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We apply time-dependent density functional theory to study the valence electron excitations of
molecules and generalize the typically used time-propagation scheme and Casida’s method to
calculate the full wavevector dependent response function. This allows the computational study of
dipole-forbidden valence electron transitions and the dispersion of spectral weight as a function of
the wavevector. The method provides a novel analysis tool for spectroscopic methods such as
inelastic x-ray scattering and electron energy loss spectroscopy. We present results for benzene and
CF3Cl and make a comparison with experimental results. © 2010 American Institute of Physics.
�doi:10.1063/1.3503594�

I. INTRODUCTION

Time-dependent density functional theory �TDDFT� has
become a widely used tool for the simulation of the elec-
tronic structure underlying the physical and chemical prop-
erties of a wide range of different materials from low-
dimensional nanostructures to complex extended systems.1

TDDFT is frequently used, for example, to model the photo-
absorption spectrum which is governed by the dipole al-
lowed transitions of valence electrons to the unoccupied
electronic states. In this work we demonstrate the applicabil-
ity of TDDFT to nondipole valence electron transitions in
molecules, translating the concept of momentum dependent
inverse dielectric function of solids to finite systems.2 From
the experimental point of view, these transitions are often
studied using electron energy loss spectroscopy �EELS�, but
the work here is also strongly motivated by the ongoing de-
velopment in synchrotron radiation based techniques that
now enable the experimental survey of dipole forbidden tran-
sitions with unprecedented energy resolution and statistical
accuracy.3–6 Combination of reliable computational methods
and high-resolution spectroscopy provides a detailed picture
of the electronic structure and dynamics in molecular
materials.

Inelastic x-ray scattering �IXS� is a bulk-sensitive
method for studying elementary excitations, such as phonons
and electronic excitations. It allows the experimental deter-
mination of the inverse macroscopic dielectric function with
various advantages compared to the complementary tech-
niques such as photoabsorption and electron energy loss
spectroscopy. In particular, the experiments are not restricted
to dipole transitions and can be carried out at extreme sample
environments.7 The experimental spectrum contains a wealth
of information on various physical phenomena related to the

microscopic structure of the material. For instance, because
of the wide range of accessible energy and momentum trans-
fers �or, equivalently, wavevectors�, IXS is often used for
probing the dispersion of phonons in crystalline materials.8 It
also enables the study of valence electron excitations and it
has been used to measure, e.g., valence plasmon dispersion
in superconductors.9 Plasmonics attracts general interest of a
wide scientific community,10 and the knowledge of the plas-
mon properties in small nanostructures has important
applications.11,12 Another promising IXS based technique is
the imaging of the time-dependent electron dynamics.13–15

This intriguing method demonstrates how IXS can provide
information on very small time �as� and length �Å� scales. A
comprehensive explanation of the theory, experiments and
the applications of IXS can be found in Ref. 16.

The most thorough interpretation of the measured IXS
spectrum often requires comparison with calculations, and
therefore various computational methods for the electronic
structure have been employed for simulating the spectrum.
The most sophisticated methods such as configuration inter-
action and quantum Monte Carlo are also computationally
the heaviest and can usually be applied only to small mol-
ecules. In contrast, TDDFT offers a good compromise be-
tween computational cost and accuracy.17 It has been suc-
cessfully applied to analyze the IXS spectra of solids as well
as liquids.15,18,19 The present work demonstrates that TDDFT
can be used to quantitatively simulate the IXS spectrum of
molecules, as illustrated for the case of benzene and CF3Cl.
The calculations here are carried out within adiabatic local
density approximation �ALDA�, but the method itself is gen-
eral and therefore also other exchange correlation potentials
can be employed. The presented method is applicable for
various materials ranging from small molecules and nano-
scale structures to liquids and has remarkable potential for
future work in modern x-ray physics.a�Electronic mail: arto.sakko@helsinki.fi.

THE JOURNAL OF CHEMICAL PHYSICS 133, 174111 �2010�

0021-9606/2010/133�17�/174111/6/$30.00 © 2010 American Institute of Physics133, 174111-1

Downloaded 11 Jan 2012 to 161.111.180.191. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3503594
http://dx.doi.org/10.1063/1.3503594
http://dx.doi.org/10.1063/1.3503594


II. METHOD

TDDFT is a generalization of the static density func-
tional theory �DFT� to cover the electronic excitations and
other time-dependent phenomena.1,20 There are several
equivalent approaches for using TDDFT in the calculation of
the response functions that are related to the experimentally
measurable excitation spectra, and in this work we concen-
trate on two of them: the Casida’s method21 �CM� and the
time propagation method �TPM�.22 The other approaches are
described in detail in Ref. 1. The theoretical framework is
presented here for finite systems, but the corresponding for-
malism for extended systems as well as the connection to
molecules can be found, e.g., in Ref. 2.

CM has its roots in time-dependent Hartree–Fock
theory23 and it can be formulated as a matrix equation for
calculating the transition rates and energies. It is especially
convenient for simulating the discrete, i.e., bound-to-bound
transitions in small molecules. However, due to the different
scaling of the computational cost with respect to the system
size, TPM is more suitable for larger systems. In TPM the
electronic structure is propagated in time under the influence
of an external electric field and the induced charge fluctua-
tions describe the response of the system to this perturbation.
This allows the simulation of the discrete transitions and
often within good accuracy also the excitations above the
ionization threshold, i.e., transitions to the electronic states in
the continuum.24 It can be used to study both linear and
nonlinear response functions and also the response of the
system in the nonperturbative region.25,26 It also enables a
straightforward study of the combined electron-ion
dynamics.27

In an IXS experiment one measures the double differen-
tial cross section which is within the first Born approxima-
tion given by

d2�

d�d�
= � d�

d�
�

Th
S�q,�� , �1�

where � d�
d�

�
Th is the Thomson scattering cross section and

S�q ,�� is the dynamic structure factor of the material. The
transferred momentum and energy from the electromagnetic
field to the sample are q and �, respectively. We use atomic
units in this work, except when providing numerical values
to compare with available experimental data. The dynamic
structure factor is closely connected to the inverse macro-
scopic dielectric function

S�q,�� =
− q2

4�2n
Im� 1

�M�q,��	 , �2�

where n is the average electron density of the system. This
connection implies that when S�q ,�� is determined, the full
dielectric function �M�q ,�� can be obtained using Kramers–
Kronig relations.28

Dynamic structure factor and thereby the inelastic x-ray
scattering spectrum are closely related to the density-density
response function ��r ,r� , t− t�� of the material, which con-
nects a weak time-dependent external field Vext�r , t� to the
charge density fluctuation �	�r , t� that the field induces

�	�r,t� = 

−


t

dt�
 d3r���r,r�,t − t��Vext�r�,t�� . �3�

From the fluctuation-dissipation theorem28 it follows that

S�q,�� =
− 1

�
Im���q,− q,��� . �4�

Equation �3� is given in time �t� and space �r� coordinates,
from which one can change to momentum �q� and frequency
��� representation by Fourier transformations.

Density-density response function is also closely con-
nected to the molecular polarizability tensor �ij��� which
can be probed experimentally using photoabsorption
spectroscopy.29 At low momentum transfer the dynamic
structure factor of molecular systems �but not of extended
ones, see Ref. 2� is proportional to the photoabsorption spec-
trum. When momentum transfer increases the IXS and pho-
toabsorption spectra begin to differ due to the increasing
contribution of nondipole transition channels. The
q-dependent transition rates are often characterized using the
so-called generalized oscillator strength, which is defined for
a given discrete transition m as

GOS�q,�m� =
2�m

q2 
 d�q

4�
S�q,�m� , �5�

where the angular integration implies the directional average
of momentum transfer vectors over the solid angle.30

A. Casida’s method

The starting point in the CM is the calculation of one-
electron eigenstates � j��r� and energy eigenvalues � j� of the
occupied and unoccupied electronic states using time-
independent DFT �� is the spin index�. Thereafter, using the
time-dependent Kohn–Sham equations one can cast the prob-
lem of finding the transition rates and energies into the ma-
trix equation21

�
m�

R̂mm�Fm� = �2Fm, �6�

where

R̂mm� = �� f� − �i��2
mm� + 2�� f� − �i�Kmm�
�� f��� − �i��� �7�

and m= �i , f ,�� label the electron-hole pairs �occupied orbital
�i��r� and unoccupied orbital � f��r��. Kmm� is the electron-
hole interaction matrix element

K�i,f ,��,�i�,f�,��� =
 d3r
 d3r�� f�
� �r��i��r� � � 1


r − r�


+ fxc�r,r��	 � � f����r���i���
� �r�� , �8�

and fxc is the nonlocal frequency-independent exchange-
correlation kernel. Casida’s equation couples the different
electron-hole excitations and thus goes beyond the single
particle picture. Its solution provides the real valued excita-
tion energies �I, and the transition rates are calculated from
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the eigenvectors FI. The expression for the dynamic structure
factor is

S�q,�� = �
I


M†�q�S−1/2FI
2
�� − �I� , �9�

where M�i,f ,���q�=�d3r�i�
� �r�e−iq·r� f��r�, S�i,f ,��,�i�,f�,���

=

���
ii�
 f f�

�ni�−nf����i�−� f�� , and ni� and nf� are the occupation numbers

of the Kohn–Sham orbitals �i��r� and � f��r�, respectively.

B. Time propagation method

Starting from any arbitrary initial state for the electronic
structure, time propagation formulation of TDDFT provides
in principle the exact dynamical evolution of the system. In
our case we address the q-dependent response function start-
ing from the electronic ground state. Therefore the TPM re-
quires first the calculation of the ground state electron den-
sity using time-independent DFT, which corresponds to the
situation at times t�0. At t=0 a sudden external field
Vext�r , t�= I0
�t�eiq·r is applied.31 If I0 is sufficiently weak the
induced charge density is determined by the density-density
response function through Eq. �3�. The Fourier transform of
the resulting induced charge density is

�	�q,�� = I0

−





dte−i�t
 d3r
 d3r�e−iq·r��r,r�,t�eiq·r�.

�10�

On the right hand side appears the density-density response
function in �q ,��-space. Therefore, combining Eqs. �4� and
�10� one can write

S�q,�� =
− 1

�I0
Im��	�q,��� . �11�

The scheme for calculating S�q ,�� can be thus laid out as

�1� Calculate ground state electron density.
�2� Perturb the system with an external potential Vext�r , t�

= I0
�t�eiq·r.
�3� Propagate the system with time-dependent Kohn–Sham

equations.
�4� Calculate the Fourier-transform of the induced charge

density and apply Eq. �11� to determine S�q ,��.

To prevent the necessity of using a complex-valued ex-
ternal potential that leads to nonunitary time evolution, the
calculation is carried out in two steps. In the first one, a
sine-shaped potential �I0
�t�sin�q ·r�� is applied, and in the
second a cosine-shaped one �I0
�t�cos�q ·r��. These give the
induced charge densities �	sin�r , t� and �	cos�r , t�, respec-
tively, and the charge density induced by the eiq·r-shaped
field is obtained as

�	�r,t� = �	cos�r,t� + i�	sin�r,t� . �12�

With isotropic samples, such as gases and liquids, the IXS
measurement provides the directionally averaged dynamic
structure factor S�q ,��= 1

4��d�qS�q ,��. It can be calculated
using a set of q-vectors that lie at a sphere of radius q. These
vectors can be generated using Gauss–Legendre quadrature
scheme for spherical integration.32 However, a more appeal-

ing option is obtained by using the expression eiq·r

=4��l=0

 �m=−l

l iljl�qr�Ylm�q̂�Ylm�r̂� and writing

1

4�

 d�q��r,r�,t�e−iq·reiq·r�

= 4��
l=0




�
m=−l

l

��r,r�,t�jl�qr�jl�qr��Ylm�r̂�Ylm�r̂�� , �13�

where jl�qr� and Ylm�r̂� are the spherical Bessel function and
real spherical harmonic, respectively. Thus, instead of the
exponential external perturbation one performs a set of cal-
culations with different angular momentum quantum num-
bers l and m, where the external perturbation is Vext

lm �r , t�
= I0
�t�jl�qr�Ylm�r̂�. From each of these calculations, indexed
by the numbers l and m, one calculates

�	lm�q,t� =
 d3r�	�r,t�jl�qr�Ylm�r̂� . �14�

Then the directionally averaged dynamic structure factor is

S�q,�� �
− 4

I0
� Im��

l=0

Lmax

�
m=−l

l 

0




dte−i�t�	lm�q,t�	 , �15�

where the finite value for Lmax is due to the truncation of the
originally infinite series. At the limit of low momentum
transfer only the terms with l=1, i.e., dipole allowed transi-
tions, contribute. Thus in this case the directional average
requires only three calculations, which is consistent with the
photoabsorption spectrum calculation.22 When q increases
more terms must be included and Eq. �15� provides a sys-
tematic way to improve the average. A straightforward ap-
proach is to increase Lmax until the f-sum rule is satisfied
within required accuracy. The series also gives a direct way
to discriminate between different transition channels, i.e.,
terms with different l, that contribute to the dynamic struc-
ture factor. This advantageous feature was originally demon-
strated in various pioneering IXS studies.33–36 A similar
analysis was recently demonstrated for IXS from valence
excitations of NiO and CoO.37 In the case of core electron
excitations the approach enables the probing of the symme-
try properties of specific unoccupied electronic states.38,39

III. CALCULATIONS

The calculations are carried out using the OCTOPUS com-
puter code where the q-dependent versions of the TPM and
CM were implemented in this work.40,41 We demonstrate the
use of TPM and CM for benzene and CF3Cl molecules, and
make a comparison of the two methods in both cases. In all
the calculations the electronic structure is solved in a real
space grid employing the finite difference method and zero
boundary conditions. The inner shell �1s� electrons are
treated using Troullier–Martins norm-conserving pseudopo-
tentials, and the exchange and correlation is included within
ALDA. We use approximated enforced time-reversal sym-
metry propagator with the time step of 1.316 as for benzene
and 0.658 as for CF3Cl for carrying out the time propagation
of the electronic structure. All the spectra are convoluted
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using Gaussian line shape with full width at half maximum
�FWHM� of 1.0 eV.

Benzene molecule is a typical system for benchmark cal-
culations and also in this work we use it to demonstrate the
q-dependent behavior of the dynamic structure factor calcu-
lated within TPM and CM. In our calculations the molecule
is positioned in the xy plane at the center of a spherically
shaped real space grid using equidistant spacing of 0.20 Å
between the grid points.42 In the CM calculation the radius of
the grid is 9.0 Å and 160 unoccupied electronic states are
used. In the TPM calculation the radius is 7.0 Å and in this
case we add an extra absorbing layer with the width of 5.0 Å
to the calculation grid, so that the total grid has a radius of
12 Å. Within the layer a complex valued external potential

Vabs�r� = − 10.0 � i � sin��

2
�

r − 7.0 Å

5.0 Å
�2

eV �16�

is added to the Hamiltonian. It removes part of the excited
electrons from the system during the time propagation and
thus the absorbing layer mimics the ionization process.24

We first demonstrate the behavior of the calculated dy-
namic structure factor at very low and high momentum trans-
fers. Momentum transfers of 0.19 and 9.45 Å−1 along the
x-axis are used in these calculations. In the low-q calculation
the time propagation lasts for 6.6 fs and in the high-q case
the maximum time is 0.66 fs. At low momentum transfers
one probes only dipole allowed transitions and the same in-
formation as from photoabsorption spectrum is obtained.
When momentum transfer increases, also quadrupole and
other high order transitions contribute. At the other limit, i.e.,
when q→
, the dynamic structure factor is dominated by
the Compton peak at energy q2 /2 �340 eV for q=9.45 Å−1�
as the impulse approximation �IA� becomes valid.16 These
features are demonstrated in Fig. 1.

After having obtained the correct limits of S�q ,�� at low
and high momentum transfers, we next demonstrate that the
calculations at the intermediate values for q show similar
behavior as observed in an EELS experiment for gaseous
benzene,44 see Fig. 2. In these calculations the maximum
time of the propagation is 6.6 fs and the directional averag-
ing is carried out using Eq. �15� with Lmax=4. The
q-dependent behavior is correctly reproduced by the calcula-
tion. In particular, the relative intensity of the �−�� transi-
tion at 7 eV decreases as q increases, and the spectral weight

moves toward higher energy. These features are indicated by
the arrows in the figure. ALDA is known to provide good
results for dipole excitation spectrum of benzene molecule,45

and our results confirm this also in a wider momentum trans-
fer regime. The reason for the good performance is that the
low-energy part of benzene spectrum is dominated by local-
ized single-particle excitations which in general are handled
accurately within ALDA and generalized gradient approxi-
mation functionals.46 Most of the discrepancies between ex-
periment and calculation occur above the ionization potential
�9.8 eV in the experimental spectrum�, in which region the
calculation produces too pronounced features. The discrep-
ancies can be mostly attributed to the incorrect asymptotic
behavior of ALDA and the lack of proper treatment of the
lifetime effects. In particular, the incorrect asymptotic behav-
ior in DFT yields inaccurate high-lying excitation
energies.46,47 Various solutions to this problem, such as the
self-interaction48 and exact-exchange corrections,49 have
been proposed and often provide significant improvements.
The finite lifetime effects are approximated in this work by
using the absorbing layer. Nevertheless, strong features are
still found in the continuum part of the spectrum because the
layer is incapable of correctly damping the electronic density
fluctuations. Including the lifetime effects properly would
require the use of a nonadiabatic functional. Altogether, de-
spite its shortcomings ALDA is clearly well suited for simu-
lating the excitations of molecular benzene. For systems
where different kind of transitions �such as excitons, charge-
transfer excitations, or double excitations� would contribute,
one should use more sophisticated �nonlocal, nonadiabatic,
or asymptotically corrected� functionals.50–52 Because the
presented method is independent of the used functional, it
can be straightforwardly applied with these functionals.

The separation of the directionally averaged spectrum to
various angular momentum components is demonstrated in
Fig. 3. It confirms that at low momentum transfer the spec-
trum mostly reflects the terms with l=1. As expected, when q
increases and the dipole forbidden transitions enhance,
also other transition channels �l=0,2 ,3� contribute
significantly.53

Freon molecules are widely studied molecules because
of their relevance in earth science. Their valence electronic
structure plays an important role in their chemical reactivity
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FIG. 1. �a� Low-q and �b� high-q limits of the IXS spectrum correspond to
photoabsorption �PA� spectrum and the energy loss spectrum within impulse
approximation �IA�, respectively. The IXS calculations were carried out
with TPM using q-vector along the x-axis and the PA spectrum corresponds
to Im��xx����. The polarizability tensor was calculated using OCTOPUS�Refs.
40 and 41� with the same grid as for IXS calculation, and the IA calculation
was carried out using a method and computer codes described in Ref. 43.
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FIG. 2. Dynamic structure factor of gaseous benzene from �a� TPM calcu-
lation and �b� EELS experiment. The momentum transfers of the calculated
spectra are 0.57 Å−1 �solid red curve� and 1.13 Å−1 �dashed blue curve�.
The experimental EELS spectra �from Ref. 44� are gathered at scattering
angles of 2.0° �solid red curve� and 4.0° �dashed blue curve� that approxi-
mately correspond to the momentum transfers used in the calculation. The
arrows indicate two spectral features whose q-dependency is correctly re-
produced by the calculation.
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and photodissociation processes in the atmosphere. CF3Cl,
i.e., freon-13, is known to have a dipole forbidden transition

in its valence spectrum at 7.7 eV54,55 and therefore it serves
as a good benchmark system for the calculation scheme pre-
sented in this work.

As was previously described for benzene, also here the
molecule is positioned in the center of a spherically shaped
real space grid.56 The radius of the grid is 8.0 Å and the
spacing between the grid points 0.12 Å. For the calculation
of the dynamic structure factor with CM, 80 unoccupied
electronic states are used. The propagation time with TPM is
6.6 fs. The directional averaging is carried out using a set of
q-vectors generated by the fifth order spherical Gauss–
Legendre quadrature scheme.32

Figure 4 shows the dynamic structure factor in the vicin-
ity of the first valence electron transitions at various momen-
tum transfer values, calculated using CM. The calculation
correctly reproduces the dipole-forbidden transition �7.6 eV�
at finite values of q. Figure 4 also shows a comparison of the
computational and experimentally measured55 GOS curves
of the 7.6 eV transition. A good overall agreement is
achieved and the minor differences could be linked to the use
of the LDA kernel in the calculation.

Finally we make a comparison between TPM and CM
for benzene and CF3Cl molecules at intermediate momentum
transfer region, see Fig. 5. For benzene the directional aver-
aging of momentum transfer vectors is used and for CF3Cl q
is parallel to the C–F bond. Both TPM and CM produce
similar spectra for the first few transitions, but at higher en-
ergies the results differ significantly. This can be attributed to
the finite number of unoccupied electronic states used in the
CM which obscures its use at wider energy range. While CM

is more efficient for calculating transition rates for individual
electronic excitations, the advantage of TPM is that it does
not require the calculation of the unoccupied states. The cor-
responding information of the excited states is included in
the time evolution. Since the number of necessary unoccu-
pied states can be very large in CM, TPM is often favored
especially for large molecules and nanostructures. The con-
vergence of spectral features with CM can be challenging
already for relatively small systems if the unoccupied states
near ionization threshold play important role in the transi-
tions. This is the case also for benzene for which a significant
number of unoccupied states is necessary. TPM does not
suffer from the same convergence problems but it can also be
computationally heavy if many time steps are required. This
is the case if a very high energy resolution is required �the
energy resolution of the calculated spectrum is determined
by the maximum propagation time, FWHM=2� /Tmax� or if
the time step is very small �for instance, when propagating
also the inner shell electron states�.

IV. CONCLUSIONS AND DISCUSSION

This work illustrates the performance of TDDFT for the
calculation of the dynamic structure factor of finite systems
as a function of the momentum transfer. CM provides a pow-
erful tool to extract generalized oscillator strengths for spe-
cific transitions in small molecules. TPM is more suitable
especially for larger systems, but also for smaller ones when
one is interested in the spectrum over a wide energy range, or
if the CM calculation requires a significant number of unoc-
cupied states. The presented approach for directional averag-
ing allows to distinguish between different transition chan-
nels that contribute to the spectrum of isotropic materials.
Altogether the presented methods enable a detailed analysis
of the inelastic x-ray scattering and electron energy
loss spectra. The potential systems where they can be applied
include molecules, polymers, liquids as well as nano-
structures.

We explicitly demonstrated how the calculated IXS
spectrum connects to the photoabsorption cross section at
low momentum transfer, and how the Compton peak forms
at very high momentum transfer. Between these extreme
cases our calculations demonstrate two effects that are
probed by varying the momentum transfer. First, dipole-
forbidden transitions are observed and enhanced in the cal-
culated spectrum at finite q. These transitions can play im-
portant role in, e.g., atmospheric chemistry, where the
molecules are excited by energetic electrons and end up in
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FIG. 3. Separation of the directionally averaged dynamic structure factor of
gaseous benzene into different transition channels at momentum transfers of
�a� 0.57 Å−1 and �b� 1.13 Å−1. At low momentum transfer the dipole selec-
tion rule dominates but when the momentum transfer increases, also nondi-
pole transitions give a significant contribution.
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metastable or dissociative states.54,55 Second, the calculations
show the systematic dispersion of spectral weight that is also
observed experimentally, as illustrated for benzene.

At the intermediate momentum transfer region the
method can provide new information on, e.g., plasmon dis-
persion. More generally, the evolution of spectral features as
a function of q can be related to the electron density corre-
lations in the system at very short time and length scales. The
real-space real-time formalism, as used in this work, pro-
vides valuable insight into the electron dynamics.13,15

Our calculations for benzene and CF3Cl were carried out
using ALDA which is a reliable approximation especially for
the bound single-electron transitions. The presented methods
are independent of the exchange-correlation functional and
therefore allow also calculations with, e.g., nonlocal and as-
ymptotically corrected functionals. Using a more sophisti-
cated functional could provide further improvement for the
excitation spectrum and allow the simulation of other kind of
electronic excitations, such as excitons and charge-transfer
type transitions.
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