spin polarization and spin susceptibility of
carriers in the DMS layer. From the methodological point of
view, to perform this calculation, we involve the one- and
two-particle Green’s function, which contain both diagonal
and off-diagonal components �in terms of the �S� and �M�
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states and with respect to spin indices�. Knowing the spin
polarization and spin susceptibility of carriers, one can cal-
culate the contact-induced contribution to the energy of in-
teraction between the local moments in the DMS layer.

The paper is organized as follows. In Sec. II, we discuss
the model for a contact between FMM and DMS layers,
which includes the hybridization of the �M� and �S� states at
the FMM/DMS interface. In Sec. III, we consider the spin
polarization of carriers in the semiconductor layer that is
induced by the adjacent FMM layer and determine the de-
pendence of the polarization on the distance from the inter-
face. In Sec. IV the behavior of a single local moment �we
also use in the text the equivalent term “local spin”� under
the influence of the carrier spin polarization in the DMS
layer is described. In this section we also elucidate how the
proximity of the FMM layer modifies the carrier mediated
exchange coupling between local spins in the DMS layer. We
derive the expression for the exchange energy of local spins
dissolved in the DMS layer contacted the FMM layer. In Sec.
V, within the framework of an effective mean-field func-
tional, we investigate the magnetization of the DMS layer as
a function of the distance from the interface and temperature.
The interpretation of experimental data on the Fe/�Ga,Mn�As
�Ref. 11� and Py/�Ga,Mn�As �Ref. 15� layered systems, sum-
mary and concluding remarks are found in Sec. VI.

II. SETUP OF THE PROBLEM AND MODEL
HAMILTONIAN

We consider the FMM/DMS system to be infinitely ex-
tended in all directions. Both the FMM and DMS layers are
treated as semi-infinite slabs joined at the interface, the
boundary between the constituent materials is implied to be
perfectly flat. The system displays translational symmetry
along the longitudinal direction in the �x ,y� interface plane
located at z=0. Since the translational symmetry is broken
along the z direction by the interface plane, it is convenient
to use real-space coordinate representation. We write the
Hamiltonian H of the electron states of the FMM/DMS sys-
tem in the form

H = HS + HM + HI. �1�

Here, the Hamiltonian HS describes the DMS layer, which
occupies the half-space z�0,

HS = H0 + Hloc =� dr�
�

��
+�r���− i�����r�

+ �
i
� dr�

�,�
��

+�r�	���� · Si����r���r − Ri� , �2�

where the first term, H0, is the kinetic energy of carriers in
the pure semiconductor host �in the absence of the local
spins�, the second term, Hloc, is the energy of interaction
between the carriers and the local spins, and � is the vector
of the Pauli matrices. The restriction �	S�
W is imposed on
the matrix element 	 of the exchange interaction of carriers
with the local spins in Eq. �2� �W is an energy scale on the
order of the bandwidth of the semiconductor�.

It is necessary to make some additional assumptions. We
assume that the local spin Si at the site Ri= �Xi ,Yi ,Zi� of the
semiconductor crystal lattice experiences a contact exchange
interaction with carriers of the semiconductor host. To sim-
plify the treatment, we shall describe the local spin Si clas-
sically, regarding it as a magnetic moment denoted by the
same symbol Si. All the spins are assumed to be of equal
magnitude, �Si�=S. Formally speaking, our approach is cor-
rect in the case of a large spin, i.e., within a 1 /S expansion.
Therefore one may hope that the classical approach will not
introduce qualitative shortcomings in the estimate of the ex-
change interaction energy in DMSs.16

The magnetic TM ions within the DMS layer are assumed
to be randomly dispersed with relatively low concentration
up to several percent. Because of the relatively large distance
between TM ions in DMS, the wave functions belonging to
different ions have a negligibly small overlap, so the ex-
change coupling of two neighboring local spins in the DMS
host is mediated by itinerant carriers. It should be noted that
the spatial configuration of the magnetic order, which could
establish within the DMS layer, is a priori uncertain. The
arrangement of local spins is governed by exchange interac-
tions of different origin and kind; some of them are intrinsic
to DMSs while others are induced by the proximity to the
FMM layer.

The second term in Eq. �1� is the Hamiltonian of the
FMM layer, which occupies the half-space z�0,

HM =� dr�
�,�

��
+�r�	E�− i����� + ���� · ��
���r� ,

where � is the Stoner exchange splitting of the band states in
the FMM bulk.

The metal and semiconductor quasiparticle states are scat-
tered and mixed with each other and, in this manner, essen-
tially modified �in comparison with the corresponding bulk
states� near the FMM/DMS interface on the scale on the
order of the lattice spacing. Moreover, a redistribution of
charge and spin density is produced at the metal/
semiconductor boundary. Strictly speaking, it would be nec-
essary to solve the rather intricate quantum-mechanical prob-
lem for electron states which experience the action of the
self-consistent potential of the interface. Obviously, this task
requires sophisticated numerical approaches but here we in-
tend to make use of a simpler empirical method to obtain
some qualitative estimates. Within the framework of this
method, the electron structure of the constituent materials is
assumed to be specified by the bulk parameters. In addition,
the interface region must be phenomenologically described
by means of an effective spin-dependent contact potential
V�z�. As pointed out above, the symmetry group of V�z� is,
generally speaking, different from the symmetry groups of
both the bulk metal and the bulk semiconductor. The opera-
tors ��

+�r�	���r�
 and ��
+�r�	���r�
 create �annihilate� a qua-

siparticle in a state belonging to the symmetry group of the
bulk semiconductor �S� or the bulk metal �M� with spin pro-
jection � onto the quantization axis. These operators are de-
fined far from the interface in the semiconductor layer �z
�0� or in the metal layer �z�0�, where the potential V�z�
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vanishes. We introduce the term HI, which describes in a
phenomenological manner the effective Hamiltonian of qua-
siparticles at the interface,

HI = Hs + Hm + Hsm,

where

Hs =� dr�
��

��
+�r�	Us��� + ��s · ����
���r���z� , �3�

Hm =� dr�
��

��
+�r�	Um��� + ��m · ����
���r���z� , �4�

Hsm =� dr�
��

���
+�r�	Usm��� + ��sm · ����
���r� + ��

+�r�

�	Ums��� + ��ms · ����
���r����z� . �5�

Here, we used a local approximation V��z� for the poten-
tial V�z�, all matrix elements of V are treated in our model as
phenomenological parameters. The matrix elements Us, �s
and Um, �m relate to the processes of potential and exchange
scattering from the component V�z� without change of a
symmetry of an eigenstate of the metal and semiconductor
subsystem, respectively; while the matrix elements Usm, sm
and Ums, �ms�Usm=Ums

� ,�sm=�ms
� � are assigned to the scat-

tering amplitude from the potential V�z� with transfer of qua-
siparticle from an eigenstate of symmetry group �S� to an
eigenstate of symmetry group �M�, and vice versa. The
physical dimension of all the contact matrix elements equals
an energy divided by an area.

In this work we are interested in the variation in charge
and spin density caused by the redistribution of carriers in
the DMS near the FMM/DMS interface over a tunneling
length of few nanometers, i.e., much larger than the lattice
parameters in bulk FMM and DMS. On the FMM side of the
interface the local approximation for the potential V�z� is
evident. It is assumed that the characteristic range of V�z� is
small compared to the screening length �m in the FMM, that
is reasonable at all carrier concentrations, which exceed
1022 cm−3. On the DMS side of the interface the situation is
not so simple. At relatively high carrier concentration, larger
than 1019 cm−3, the carriers form a degenerate Fermi gas and
the estimated screening length �s does not exceed few ang-
stroms, i.e., it is lesser than the tunneling length of the car-
riers. So, the local approximation seems reasonable. How-
ever, at relatively low carrier concentration, less than
1018 cm−3, the screening length �s may formally be on the
order of the tunneling length of the carriers. Apparently, such
low carrier concentration is almost impossible in the bulk
DMS at the TM concentration of few atomic percents, even
in the case of an almost perfectly compensated material. The
more realistic scenario is probable, when a wide region,
strongly depleted with carriers �the so-called Schottky bar-
rier�, appears in the DMS side of the FMM/DMS interface
due to the charge redistribution and the electron band bend-
ing near the interface. Since the thickness of the Schottky
barrier can be as large as hundreds of nanometers, the local
approximation for V�z� becomes formally incorrect. Never-

theless, note that, for purely qualitative estimates, the long-
range part of the potential V�z� may be simply included into
the calculation through renormalization of the chemical po-
tential of carriers in the DMS. In the following, we assume
that the position of the Fermi level in the FMM layer defines
the position of the chemical potential of carriers in the DMS
layer. We also do not take into account the bending of elec-
tron bands in DMS near the FMM/DMS interface.

We consider our model at zero temperature, although the
finite-temperature regime can, in principle, be accounted for
by including the Fermi functions in the integrands of the
expressions below. The free energy of the system can be
formally written as

F = −
1

�
Im� d� Tr ln G��� , �6�

where G���= ��+ i0−HS−Hs−Hsm�−1 is the Green’s func-
tion of the DMS in the presence of the contact with the FMM
layer, � is the frequency. Following Ref. 16, we express the
quantity ln G��� in terms of the components of the Green’s
function of the pure semiconductor host �without the dis-
solved local spins� coupled to the FMM layer, g���= ��
+ i0−H0−Hs−Hsm�−1. The function comprises diagonal �gd�
and off-diagonal �god� components with respect to the in-
dexes of the local-spin sites Ri. The symbolic form of the
corresponding expression is

ln G = ln g − ln�1 − gdK� + �
n=1

�
1

n
	godt
n, �7�

where the symbol t denotes the single-site scattering matrix
that describes the multiple scattering of electrons on the local
spin placed at the point Ri,

t = K	I − gdK
−1.

By taking into account the spin indexes, the matrix K is
written as K���Ri�=	���� ·Si�.

According to Eq. �7�, the free energy, Eq. �6�, may be
divided into three contributions,

F = F0 + Fd + Fod. �8�

The term F0 is the free energy of the semiconductor host in
the presence of the contact, which is independent of the in-
teraction between electrons and local spins. The last two
terms in Eq. �8� represent the part of the free energy caused
by the exchange interaction of carriers with local spins dis-
persed in the DMS layer. The site-diagonal term Fd appears
in the single-site approximation, whereas the site-off-
diagonal term Fod is related to the interference of the states
belonging to different local-spin sites. Since we are inter-
ested in the situation of a strongly diluted alloy in the DMS
layer, the terms up to the second order of god will be retained
to calculate the energy contribution Fod.

III. CONTACT-INDUCED SPIN POLARIZATION OF
CARRIERS IN THE SEMICONDUCTOR LAYER

The effect of the metal/semiconductor interface on redis-
tribution of the charge and spin densities in the semiconduc-
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tor layer can be evaluated from the variation in the Green’s
function of the semiconductor layer due to the interface po-
tential treated as a perturbation. Consistently with our as-
sumptions, we write down the Green’s function of the semi-
conductor layer in the coordinate representation as

g���r;r�;�� = g0�r;r�;����� + ����r;r�;�� , �9�

where g0 is the Green’s function of the semiconductor bulk
�in the absence of the metallic layer and local spins� associ-
ated with the Hamiltonian H0. Evaluating the variation �, we
restrict ourselves to the lowest order in the perturbation, Eqs.
�3� and �5�, i.e., the first order in the parameters Us and �s
and the second order in the parameters Usm and �sm. Within
such an approximation, we arrive to the following expres-
sions:

����r;r�;�� = ����r;r�;�� + ����r;r�;�� , �10�

����r;r�;�� = 	Us��� + ��s · ����
 � d�1

� g0��,z;�1,0;��g0��1,0;��,z�;�� ,

�11�

����r;r�;�� = �
�,�
� d�1d�2g0��,z;�1,0;�� � 	Usm���

+ ��sm · ����
 � G����1,0;�2,0;��

� 	Ums��� + �ms · ����


� g0��2,0;��,z�;�� , �12�

where G���r ;r� ;�� is the Green’s function of the bulk FMM,
i.e., G���= ��+ i0−HM�−1 and �= �x ,y� is the coordinate vec-
tor along the interface plane.

Thus, in Eq. �9�, we express the Green’s function of the
semiconductor layer adjacent to the metal layer by means of
the Green’s functions g0 and G associated with the bulk
semiconductor and the bulk metal, respectively. The compo-
nent ����r ;r� ;�� results from the intraband electron excita-
tions due to the interface in the semiconductor while the
component ����r ;r� ;�� results from the interband excita-
tions between the metal and semiconductor states. Thereby,
as seen from Eqs. �11� and �12�, we formally deal with the
task of the perturbation of the electron density in the infinite
bulk semiconductor by the frequency- and spin-dependent
effective potential, which is nonlocal. However, only the
half-space z�0 contributes to the energy, Eqs. �6� and �8�.

For the sake of definiteness, we suppose that the Fermi
level of the system � lies near the bottom of the conduction
band of the semiconductor. Thereby, we use the simplified
model in which the electron states of this semiconductor
band are mainly involved in the processes of the hybridiza-
tion and scattering at the interface while the contribution of
other energy bands �distant from the Fermi level� is ignored.
We adopt henceforth the simplest form for the energy spec-
trum of the semiconductor host,

��k� =
k2

2m
,

where m is the effective quasiparticle mass near the band
bottom located at zero energy.

Within the adopted effective-mass approximation, the
Green’s function describing the propagation of an electron
with energy ��0 between the points r and r� in the semi-
conductor host reads,

g0�r;r�;�� = −
ma3

2�

exp�i�2m��r − r���
�r − r��

, �13�

where a is the semiconductor lattice spacing. One can use
Eq. �13� for electrons with negative energy ��0, if one
substitutes −���� for i��.

For the FM metal host we adopt the simplest form of the
spectrum with two spin-split subbands,

E����k� = E�k� �� =
k2

2m̃
− E0 �� ,

where m̃ is the effective mass of electrons near the minimum
of the subbands. The quasiparticle effective mass in the
semiconductor is noticeably smaller than that in the d band
of the metal, m̃�m. The energies E0

���=E0���0 deter-
mine the lower edges of the minority-spin and majority-spin
bands, located at −E0

���, respectively, � is the energy of ex-
change splitting in the ferromagnetic metal. In what follows,
to simplify the analytical treatment, we shall regard the po-
tential step at the interface E0 as largest energy parameter in
our model. Of course, in the case of the Fe/�Ga,Mn�As�100�
junction, the values E0 and � are likely to be of the same
order of magnitude. In this case, the exchange mechanism
discussed below, would coexist with the usual mechanism14

associated with the penetration of the wave function of the
metal into the semiconductor below the potential barrier,
close enough to the interface. Anyway, due to the exponen-
tial fall-off of the latter, our mechanism would be the domi-
nant one at larger distances from the interface.

The Green’s function of the FM metal host is given by

G���r,r�,�� =
1

2
G�+��r,r�,��	��� − �n · ����


+
1

2
G�−��r,r�,��	��� + �n · ����
 ,

where

G����r;r�;�� = −
m̃ã3

2�

exp�i�2m̃	� + E0
���
�r − r���

�r − r��

and n= �� /�� is the unit vector oriented along the direction
of the magnetization of the FMM layer, ã is the metal lattice
spacing.

Such assumptions regarding the electron structure of the
semiconductor and metal subsystems do not significantly re-
strict the generality of our discussion with the advantage of
leading to analytical expressions that provide an evident
physical meaning of our results.
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Having introduced the Green’s function for disconnected
bulk subsystems, we now proceed to the explicit calculation
of the variation in the Green’s function of the semiconductor
layer caused by the adjacent FMM layer. Let us represent the
spin structure of the components, Eqs. �11� and �12�, in the
following form:

����r;r�;�� = �̃�r;r�;��	Us��� + ��s · ����
 ,

����r;r�;�� = �̃�+��r;r�;�����
�+� + �̃�−��r;r�;�����

�−�,

���
��� = 	UsmUms

+ �sm · �ms� � Usm�n · �ms� � Ums�n · sm�
���

� 	UsmUms − ��sm · ms�
�n · ����

+ 	Usm � �n · sm�
��ms · ���� + 	Ums � �n · ms�


���sm · ���� � iUsm���� · 	n

�ms
� � iUms���� · 	n �sm
� .

We write the variation in the Green’s function of a semi-
conductor ����r ;r� ;��, Eq. �10�, at equal space arguments,
r=r�. As it will be seen below, in the context of the problem
under consideration, we do not need more elaborate informa-
tion on this quantity. The spin-dependent density of states is
the relevant quantity to elucidate how the contact influences
the polarization of the semiconductor layer.

The spatial change in the Green’s function of the semi-
conductor caused by the intraband processes at the interface
is described by the following distribution:

�̃�r;r;�� 0� = −
m2a6

2�
	ci�2�2m�z� + i si�2�2m�z�
 ,

�14�

�̃�r;r;�� 0� =
m2a6

2�
E1�2�2m���z� . �15�

For the spatial change in the Green’s function of the semi-
conductor caused by the interband processes at the interface,
using the Erdélyi lemma and omitting terms proportional to
E0

−3/2 �under the condition E0
���� ����, one arrives at the fol-

lowing distribution:

�̃����r;r;�� 0� = −
m2a6�m̃ã3

4��2E0
���

�	si�2�2m�z� − i ci�2�2m�z�
 , �16�

�̃����r;r;�� 0� = −
im2a6�m̃ã3

4��2E0
��� E1�2�2m���z� . �17�

Above, to distinguish between the expressions for the
states with the positive energy and with negative energy, we
label the former by ��0 and the latter by ��0. We utilize
the standard notation for the special functions,

si��� = − �
�

�

dt
sin t

t

and

ci��� = − �
�

�

dt
cos t

t

are the sine and cosine integrals, respectively,

E1��� = �
�

�

dt
exp�− t�

t

is the exponential integral.17

The expression, Eqs. �16� and �17�, are obtained under the
condition ���
E0. Far from the point �=0, the value of

�̃����r ;r ;�� decays rapidly and becomes relatively small
when ��−E0

��� and the value 2�2mE0
���z is rather larger

than unity,

�̃����r;r;�� 0� ��4 E0
��� + �

�E0
����3 exp�− 2�2mE0

���z� .

We have now all the ingredients that are needed to deter-
mine the spin polarization of carriers in the semiconductor
layer due to the contact with the FM metallic layer. The spin
polarization at the point r �z�0� is given by

m�r� = Im�� d�

�
�
��

�������r,r,�� . �18�

In the spirit of the task setting, the semiconductor layer is
assumed to be heavily doped, therefore the Fermi level of the
system � is placed within the semiconductor band, ��0.
The applicability of the effective mass method requires � to
be small as compared with both the metal and the semicon-
ductor bandwidth: �
 �E0 ,W�. On the other hand, of course,
the size of the perturbing interface potential is not large on
the scale of the bandwidths.

We express the dependence of the spin polarization of the
carriers in the semiconductor layer 	Eq. �18�
 as a function of
the variable z and of the parameter � in the additive form

m�z,�� = m����z,�� + m����z,�� . �19�

Taking into account Eqs. �14� and �15�, after integration with
respect to Eq. �18�, one obtains for the spin-polarization
component originated from the intraband processes the fol-
lowing explicit expression:

m����z,�� = − �s�ma3

�
2

���2kFz� , �20�

�� � = si� � +
cos  

 
−

sin  

 2 , �21�

where kF is the Fermi momentum in the semiconductor layer,
kF=�2m�, and  =2kFz is a dimensionless quantity. In the
asymptotic limit 2kFz�1, the range function � exhibits
damped oscillations approaching the behavior
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�� � �
2

 2�sin  −
cos  

 
� .

In the opposite case 2kFz
1, we find

�� � � −
�

2
+

2 

3
.

The range function, Eq. �21�, is depicted in Fig. 1.
Taking into account Eqs. �16� and �17�, after integration in

Eq. �18�, one obtains for the spin-polarization component
originated from the interband processes the following ex-
pression:

m����z,�� = �h�ma3

�
2

	�!�2kFz� − E0"�2�2mE0z�
 ,

�22�

�h =
�m̃ã3

�2E0
�Usm�ms + Ums�sm +

�

2E0
�	UsmUms

− ��sm · �ms�
n + �n · �sm�ms + �n · �ms��sm

− iUsm	n � �ms
 + iUms	n � �sm
� . �23�

The exchange splitting energy is considered to be small com-
pared to the bandwidth, i.e., �
E0. By keeping the terms up
to first order in � /E0, we have obtained Eq. �23�.

In the right part of Eq. �22�, in the square brackets, the
first term, ��, is derived from the integration over the posi-
tive frequency �. The corresponding range function reads

!� � = ci� � −
sin  

 
+

1 − cos  

 2 . �24�

The second term, �E0, is produced by the integration from
�=−E0 to �=0. The range function "�#� appears to be a
complicated function of the variable z and the energy spec-
trum parameters E0 and m / m̃. Under the condition
2�2mE0z�1, the narrow region 0���−$ �$
E0� mainly
contributes to the integral, and one may use the approxima-
tion

"�#� = E1�#� +
1 − �1 + #�exp�− #�

#2 . �25�

Note that the function "�#� does not change sign and has the
asymptotic behavior "�#��#−2 when the dimensionless pa-
rameter #=2mE0z tends to infinity. Therefore, at large dis-
tance from the interface, when 2kFz�1, the polarization
component m����z� behaves as

m����z,�� � − �h�ma3

�
22�

 2 �cos  +
sin  

 
� ,

where  =2kFz.
When the arguments approach zero, the range function

!� � diverges logarithmically, while the function "�#�
reaches a finite value, "�#→0�→"0. At small 2kFz and
2�2mE0z, we find

m����z,�� � �h�ma3

�
2

	� ln�2kFz� − E0"0
 , �26�

where, under reasonable assumptions for the effective-mass
ratio m / m̃, the value "0 is on the order of unity. It is inter-
esting to remark that, if the Fermi level is rather low, namely,
�� ln�2kFz���E0, the interface hybridization with the metal
states, the energy levels of which are placed inside the semi-
conductor gap, gives rise mainly to the formation of the po-
larization m����z ,��, Eq. �26�. It is important not to forget
that our results are meaningful over distances �measured
from the nominal boundary, z=0� which significantly exceed
the characteristic length �on the order of the semiconductor
lattice spacing� of the contact potential. Moreover, the
effective-mass approximation is not correct in the semicon-
ductor side near the interface within the region z
% ��mW�−1.

The behavior of the range functions !� � and "�#� is
shown in Fig. 1.

It is interesting to note that �0
�d �� �=−2, �0

�d !� �=0,
and �0

�d#"�#�=2 	making use of the approximation Eq. �25�
for "�#�
, consequently, the net spin polarization of the DMS
layer, �=�0

�dzm�z�, is

� = �ma3

�
2��s� �

2m
− �h� E0

2m
 . �27�

In principle, we could sum up an infinite perturbation se-
ries in the matrix elements of the contact potential and obtain
an exact expression for the variation ����r ;r� ;�� in Eq. �9�
corresponding to the full t matrix, in analogy with the results
of Ref. 8. The corresponding calculations allow us to esti-

FIG. 1. �Color online� Range functions vs the dimensionless
coordinates. The functions �� �, !� �, and "�#� are depicted by the
lines marked with the corresponding labels.  =2kFz and #=2mE0z.
The function "�#� is represented by the dashed line for m̃ /m=9 and
by the point-dashed line for m̃ /m=1, respectively. Its asymptotic
behavior, Eq. �25�, is depicted by the solid line.
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mate the domain of applicability of the approximations used
above: a3��Us� , �s���m
�� and a3ã3�mm̃��Usm� , �sm��2


�2E0�.
We can assume that the vector �s is proportional to the

magnetization of the FMM layer �s=J�. Strictly speaking,
the same assumption does not hold for the vector �h, Eq.
�23�. Hence, in the general case, the total spin polarization in
the semiconductor, m, Eq. �19�, which is likely to arise not
only due to the imbalance of filling of the majority-spin and
minority-spin subbands in the FMM layer ���� but also due
to the fact that the hybridization at the interface between the
semiconductor states and the metal states for the majority
spins is different from that of the minority spins ���sm�, is
noncollinear to the magnetization of the FMM layer.

We demonstrated that the polarization of the electron spin
density in the semiconductor layer, which is induced by the
adjacent FMM layer, is oscillatory and has power-law fall-
off with the distance from the contact. The oscillatory behav-
ior is characterized by the period �=� /�2m� correlated
with the position of the Fermi level as in the case of the
ordinary Friedel oscillations. It is also interesting to note that
the oscillations of m����z ,�� and m����z ,�� are dephased by
a quarter of period �with respect to each other�.

IV. EFFECT OF THE FMM LAYER ON THE ORDERING
OF LOCAL SPINS IN THE DMS LAYER

Now, we consider the behavior of the local spins �Si�
dissolved in the DMS layer near its contact with the FMM
layer. In FMM/DMS structures, the interface potential per-
turbs the spin and charge density of carriers in the semicon-
ductor layer over rather large distances �on the order of the
tunneling length� from the metal/semiconductor contact. This
perturbation obviously affects the local spins dissolved in the
DMS layer and influences their ordering. To describe this
proximity effect in the framework of our model, we need to
calculate the diagonal contribution Fd to the free energy, Eq.
�8�. As it was already stated, we are assuming that the Fermi
level of the system under consideration lies within the semi-
conductor conduction band near its edge. We can write Fd in
the explicit form

Fd = �
i

Im�� d�

�
ln D�Ri,��

with

D�Ri,�� = det���� − �
�

g���Ri,Ri,��	�Si · ����� .

The diagonal Green’s function g���Ri ,Ri ,�� is thoroughly
determined in Sec. III at the lowest nonvanishing order in the
perturbations, Eqs. �3� and �5�. Within such an approxima-
tion, with an accuracy up to the terms of the first order in the
dimensionless parameter 	Sg��	Sg�
1�, we obtain for the
exchange part of the diagonal free energy the simple expres-
sion,

Fd = 	�
i

m�Ri� · Si, �28�

where m�Ri� is the spin polarization of carriers at the ith
local-spin site of the DMS layer. The quantity mi=m�r
=Ri�=m�Zi� is given by Eqs. �19�–�23�.

Equation �28� states that, within the single-site approxi-
mation, the impurity moments inside the DMS layer near the
FMM layer are magnetized under influence of the induced
spin polarization of carriers. According to the results of Sec.
III, the value m�Ri� is proportional to the magnetization of
the FMM layer. Therefore, the integral of effective exchange
coupling between the local spin in the DMS layer and the
magnetization of the FMM layer is defined in this approxi-
mation by the spin susceptibility of the carriers of the DMS
at the local-spin site. This integral depends on the position of
the Fermi level and on the distance between the local-spin
site and the FMM/DMS interface.

To determine the exchange coupling between the local
spins dispersed in the DMS layer, one has to calculate the
off-diagonal contribution to the free energy, Eq. �8�, Fod.
Within the approximation adopted hereby ��	Sg�
1�, by
keeping the terms up to second order in god, we obtain the
expression

Fod = − �
ij

Im�� d�

2�
Tr	godtgodt
 =

− �
ij

Im�� d�

2� �
���&

g���Ri,R j,��

� t�&�R j,��g&��R j,Ri,��t���Ri,�� . �29�

Here, the summation over the local-spin site indices i and j is
carried out for i� j. The off-diagonal Green’s function god

entering Eq. �29� is given in Eqs. �9�–�11�, if one sets r
=Ri and r�=R j, i� j.

To second order in the expansion parameter 	Sg, the en-
ergy of the indirect exchange interaction between local spins
in the DMS layer takes the Heisenberg form

Fod = �
ij

	Bij
�0� + Bij

��� + Bij
���
�Si · S j� .

The exchange integral Bij
�0� expresses the usual coupling be-

tween the local spins dissolved in the bulk degenerated semi-
conductor �without accounting for the presence of the FMM
layer�, while the exchange integrals Bij

��� and Bij
��� describe

new channels for the indirect exchange interaction between
the local spins, which appear due to electron excitations both
without and with change in a symmetry of the states at the
FMM/DMS contact, respectively.

The integral Bij
�0� depends only on the distance between

the local-spin sites and has the standard the RKKY-type os-
cillatory behavior,

Bij
�0� =

	2

4�m
�ma3

2�
2 �2kFRij�cos�2kFRij� − sin�2kFRij�

Rij
4 ,

where Rij = �Ri−R j�. In the limit of very low density of car-
riers, when the inverse Fermi wave number is large com-
pared to the average distance between local spins 2kFRij
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1 �the Zener case�, this interaction is always ferromagnetic
and given by

Bij
�0� � −

2	2kF
3

3�mRij
�ma3

2�
2

. �30�

The value Bij
��� can be written as

Bij
��� = − 4	2Us Im�� d�

2�
g0�Ri;R j;���̃�R j;Ri;�� .

�31�

The expression for Bij
��� can be cast in the form

Bij
��� = − 4	2 Im�� d�

2�
g0�Ri;R j;���	UsmUms + ��sm · ms�


� 	�̃�+��R j;Ri;�� + �̃�−��R j;Ri;��
 − 	Usm�n · �ms�

+ Ums�n · �sm�
	�̃�+��R j;Ri;�� − �̃�−��R j;Ri;��
� .

�32�

To further simplify the calculations we suppose that the av-
erage distance between magnetic impurities is much smaller
than the characteristic range of the space variation in the
carrier spin density in the DMS layer, i.e., the condition
2kFRij
1 is fulfilled. On the other hand, not to violate the
limits of the effective-mass approximation, the condition
�2mWRij�1 must hold true. It can be shown that in the

functions �̃�r ;r� ;�� and �̃����r ;r� ;�� the corrections to the

local values �̃�r ;r ;�� and �̃����r ;r ;��, are of second order
in the argument Rij. Therefore, in Eqs. �31� and �32�, one
may substitute the values, Eqs. �16� and �17� 	where z→Z

= �Zi+Zj� /2
 for the off-diagonal functions �̃�R j ;Ri ;�� and

�̃����R j ;Ri ;��, respectively. Under these conditions, we ar-
rive to the following expressions for the exchange integrals
caused by the contact,

Bij
��� = − 4	2Us�ma3

2�
3 �

Rij
���2kFZ� +

2kFRij

3
��1��2kFZ�� ,

��1�� � = ci� � −
sin  

 
−

2 cos  

 2 +
2 sin  

 3 , �33�

Bij
��� = 4	2Uh�ma3

2�
3 1

Rij
��!�2kFZ� − E0"�2�2mE0Z�

− �
2kFRij

3
!�1��2kFZ�� ,

!�1�� � = si� � +
cos  

 
−

2 sin  

 2 +
2�1 − cos  �

 3 , �34�

Uh =
�m̃ã3

�2E0
�UsmUms + ��sm · �ms� +

�

2E0
	Usm�n · ms�

+ Ums�n · �sm�
� , �35�

where we keep the first order in the small parameter � /E0. In
the square brackets in Eqs. �33� and �34�, we keep terms
proportional to the small parameter 2kFRij, because they can
become important in the vicinity the points where the func-
tions ��2kFZ�, Eq. �21�, and !�2kFZ�, Eq. �24�, vanish.

The behavior of the range function, which determines the
exchange integrals in the DMS layer at different distances
from the contact with the FMM layer, is shown in Fig. 1. It is
noteworthy that the contact-induced exchange integrals �33�
and �34� are proportional to the inverse of the separation
between the local spins, Rij, as in the case of a bulk DMS �in
the absence of the FMM layer� characterized by an exchange
integral �30�.

Far from the interface, the asymptotic behavior of the
exchange integrals �33� and �34� at 2kFZ�1 takes the form

Bij
��� � −

	2Us

m
�ma3

2�
3 1

RijZ
2 	sin�2kFZ� − kFRij cos�2kFZ�
 ,

�36�

Bij
��� � −

	2Uh

m
�ma3

2�
3 1

RijZ
2 	cos�2kFZ� − kFRij sin�2kFZ�
 .

�37�

One can see that the contact-induced exchange interaction
decays with a power law when moving off the interface with
the FMM layer and alternates its sign with a period �� /kF,
i.e., it can be either ferromagnetic or antiferromagnetic at
different distances from the FMM/DMS interface. The oscil-
lations of the integrals Bij

��� and Bij
��� are dephased by a quar-

ter of the period with respect to each other.
Comparing Eq. �30� with Eqs. �36� and �37�, according to

which the contact-induced exchange coupling among the lo-
cal spins decreases as a power of a distance from the FMM/
DMS interface, Bij

��,���Z−2, while the magnitude of Bij
�0�

does not depend on Z, we find that the ratio of their ampli-
tudes does not exceed the value

�Bij
��,���

�Bij
�0��

�
��Us�, �Uh��ma3

kF
3Z2 . �38�

In the region near the interface, the contact-induced ex-
change coupling has other features. Taking the limit 2kFZ

1 and 2�2mE0Z
1, we have

Bij
��� � − 4	2Us�ma3

2�
3 �

Rij
�−

�

2
+

4kFZ

3
+

2kFRij

3
ln�2kFZ�� ,

�39�
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Bij
��� � 4	2Uh�ma3

2�
3 1

Rij
	� ln�2kFZ� − E0"0
 . �40�

So, the value of the coupling increases slower than a power
growth ��Z−2� when approaching the FMM/DMS interface.

The picture described above is applicable as long as the
perturbation produced by the FMM/DMS interface on carri-
ers and, consequently, on the local spins dissolved in the
DMS layer, is small. Nevertheless, we can draw several im-
portant conclusions on how the FMM layer influences the
exchange coupling between the local spins in the adjacent
DMS layer. So, in proximity of the FMM/DMS interface, the
interaction among the local spins dissolved in the DMS layer
can be to some extent modified with respect to the bulk value
due to the additional channels of the indirect coupling de-
rived from the hybridization of the semiconductor quasipar-
ticle states at the interface with the FMM layer. Whether the
exchange coupling between the local spins will be enhanced
or reduced, depends on the parameters of the contact poten-
tial �Us and Uh� and on the distance from the interface �Z�.
The contact-induced exchange interactions are long-range
decaying and exhibit periodical switches from negative to
positive as the distance from the interface varies. We empha-
size the remarkable fact that it is possible to renormalize the
exchange coupling in the DMS near the interface even with a
nonmagnetic metal. Indeed, the exchange integrals Bij

��� and
Bij

��� do not vanish even in the case of �sm=0 and �=0.
At fixed distance from the FMM/DMS interface, the sign

of the integral Bij
��� is related to the sign of the matrix ele-

ment Us, which, in turn, is determined by a charge redistri-
bution between the semiconductor and the metal at the inter-
face. Hence, one may easily see from Eq. �39�, that the
proximity to the FMM layer will result either in an enhance-
ment of the ferromagnetic coupling among the local spins in
the DMS layer �if Us�0� or in a reduction �if Us�0�. The
range function �� � shown in Fig. 1 makes this effect re-
markable within a fairly broad region on the order of kFz
%1−1.5 near the interface. On the other hand, as it is clear
from Eq. �38�, in the framework of the perturbation expan-
sion adopted in the interface matrix elements, the coupling
component caused by the intraband processes at the interface
is always considerably weaker than its bulk counterpart:
�Bij

���� / �Bij
�0�����Us�a3�m /���
1.

In the case of a nonmagnetic metal, at fixed distance from
the interface, the sign of the integral Bij

��� is predetermined,
since Uh=�m̃ã3UsmUms /�2E0�0. In this case, as seen from
the behavior of the range function !� �, the interface hybrid-
ization results in an enhancement of the ferromagnetic
coupling between the local spins in the DMS layer
near the interface at kFz%0.5 where �Bij

���� / �Bij
�0��

��Uh�a3m ln�2kFz� /kF. In the case of the contact with the
FMM layer, the effective interface parameter Uh, Eq. �35�,
may be negative. Thus, we demonstrate that it is possible to
enhance, reduce, and even reverse the exchange coupling in
near-contact region of the DMS layer for various combina-
tions of the constituent materials of the hybrid structure. It is
interesting to note that, in contrast to the quantities Bij

�0� and
Bij

���, the exchange integral Bij
��� does not vanish even if the

carrier concentration in the semiconductor layer tends to

zero, i.e., at �→0. Under the condition that �� ln�2kFz��
�E0, the interaction between the local spins in the DMS
layer is mainly determined by quasiparticle excitations
through the metal states with negative energies, ��0.

Thanks to these interface processes, provided the value Ũ is
small, in virtue of the relatively sizable density of states at
the Fermi level in the metal, Nm��=��'�E0m̃3, the ex-
change integral Bij

���, Eq. �40�, could turn to be comparable
with �or larger than� the inherent exchange integral of DMS
Bij

�0�, Eq. �30�, in the narrow near-contact region on the order
of the tunneling length ��2mE0�−1.

V. MEAN-FIELD DESCRIPTION OF MAGNETIC
ORDERING IN THE DMS LAYER NEAR THE FMM/DMS

INTERFACE

Above we have demonstrated that it is possible to en-
hance or reduce the indirect exchange coupling between lo-
cal spins in the DMS layer in the proximity of the FMM
layer. This supports the idea that the magnetic properties of
the DMS layer near the FMM/DMS interface could be dif-
ferent from the bulk properties of DMS.

According to our foregoing microscopic considerations,
the whole expression for the exchange energy of local spins
in the DMS layer in contact with the FMM layer can be cast
in the form

F�ex� = 	�
i

�mi · Si� + �
ij

	Bij
�0� + Bij

��� + Bij
���
�Si · S j� .

�41�

It is important to emphasize that all components of the
carrier-mediated exchange coupling involved in Eq. �41� are
essentially constrained in sign as functions of the distance
between local spins, except for large Rij(kF

−1, and therefore,
as long as the carrier density n�kF

3 is low, n
nm, where nm
is the density of the local spins �i.e., typical Rij �nm

−1/3�, the
frustration effects associated with the oscillatory nature of
the RKKY-type mechanism are immaterial. Thus, carrying
out the double summation in Eq. �41�, we retain the paired
links only between the nearest-neighboring local-spin sites,
�ij�, and apply Eqs. �30�, �33�, and �34� for the exchange
integrals Bij

�0�, Bij
���, and Bij

���, respectively.
In this section, we develop a mean-field description for

the magnetic ordering in the DMS layer in contact with the
FMM layer. We take into account both the bulk and contact-
induced mechanisms of indirect exchange between the local
spins as well as the contact-induced spin polarization of car-
riers in the DMS layer. Note that the Weiss mean-field theory
for the bulk DMS developed in Ref. 18 yields long-range FM
ordering of the local spins below the mean-field Curie tem-
perature Tc

�MF��nmn1/3 for all values of n and nm. Following
the mean-field approach, let us write an effective mean-field
Hamiltonian Hef f

�ex� of the system. It can be obtained replacing
of the random exchange field of the local spins Si inside the
DMS layer by its averaged density using the standard substi-
tution Si→ �Si�, where the angular brackets denote averaging
over the configurations of local spin. It is necessary to pay
special attention to the sense of this averaging procedure in
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our situation. Even if the dopant concentration is assumed
perfectly homogeneous in the DMS layer along the z axis,
the averaged spin density �Si� is inhomogeneous, implying
that both the spin polarization of the carriers and the contact
induced component of the exchange integral are varying
along the z direction. So far as we assume that the local spins
in the DMS layer are randomly distributed and dense on a
scale set by the Fermi wave vector of the carriers �=� /kF,
i.e., n=kF

3 / �3�2�
nm, the classical continuous picture of the
exchange field, provided by these spins, seems reasonable.
This allows us to adopt a continuum approximation, where
the averaged spin density �S��z� depends only on the z coor-
dinate, �Si�= �S��Zi�, and from Eq. �41� one can obtain

Fef f
�ex� = �

i

g�B�bi · Si� ,

g�Bbi = 	mi + 	B�0� + Bi
��� + Bi

���
�Si� . �42�

Here, bi is the effective exchange field, seen by the local spin
Si, g is the g factor corresponding to the local spin, �B is the
Bohr magneton. We retain the site dependence in bi, thereby
taking into account the contact influence, which subjects dif-
ferent local spins to different exchange couplings depending
on the local-spin position. Within the framework of our
model, the effective exchange field inside the DMS layer
depends only on the distance along the z direction between
the local-spin site and the FMM/DMS interface, bi=b�Zi�.

The first term in bi, Eq. �42�, describes the built-in field of
the spin polarization of the carriers induced in the DMS layer
by the contact with the FMM layer. The second term in bi,
Eq. �42�, contains different components of the Weiss mean
field arising from the indirect exchange coupling between the
local spins, where Bi

�0,�,��=� jBij
�0,�,�� is the sum of all links

to the nearest local spins surrounding the site i. One can
make the rough estimates

B�0� = Bi
�0� � 4�Znm�

RA

R0

dRR2B�0��R� , �43�

Bi
��,�� � 4�Znm�

RA

R0

dRR2B��,���R,Zi� , �44�

where Z is the average coordination number for an ion car-
rying the local spin. In Eqs. �43� and �44�, the integration
over the difference variable R=Rij is restricted to a finite
interval. Taking a nonzero lower limit RA, we avoid necessity
to introduce explicitly into our model an additional superex-
change coupling between the nearest-neighbor local spins.
This coupling in DMS is, as a rule, antiferromagnetic and
short ranged with a radius �RA.19 The upper limit of the
integration R0 is associated with a finite carrier mean-free
path due to scattering effects in the alloy that could be ex-
plicitly incorporated into the theory whenever needed. In this
case, the exchange integrals Bij

�0,�,�� should acquire an expo-
nential prefactor exp�−Rij /R0�.20

Assuming that the local spins are in equilibrium with the
thermal bath and the semiconductor is degenerated, ��T,
the mean-field free energy reads FMF

�ex�=−kBT ln tr exp�
−Hef f

�ex� /kBT�. Minimizing FMF
�ex� with respect to the order pa-

rameter �Si�, we obtain the self-consistency equation for the
averaged spin density at the site i in the effective field bi, Eq.
�42�, in the absence of external fields,

�Si� = SnL�S
g�B�bi�

kBT
 , �45�

where n is the unit vector parallel to the field bi, L�b� is the
Langevin function, and kB is the Boltzmann constant. Now,
the average of the spin density determined by Eq. �45� is
understood as a thermal average and an average with respect
to disorder.

Primarily, we address the case when mi=0 in Eq. �42�. By
expanding Eq. �45� for small �Si�, we find the averaged value
of the local spin in the DMS layer in the vicinity of the
ferromagnetic transition

�S��z�
S

=�5

3

Tc�z� − T

Tc�z�
.

The critical temperature is expressed as

Tc�z� = Tc
�0� −

S2

3kB
	B����z� + B����z�
 ,

where

Tc
�0� =

S2

3kB
�B�0�� �46�

is the Curie temperature in the bulk DMS since the exchange
integral B�0� gives rise to uniform FM. One can see that,
within the framework of the classical approach, the intrinsic
critical temperature Tc�z� corresponds to ferromagnetic or-
dering in the plane inside the DMS layer that is at the dis-
tance z measured from the interface, and the difference
Tc�z�−Tc

�0� follows the long-range space variation in the
contact-induced exchange integrals. It is clear that above the
transition temperature, at T�Tc�z�, the order parameter van-
ishes, �S�=0, while at low temperature it becomes saturated,
�S�→S. At large distances from the interface z�kF

−1, the
dependence �S��z� approaches the value �S��0� in the bulk
DMS.

The solutions of Eq. �45� for the order parameter �S��z� at
the temperature T may be obtained numerically. We illustrate
our findings for several particular situations in Figs. 2–4,
where the variables are expressed in the dimensionless units
z̃=2kFz and t=T /Tc

�0�. Within this choice, the value t=1 cor-
responds to the Curie temperature of the bulk DMS Tc

�0�, Eq.
�46�.

Under the assumption that �s=�h=0 and Uh=0, in other
words mi=0 and Bi

���=0 in Eq. �42�, the contact-induced
variation in �S��z� is due to the spin-independent carrier scat-
tering at the interface. In Fig. 2 we show the relevant spatial
profile �S��z ,T� at different temperatures for Us�0 with
�us�=3�Us�ma3 / �2kF�=0.5. This value is chosen, on the one
hand, to emphasize the contact effect and, on the other hand,
not go too far beyond the limits of applicability of our ap-
proach.
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Under the assumption that �s=�h=0 and Us=0, in other
words mi=0 and Bi

���=0 in Eq. �42�, the contact-induced
variation in �S��z� is only due to the hybridization of the
semiconductor and metal states at the interface. In Fig. 3 we
show the relevant spatial profile �S��z ,T� at different tem-
peratures for Uh�0 with uh=3Uhma3 / �2kF�=0.1, � /E0
=1 /9, and m / m̃=1 /5.

Our results show that the averaged value of the local spin
in the DMS layer increases �decreases� when approaching
the interface with the metal, and this is interpreted as a con-
sequence of the enhanced �suppressed� exchange coupling,
due to the presence of the metal layer. The contact-induced
variation in �S��z� extends over a significant length scale on
the order of the Fermi wavelength. The DMS layer juxta-
posed to the metal layer can exhibit ferromagnetic ordering
of the local spins even at elevated temperatures where no
such ordering exists in the corresponding bulk material.

In the case when mi�0, well above the critical tempera-
ture Tc�z�, the averaged value of the local spin is described
by the formula

�S��z� = −
S2	m�z�

3kB	T − Tc�z�

. �47�

If one neglects the dependence of the critical temperature Tc
on the distance z, the net magnetization of the DMS layer
M=�0

�dz�S��z� is proportional to the net spin polarization of
carriers �, Eq. �27�.

Under the assumption of Us=Uh=0, in other words Bi
���

=0 and Bi
���=0 in Eq. �42�, the contact-induced variation in

�S��z� is caused by the carrier polarization m�z� which is
influenced by the contact. The value of �S��z� as a function
of the distance z and temperature T at �h=0 and ��s�=0.5 is
shown in Fig. 4. It is implied that the vector �S��z� is strictly
parallel �antiparallel� to the vector m�z� if 	�0 �	�0�.
Here, we introduce the dimensionless interaction parameter
�s=	�s���ma3 /��2 / �S�B�0��� which, unlike the parameters
us and uh, is inversely proportional to the concentration of
the local spins nm. We draw the inference that, in the DMS
layer juxtaposed to the FMM layer, the contact-induced fer-
romagnetic ordering of the local spins survives at tempera-
tures much larger than the value in the bulk DMS, Tc

�0�.

VI. SUMMARY AND CONCLUDING REMARKS

The approach discussed above enables us to capture the
delicate interfacial process playing a key role in determining
the magnetic properties of the FMM/DMS structures. We
carried out the systematic investigation of the conditions for
the appearance of the spin polarization of carriers and the
ferromagnetic ordering of the local spins in the DMS layer
by contacting it to the FMM layer. Our analysis provides
insight into the microscopic mechanism of the proximity ef-
fect in the semiconductor/metal hybrid structure. The nature
of the proximity effect is intricate enough. One has to distin-

FIG. 2. �Color online� Average value of the local spin as a
function of the dimensionless distance from the interface, z̃=2kFz
and dimensionless temperature t=T /Tc

�0�, for �s=�h=0, Uh=0,
and Us�0 with �us�=3�Us�ma3 / �2kF�=0.5.

FIG. 3. �Color online� Average value of the local spin as a
function of the dimensionless distance from the interface, z̃=2kFz
and dimensionless temperature t=T /Tc

�0�, for �s=�h=0, Us=0,
and Uh�0 with uh=3Uhma3 / �2kF�=0.1, � /E0=1 /9, and m / m̃
=1 /5.

FIG. 4. Average value of the local spin as a function of the
dimensionless distance from the interface, z̃=2kFz and dimension-
less temperature t=T /Tc

�0�, for Us=Uh=0, �h=0, and ��s�
= �	�s���ma3 /��2 / �S�B�0���=0.5.

MEN’SHOV et al. PHYSICAL REVIEW B 81, 235212 �2010�

235212-12



guish two different ways for modifying the ordering of the
local spins in the DMS layer. First, the FMM layer magne-
tizes the local spins diluted in the semiconductor through the
induced spin polarization of carriers. Second, the carrier-
mediated interaction between the local spins changes near
the interface with the metal due to the additional channel of
the exchange coupling via the metal layer. It should be noted
that the second effect works even in the case of nonmagnetic
metal layer. The magnitude of the effect depends on the dis-
tance from the interface as well as on the position of the
Fermi level in the semiconductor.

Our theory demonstrated that high-temperature magnetic
ordering in the DMS layer can be controlled by the electron
processes at the interface with the FMM layer. On the basis
of our results, we can offer qualitative explanations for a
number of curious features, experimentally observed on the
Fe/�Ga,Mn�As �Refs. 11 and 21� and Py/�Ga,Mn�As �Ref.
15� hybrid systems, that have attracted great interest.

In the Ref. 11, Maccherozzi et al. report x-ray magnetic
circular dichroism and superconducting quantum interfer-
ence device �SQUID� magnetometry experiments to study
magnetic order and coupling in thin Fe/�Ga,Mn�As�100�
films, which are grown by means of molecular-beam epitaxy.
They observed induced magnetic order in the �Ga,Mn�As
layer that persists up to room temperature, for various Mn
concentrations and Fe thicknesses, and extends over the
�Ga,Mn�As region as thick as 2 nm. In fact, up to T=60 K,
the SQUID measurements display the spontaneous magneti-
zation curves of bulk ferromagnetic �Ga,Mn�As offset by the
Fe magnetization, whereas for T�60 K the magnetization
in �Ga,Mn�As is entirely due to the Fe film, whose Curie
temperature is well above room temperature. This indicates
that magnetic ordering can be induced in the DMS layer
when contacted to the magnetic metal layer. The above de-
veloped model supplies the possible way to explain the
mechanism of this proximity phenomenon. According to Eq.
�47�, well above the critical temperature of the bulk DMS,
Tc

�0�, the magnetization of the local spins in the DMS layer,
M�T�, which is proportional to the averaged value of the
local spin, �S��z�, is bound to the magnetization of the FMM
layer, ��, via the induced spin polarization of carriers,
m�z��� 	Eqs. �20� and �22�
, and extends in the near-
interface region, over a length scale which is on the order of
the Fermi wavelength. It is easy to estimate that in our model
the characteristic length of induced ferromagnetic ordering
may achieve �2 nm �as in Ref. 11� for carrier concentra-
tions between 1020 and 1021 cm−3.

It is worth to notice that, on the one hand, the observed
Curie temperature �of appearance of the FM long-range or-
der� is not affected by the Fe overlayer and has the same Tc
as the pure �Ga,Mn�As substrate, i.e., Tc=Tc

�0�, on the other
hand, at T�Tc

�0� the magnetization of the �Ga,Mn�As layer,
induced by the presence of the Fe overlayer �the FM short-
range order�, is rather large, e.g., the value M�T=200 K�
accounts for �20% of the maximum M�T=0 K�.11 There-
fore, we can consider the ordering of the local spins in the
DMS layer caused by the spin polarization of carriers near
the FMM/DMS contact as the dominant mechanism govern-
ing the proximity effect in the Fe/�Ga,Mn�As�100� structure.
Under the conditions Us=Uh=0, taking into account Eqs.

�27� and �47�, our theory allows to predict the Curie-Weiss
temperature dependence of the net magnetization of the
DMS layer at elevated temperatures, T�Tc

�0�,

M�T� = −
S2	�

3kB	T − Tc
�0�


.

It is instructive to compare this result with experimental data
since this comparison provides valuable estimates for the
parameters of the interface potential responsible for the or-
dering in the DMS layer contacted to the FMM layer. In Fig.
5 the temperature dependence, Eq. �47�, is superimposed to
the experimental curve of the spontaneous magnetization of
the DMS layer in a Fe/�Ga,Mn�As�100� sample with 6% Mn
concentration and bulk critical temperature Tc

�0��62 K. One
can see that the theoretical dependence is, at least qualita-
tively, compatible with the experimental findings in a wide
temperature range, if one takes 	�$�S / �3kBTc

�0�L�=0.35 �L is
the thickness of the DMS layer, L��kF

−1�. The estimate
for the model parameters which determine the asymptotic
behavior of M�T� can be rewritten in the following
form: ��s��0.35kFL or ��h��0.35kFL, where

��s� = �	s���ma3/��2/�S�B��0��

or

��h� = �	�h���E0�ma3/��2/�S�B��0��

	equivalently, Sa2�	�s��� /m /L��10−2−10−3� eV3 or
Sa2�	�h��E0 /m /L��10−2−10−3� eV3
. Note that the pa-
rameters ��s� and ��h� depend differently on the concentration
n in the DMS.

Another attempt to combine two different ferromagnetic
materials, a semiconductor 	�Ga,Mn�As
 and a metal �per-
malloy�, was undertaken in Ref. 15. Mark and co-workers
demonstrated that the coupling of the DMS layer to the
FMM layer observed in Ref. 11 does not preclude indepen-
dent magnetic behavior of the ferromagnetic �Ga,Mn�As and
permalloy epilayers, when these are directly deposited on
each other, without the need for a nonmagnetic intermediate

FIG. 5. �Color online� Comparison of the theoretical results with
experimental data. The plot contains the experimental M�T� data
from Ref. 11 �ovals� and the theoretical curve computed from Eq.
�48� �thick line�. The magnetization and temperature are represented
through the dimensionless variables M /M�0�=M�T� /M�T=0� and
t=T /Tc

�0�, respectively.
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layer. When these layers are in direct contact, their magneti-
zation can still be switched independently, as it is confirmed
both by transport observations, and direct magnetization
measurements using SQUID. In the framework of our model,
the lack of magnetic coupling between the �Ga,Mn�As and
permalloy layers could be explained by assuming, for ex-
ample, a charge redistribution between the semiconductor
and the metal at the interface such that the corresponding
potential is positive, Us�0. As noted in Sec. IV and illus-
trated in Fig. 3, this results in a reduction in the interaction
among the local spins and, hence, ferromagnetic ordering
within a fairly broad region in the DMS near the interface.
The same consequences might be caused by strong scattering
of carriers at imperfections of the Py/�Ga,Mn�As interface,
such as roughness and/or interdiffusion of atomic species,
which can never be fully excluded.

In conclusion, we proposed a semiphenomenological
model to describe the spin ordering in a DMS layer con-
tacted with a FMM layer. We analyzed two types of proxim-
ity effects: �1� the ordering of the local spins in a DMS
induced by the spin polarization of carriers near the FMM/

DMS contact; �2� the indirect exchange coupling among the
local spins in a DMS provided by the variation in the spin
susceptibility of the carriers near the FMM/DMS contact.
Both effects owe their appearance to the hybridization of the
metal and semiconductor electron states at the interface. Of
course, the current model is too simple to account for all
aspects of the phenomenon. We hope that the results pre-
sented in this paper will stimulate further theoretical and ex-
perimental investigation on this intricate subject.
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