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In the present work, we focus on the free volume evaluations from different points of view, including
the aspect of probe sizes, temperature, and cavity threshold. The free volume structure is analyzed
on structures of poly(vinyl methylether) prepared by fully atomistic molecular dynamics. At first, the
temperature behavior of an overall free volume and a free volume separated into individual cavities
is shown. The origin of large free volume cavities is explained. A complex view on the cavity num-
ber is provided, while a complicated behavior previously observed is now explained. The number
of large cavities remained almost constant with the temperature. Oppositely, the number of small
cavities related to the atomic packing changes with temperature in a distinct way for glassy and
supercooled regions. The cavity number maxima determine a percolation threshold according to per-
colation theory. The change in polymer properties with temperature can be related to a percolation of
the free volume according to the free volume theory, when proper probe radii ∼0.8 Å are used for its
observation. A construction of probabilistic distribution of free volume sizes is suggested. The free
volume distributions reported here are bimodal. The bimodal character is explained by two different
packings—atomic and segmental—forming a prepeak and a main peak on the distribution. Further
attention is dedicated to comparisons of the computed free volume sizes and the ortho-positronium
(o-Ps) lifetimes. The prepeak of the free volume distribution is probably unseen by o-Ps because of
a cavity threshold limit. The effect of the shape factor on the computed o-Ps lifetimes is tested. The
quasicavities obtained by redistributing the free volume maintain the ratio of the main dimensions
with temperature. Finally, novel data on the cavity environment are provided, while it is suggested
how these can be useful with the recent developments in the positron annihilation methods. The co-
ordination number of large cavities with the polymer segments is around 1, as predicted in the free
volume theory. Similarly to the percolation and the cavity number, the coordination number exhibits
a change when explored by a suitable probe radius ∼0.8 Å. The insightful visualizations showed
properties of interest investigated within the actual work. © 2011 American Institute of Physics.
[doi:10.1063/1.3525380]

I. INTRODUCTION

The free volume theory is a successful concept for relat-
ing various transport, structural, and dynamic properties by
a single quantity—the free volume.1–9 The basic idea of this
concept is that a molecular body can move if it has a space
to do so. The first principles of the concept were formulated
soon after the discovery of the atom, and it was used to ex-
plain changes of fluidity in liquids.1 The free volume theory
found its stronger impact in the physics of polymers. Poly-
mers have often identical chemical composition with different
sizes of macromolecules for which different mobility can be
expected. In early stages, thermodynamic and dynamic prop-
erties have been correlated to the free volume quantity as a
complementary part to the molecular space. Later on, a gen-
eralization based on the behavior of transport properties was

a)Electronic mail: dusan_racko@ehu.es.

also given. An important conclusion was that different poly-
mers have the same properties at the same amounts of the
free volume. In these approaches, the free volume rather dif-
fered from the so-called empty free volume, which is a com-
plementary part of volume to the van der Waals volumes of
molecular bodies (e.g., Ref. 10). In further developments, the
free volume was associated to the particular molecular bod-
ies, expecting an excess of free volume to occur when the
body leaves its position. Other fundamentals of the theory pre-
dict a probabilistic distribution of the free volume sizes. The
dramatic change of the properties around the glass transition
point has been predicted to have something to do with an on-
set of the free volume percolation.9 Despite the great success
in relating different physical properties, the free volume the-
ory fails in defining a unified free volume quantity. As such
the fundamental free volume measurements, like the free vol-
ume numbers, distributions of free volume sizes, percolation
and geometry, remain without understanding.

0021-9606/2011/134(4)/044512/14/$30.00 © 2011 American Institute of Physics134, 044512-1
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The intrinsic drawback of the purely theoretical ap-
proaches is that, in the best case, they can provide the free
volume quantity in an indirect way, as a fitting parameter of
a particular model. Hence, the free volume is obtained as a
material parameter, which is already correlated with a partic-
ular transport, structural or dynamic property; on the other
hand, independent partial information for linking between
macroscopic properties and a microstructure cannot be ex-
tracted. In the last two decades two methods for a direct free
volume determination by using very small probes below the
size of an atom have been developed. First, the experimental
method called positronium annihilation lifetime spectroscopy
(PALS) determines the defects in structure based on the anni-
hilation behavior of the positronium particle (e.g., Ref. 11).
This particle of subatomic size is very sensitive to the re-
gions of lowered electron density. The free volume amounts
are determined here from the positronium lifetimes by using
semiempirical quantum mechanical hole-size-to-lifetime cor-
relations. This method suffers from an intrinsic limitation too,
since it works as a direct method only under the approxima-
tion of assuming a spherical geometry of the free volume cav-
ities. In models considering more complicated geometries of
the holes, the approximate shape of cavities must be obtained
by other ways. The second method for the direct free vol-
ume determination is made by computer simulations. Here,
the free volume on well equilibrated structures is determined
by means of geometrical analyses.

The current state of art in the free volume studies de-
termines a need for a model or a simulation, which would
reproduce all basic features of the free volume according to
the classical free volume theory, as well as reproducing the
free volume amounts predicted by PALS measurements. Nat-
urally, the modeling studies attempted for reproducing the
PALS measurements of the free volume. These studies pre-
dicted in general that some portion of small cavities (cav-
ity threshold) are inaccessible for localization of a positro-
nium particle.12–17 In low density systems, the positronium
was predicted to reside in pockets of a risen free volume
density—quasicavities.14, 17–19 In our recent work, we have
shown that the experimental lifetimes—free volume amounts,
respectively—can be obtained within both conditions, ne-
glecting of small cavities, as well as division of the free vol-
ume structure into quasicavities. The obtained positronium
lifetimes, for annihilation models with different geometries,
showed only small differences, which scaled with the ratio
of most abundant cavity dimensions.17 In the present paper, a
further insight into the free volume structure is provided. To
the best of our knowledge, the paper is a solitary work com-
paring free volume quantities from PALS and computations in
such an extensive way and wide temperature region. The free
volume is addressed from various theoretical, experimental,
and computational aspects.

II. METHODOLOGY

A. Molecular dynamics simulations

The molecular dynamics simulations were performed
in the DISCOVER module of the Materials Studio simula-

tion package by Accelrys.20–22 The molecules were built
from scratch, by initializing coordinates of all atoms. Then
the structures were cleaned when the bond lengths and an-
gles were adjusted to their equilibrium values according to
hybridization. Next, the forces acting between atoms were
treated by attributing the condensed-phase optimized molec-
ular potentials for atomistic simulation studies (COMPASS)
molecular force field. COMPASS is a second generation
molecular force field suited for simulations of condensed
phases. A short molecular dynamics run was performed,
while the polymeric chain approached energy minima. Us-
ing this configuration of the polymeric chain, the amorphous
cell was built by means of the amorphous cell protocol.
The protocol is based on an extension of well established
methods for generating bulk disordered systems, containing
chain molecules in realistic equilibrium conformations.23 The
prepared amorphous cell contained seven polymeric chains.
Each of the chains consisted of 100 monomers, giving 7014
atoms in total. The structure was equilibrated under isobaric–
isothermal thermodynamic conditions (number of particles,
pressure and temperature kept constant within NPT ensem-
ble, using the isotropic stress tensor constraint) at 400 K until
the conformational distribution, the box side length and the
potential energy fluctuated around constant values. In a next
step, the structure was dynamically equilibrated in the canon-
ical ensemble (number of particles, volume, and temperature
kept constant). The last structure from this NVT step was used
as a starting point for data collection, recording structures ev-
ery 0.01 ps during molecular dynamics (MD) run of 1 ns. The
velocity-Verlet algorithm with a time step of 1 fs was used for
the integration of the equations of motion. To control the tem-
perature, instead of a real temperature-bath coupling (Nosé–
Hoover or Berendsen thermostat) a velocity scaling procedure
with a wide temperature window of 10 K was taken.24 The
structures at lower temperatures were obtained in an analo-
gous way. Starting from the equilibrated structure at 400 K,
temperature was lowered by 25 K. After the first run, succes-
sive runs of 20 ns, collecting data every 0.5 ps, were carried
out until we gained 40 ns trajectories without aging phenom-
ena. Within this procedure, we have obtained seven trajecto-
ries from production runs in a temperature range between 400
and 250 K. Each of the trajectories contained 1000 structures
for analyses of the free volumes.

B. Free volume evaluations

All free volume data have been obtained as an average of
the free volume evaluations over 1000 structures for each tem-
perature. Hence, ∼5 × 108 cubic Ångströms of intermolec-
ular space have been explored within the analyses. As we
noted earlier, this approach in evaluating the free volume cor-
responds to a static approximation, similar to evaluating other
structural magnitudes like a static structure factor.

In this work, we use two methods for the free volume
computations. At first, the occupiable and accessible volumes
with the corresponding surfaces are computed by using the
Connolly’s semianalytical method for calculation of molec-
ular volumes.25 The method has been developed during past
decades and it is available also in the Accelrys software pack-
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age adjusted also for calculations under periodic conditions.
Thanks to the sophisticated algorithm, the method allows fast
calculation of molecular volumes with high precision. In the
periodic system, the free volume is obtained as a complemen-
tary part to the volume which cannot be occupied by a probe
with a given radius.

Until now, there does not exist a modification of the Con-
nolly’s method that would be able to distinguish separate cav-
ities and compute their statistical, volumetric, or geometri-
cal measures. For this purpose, we use a method based on
the numerical integration in three dimensions. This method
in principle provides the same results of free volume amounts
when the grid spacing used (or the integration element) is suf-
ficiently small. Since the total free volume amount is obtained
as a summation of all the free volume increments, the value of
the increment can be corrected to obtain the perfect agreement
of the computed volumes from the two methods.

In order to obtain the free volume data related to indi-
vidual cavities, the free volume is analyzed in several conse-
quent steps. At first, the cubic simulation samples are probed
with a probe of a given radius. The samples are probed ev-
ery 0.5 Å which represents a usual grid spacing used within
the free volume studies (e.g., Refs. 15–17, 26, and 27). The
positions where no overlaps between the probe and atoms oc-
curred are saved. Next, cavities are constructed. A cavity is
here represented by an isolated set of overlapping probes. The
probing and cavity construction procedures can be carried out
much more efficiently if they are done in subsets or use neigh-
bor lists. The use of the neighbor lists, or the subsets with
probes, respectively, led to considerable savings of the com-
putational time, so the analysis performs around 200 times
faster than it would have when analyzing the full structure at
once.17

For small probes, most of the free volume is usually
situated in one cavity percolating through the simulation
box. Therefore, this cavity is additionally redistributed into
quasicavities in order to allow further analyses on the indi-
vidual free volume cavities. The redistribution is performed
based on investigation of local maxima of distances from
atoms in the intermolecular space.14, 18, 19 The local maxima
can be determined easily as a node of the probing grid, for
which all surrounding (26) nodes have a smaller distance from
atoms. In our approach, however, we used a different way. The
local maxima were determined as cavity centers of large cav-
ities, detected by larger probes above a certain probe radius.

As mentioned above, the free volume is computed here
by summation of the free volume increments. The summa-
tion used the original fast method for the computation of the
hard spheres with different radii.28 Because of the huge in-
crease in the computer capacity, it was possible to perform the
summation in one loop from the virtual memory. Hence, the
calculations with estimated error of 0.25% could have been
performed in fractions of seconds.

Finally, the geometrical parameters of the cavities were
computed, based on the calculation of the moments of iner-
tia. Diagonalization of the gyration tensor matrices were per-
formed by using a FORTRAN routine LAPACK 3.0.29 More de-
tails on the computation method can be found in our previous
works.15–17

III. RESULTS AND DISCUSSION

A. The specific volumes

Prior to computation of the free volume data, the atomic
structures had to be computed. The structures were obtained
by simulated cooling employing the molecular dynamics sim-
ulations. Within the cooling, the temperature was decreased
by a given temperature step and the structures were annealed
in the NPT statistical ensemble as described in the methodol-
ogy section. Hence, the first volumetric data come from the
NPT simulation and are related to the simulated density. The
overall volume of the box is shared by the molecular bodies
and the empty space. In further investigations, we split the
empty space into regions occupiable by probes of given radii.
Figure 1(a) shows the temperature dependence of the specific
volume of the simulated poly(vinyl methylether) (PVME).
The computed specific volumes are compared to the experi-
mental values. The comparison implies a good reproduction
of the experimental densities.30 The deviation ranged from
0.2% in high temperature liquid to around 0.7% at 300 K.
At 275 K, the temperature dependence of the specific volume
seems to change the slope. This temperature is believed to be
a counterpart to the experimental dilatometric glass transition
temperature. The shift of the glass transition temperature is a
result of the dynamic arrest, and the agreement with the exper-
imental values cannot be obtained in practically feasible com-
putational times. The shift of the glass transition temperature
(of the order of ∼30 K) is typically encountered in molecular
dynamics simulations and may reach several tens of degrees,
see, for example, Refs. 15 and 31.

The graph also shows the temperature dependence of the
empty space volume computed on the simulated structures.
This dependence demonstrates that the empty space follows
the dependence of the overall volume. The thermal expansion
coefficient of the free volume is slightly smaller from the co-
efficient for the total volume in liquid. The total difference in
slope is 8 × 10−6 giving the deviation of 1.2%. The similar
behaviors of the empty space and total volumes confirm that
the volume of molecular bodies changes only a little with the
temperature. This observation also determines the necessity
of a good agreement between the simulated and experimental

FIG. 1. A comparison between the experimental dilatometric volume and
the specific volume obtained from the molecular dynamics simulation (top
curve). The dashed line corresponds to the experimental data. The graph also
shows the computed portions of the empty space volume (bottom line).
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FIG. 2. (a) The free volume fractions computed for different probe radii. The actual probe radii used to calculate the fraction are indicated by the line, with a
number which corresponds to the units of Å. The dashed lines correspond to the region where the dependence deviates from the linear behavior due to the shift
of the simulated Tg. (b) The dependence of the expansion coefficient computed for the particular probe radius.

specific volumes, since all additional volume would transfer
to the free volume.

The fraction of the empty space at simulated glass tem-
perature T MD

g is 35.7%. This amount is close to the value 36%
predicted by the packing fraction for the random packing of
hard spheres.32 The packing fraction as the complementary
property of the empty space can be higher for the random
packings of spheres with different radii.33 Taking into ac-
count that the interaction potential describes the atoms as soft
spheres, the packing in the simulated structures is far from its
maxima and large free volume vacancies can be expected.

Figure 2(a) shows the fractions of free volumes occu-
piable by probes with given nonzero radii. The free volume
determined by a spherical probe with a nonzero radius cor-
responds to the empty space between the molecular bod-
ies minus some portion of geometrically excluded volume.
The computed free volume data at the given temperature and
the probe radius are shown with symbols. The data points in
the region above T MD

g which we suppose that properly re-
produce the liquid region are also described by linear fits.
The fitting analysis confirms the linear dependence of the free
volume with the temperature in agreement with the free vol-
ume theory.4 Moreover, the linear dependence is observed in-
dependently of the used probe radii. Slight deviations of the
computed free volume data are observed below the assumed
glass transition temperature Tg. This deviation is apparent for
all investigated probes. On the numerical data, we could ob-
serve also that for large probes above some radius the tem-
perature dependence starts from zero at certain temperature.
The reason is that occupiable regions, large enough to contain
the probe, start to occur only above some temperature as the
molecular structure expands.

Another interesting feature is the change in slope of the
temperature dependences of occupiable volumes. This feature
also can be observed on the free volume dependences reported
in an earlier work,34 although it was not discussed there. The
slope of the dependence decreases with the increasing probe
radii. As a result, the ratio of the volume shared by larger and
smaller cavities changes. This may lead to an intriguing con-
clusion that the free volume changes on the account of the
large cavities, by processes such as the flowing of molecu-
lar bodies into larger cavities and splitting them into smaller

regions. Although this picture is not to be entirely dispelled
within the article, we can demonstrate that the creation of new
free volume amounts occupiable at first by small probes is
more probable. The situation is well illustrated in Fig. 2(b),
showing the thermal expansion coefficient for the occupiable
volume as a function of the probe radius. We can observe
that the coefficient decreases with the probe radius display-
ing the curve as a “sigmoidal-like” shape. The expansion of
the free volume occupiable by smaller probes follows more
closely the expansion of the total volume of molecular struc-
ture. The largest change in thermal expansion coefficient oc-
curs for probes between 0.5–0.9 Å. The more intense change
can be related to another process starting to act on the free
volume—the formation of individual cavities (see Sec. III D).
Later, the change in slope stabilizes with larger probes again.
This picture may also imply that most of the free volume starts
to exist as the interstitial volume. The changes in the separated
free volume cavities arise from the change in the overall free
volume more likely than directly from a change in the specific
volume.

B. Accessible and occupiable volume

In this section, a different view on the occupiable free
volume is shown. The occupiable volume is discussed as
a function of the probe radius and also in relation to the
so-called accessible volume. In Fig. 3(a) the dependence of
the probe occupiable volume from Fig. 2(a) is redrawn as
isotherms and shown as a function of the probe radii for four
temperatures from our investigated range. The dependences
start at the value corresponding to the empty space fractions
and steeply decrease as the probe radii become larger. The de-
pendence of the free volume starts to deviate from the steep
decrease at the large probes where the existence of the free
volume cavities is assumed. This behavior is to be consid-
ered now as general as it can be seen on the free volume data
computed for atomistic simulations, such as polybutadiene35

or amorphous sucrose.26 In these works, the deviation from
the steep descent declines at around 0.5 Å as shown also
for our case in Fig. 3(a). For probes larger than 1.0 Å less
than 1% of the volume can be occupied by a probe. The
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FIG. 3. (a) The fractions of occupiable volume as a function of the probe radii computed for different temperatures. The lines correspond from bottom to 250,
300, 350, and 400 K. The dashed line is a lead to indicate the deviation from the steep descent. (b) The fractions of occupiable free volume normalized to a
point probe. The arrows indicate the direction in which the temperature T or hardness ∈ increase.

dependence always ends with a jump because of the finite size
of the probe. It may not be obvious from the graph because of
the low amounts of the occupiable volume fraction. Similar
dependences were computed also for coarse grain simulations
for polyethylenes,34 polypropylene,36 and a polycarbonate,37

naturally, the free volume disappears at larger probe radii pre-
dicted as the result of larger distances between the grains.

The shape of the dependence is a unique feature it-
self. Just consider the simplest picture on the free volume
vacancies in the matrix, when the free volume consists of
spherical cavities with a constant radius. Then the occupiable
volume would remain constant up to the radius of such the
cavities, where it would drop to zero. For a more complicated
state, when the cavities are represented by probabilistic distri-
butions an s-shaped dependence should be preserved. On the
other hand, the shape of the dependence can be well described
by an exponential decay function (with a squared correlation
coefficient R2 = 0.995). The mathematical meaning of the ex-
ponential decay is that a constant probability acts on all pop-
ulation per unit of an independent variable. For our case, the
population would be represented by free volume elements and
the independent variable is the probe radius. The exponential
decay dependence may suggest that in a larger system (sta-
tistical ensemble) even larger cavities than detected here can
develop spontaneously.

The relation between the occupiable volume and the
probe radius can be given based on the concentric shell
model.38 The derivation of the model resulted into exponen-
tial equations, which in generalized form correspond to those
for the exponential decay. The model also relates other vari-
ables such as the bead (atom) radii, the density, and hardness.
The hardness is a measure of mutual penetrability of the beads
or atoms. The parameter of hardness changes from 1, for com-
pletely nonpenetrable spheres, to 0 for spheres, which can be
placed randomly. As shown earlier,35 the dependence of the
occupiable free volume fraction in molecular structures from
atomistic simulations occurs closer to the second limit case.
Additionally, by comparing the curves normalized to a point
probe computed for several temperatures, we may see that the
predicted hardness parameter decreases with rising tempera-

ture, Fig. 3(b). The randomness in this case increases more
likely due to the higher configurational freedom than due to a
higher penetrability of molecular bodies.

C. The free volume surface

In this section, we report on the surface areas computed
for the occupiable volumes for different probe radii. The
variation of the surface areas with the temperature and probe
radius has more complicated behavior than it is in the case
of the occupiable volume. As shown in Fig. 4(a) the surface
area in general increases with temperature. The intensity of
the increase changes differently for different probes. The sur-
face corresponding to the empty volume changes less inten-
sively. The areas computed in the periodic box are smaller
than the areas computed on the same molecules, but placed
separately in vacuum. The area in such case was around 9
× 103 Å2 higher (20%). The difference arises from the over-
laps of the atoms in the simulated packings of molecules. The
specific surface computed as surface area per unit volume in
Fig. 4(b) shows a continuous increase up to 300 K. Above this
temperature the specific surface may drop for probes close to
van der Waals radii. Furthermore, we may see that the surface
area rises the most rapidly for the probe radii from the region
where the breaking of the free volume structure into isolated
cavities is supposed. Figures 4(c) and 4(d) show the com-
puted slopes characterizing the increase of the surface area
with the temperature for a given probe radii. Figure 4(c) rep-
resents a simplified case, when the computed surface areas
were fitted by a linear equation. This simplified picture is to
demonstrate the characteristic shape of the curve. As com-
pared to Fig. 2(b), we may observe that the surface area rises
with the highest slopes in the region where the more intensive
changes in the free volume are reported. Despite the expan-
sivity of the free volume, where the linear dependence is pre-
dicted by the free volume theory, no such prediction is made
for the expansion of the surface area. Therefore, fitting anal-
yses with more complicated functional forms would be suit-
able. For this case, we fitted the data presented in Fig. 4(a) by
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FIG. 4. (a) The total surface areas computed with probes of different radii and at different temperatures. (b) The specific surface area computed from the total
surface areas relating them to the total volume of the box. The corresponding radii start from 0 Å for the top line and increase by 0.1 Å. (c) The expansivity of
the cavity surface for different radii, computed as a slope of a linear fit over the total surface areas and (d) The expansivity of the cavity surface for different
radii, computed as a slope at given probe radii of a polynomial fit over the total surface areas.

a simple polynomial (cubic) function. Next, we computed the
slopes as the first derivations at given temperature. Figure 4(d)
shows the computed slopes as isotherms dependent on the
probe radii. Again we may observe that the peak of the sur-
face expansion occurs between 0.3–0.8 Å, corresponding to
the region of the steep decrease in Fig. 2(b). In this region,
the free volume structure splits in the individual cavities. We
may also observe that the overall change in the surface area
(which could be an integral of a particular curve) is small-
est below the “glass transition from simulation” and it drops
again at 400 K where the true liquid phase is assumed.

D. The cavity number

In Secs. III A–III C, we have already provided a certain
insight into the formation of individual cavities in the free vol-
ume structure. Based on this picture, we may expect that the
number of cavities will exhibit a complicated behavior too. In
an earlier work, the number of cavities computed for two dis-
tinct probe radii were reported.34 The computed numbers of
cavities for the two probes showed qualitatively different be-
havior, although the authors did not comment on the observed
behavior. In a recent work,17 some of us computed the number
of cavities as a function of the probe radius. As we observed,
the computed distribution showed a peak placed around the
probes with radius ∼0.7 Å. The existence of such a maxi-
mum is very natural now. As the probe radius increases, the
free volume structure breaks into isolated cavities. Because

the occupiable volume changes too, the occupiable (probe ac-
cessible) sites are depleted soon and the cavity drops again.
The position of the peak is situated in the region where the
form of the free volume, from a percolated space into individ-
ual cavities, is observed. Let us note that within the cavity
constructions by using a discrete probing grid the percola-
tion of cavities may change slightly, and the position of the
peak may slide to smaller values when finer grid spacing is
employed.39

In Fig. 5(a) we show that such distributions develop at all
temperatures. However, the position of the peak will slightly
shift with temperature to higher values. This is consistent also
with Fig. 3(b), which infers that at higher temperatures the
cavity breaking starts at higher probe radii. The distributions
were computed starting from probe radii of 0.4 Å. The reason
is that the computational costs heavily increase with decreas-
ing the probe radii toward a point probe. However, the ques-
tion whether there can exist also a cavity for a point probe
with zero radius, can be answered that, in principle, it is pos-
sible. The molecular structure consists of finite-size spheres;
hence, in a proper coordination of atoms, a free space can be
formed between them. Due to the huge computational costs,
we do not investigate the physical meaning of this presump-
tion further.

When the distributions in Fig. 5(a) are redrawn as a func-
tion of temperature, the origin of the qualitatively different
behavior for various probe radii is obvious [see Fig. 5(b)].
We may classify the behavior of the cavity number with the
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FIG. 5. (a) The distribution of the cavity number as a function of the probe radii computed at different temperatures. The corresponding temperatures are
indicated with lines in units of K. (b) The graph shows a different view on the same data. The cavity numbers are plotted as a function of temperature for given
radii. The number of cavities for the small probes is indicated by dashed lines. The rising numbers of cavities, computed for large probes are shown by dotted
lines. The solid lines were computed for the probe radii around the position of the cavity number maxima. These lines exhibit a presence of maxima. The graphs
explain the nature of the complicated behavior of the cavity number.

probe radii into three groups. For the small probe radii below
the peak of the cavity number, the total number of cavities
will decrease with temperature. We may describe this behav-
ior on the temperature as merging of the small cavities into
one mostly percolated cavity. On the other hand, for the large
probes new occupiable regions are created, so the number of
cavities increases. Finally, from the view on the cavity number
distributions presented in Fig. 5(b) it is also clear now that for
some probe radii the system will be passing through a max-
imum with rising temperature. This behavior will be typical
for probe radii around the position of the cavity number max-
imum. Figure 5(b) also indicates the dependence of the total
maxima of the cavity number. This maximum can be a re-
sult of interplay between different packings—atomic and the
packing of molecular bodies. The maximum of the cavities
seems to develop a global maximum between 325 and 350 K.
Another interesting feature is the drop of the cavity number
maxima with the temperature. As we have seen in Fig. 3(d) at
the higher temperature the cavities are created at higher probe
radii. At the higher probe radii, the free volume can be divided
into fewer cavities.

E. The free volume distributions and the percolation

The classical free volume theory assumes two funda-
mental properties of the free volume. One is a probabilis-
tic distribution of the free volume element sizes.9 The other
one is the percolation of the free volume elements. Within
the percolation theory an important prediction is made, that
at the point where the percolation occurs a dramatic change
in properties is observed.40 It is now natural, that since the
first computational works the authors have been attempt-
ing to show the distribution functions of the free volume.
However, a typical shape of the free volume distribution com-
puted by the direct probing approach showed bimodal or tri-
modal distributions.13, 18, 19, 34, 37, 39 In these distributions the
highest occurrence of the small cavities was observed, fol-
lowed by a considerable lower number of cavities in the in-

termediate range. On some distributions also a large cavity is
observed which usually percolated the simulation box.

Note that in some other approaches to the free volume
simulation, like Voronoi or Delaunay tessellations, the proba-
bilistic distributions of the free volume sizes are regularly ob-
served. However, the free volume amounts determined by the
tessellations are not clear, at least for polydisperse systems.
This is because in a fully atomistic simulation the indices and
vertices of the polyhedra are function of both, the free vol-
ume sizes as well as the atomic radii. The percolation of the
Voronoi or Delaunay polyhedra37, 41 has also been observed,
although the authors reported that no change of the properties
around the percolation point has been observed.42

In Figs. 6(a) and 6(b) we show integral distributions of
volume as a function of cavity volume and temperatures.
The distributions are normalized by relating the distributions
to the absolute amounts of the occupiable free volume at
the given temperature. Furthermore, the figures provide data
computed for two probe radii from the interval where the peak
of the cavity number distributions is observed. We can see
the distributions change as a function of the temperature as
well as probe radii. For small probes, or a point probe re-
spectively, the free volume structure should be percolated. For
large probes, a narrow distribution of the cavity volumes is
observed. The percolation of the free volume structure can be
traced by probe radii around the position of the cavity number
maxima [Fig. 5(a)]. This is in an agreement with the percola-
tion theory, which says that around a percolation threshold a
maximum should occur.

The percolated cavity may represent a real puzzle
in simulations. From the aspect of free volume analyses,
the percolation complicates analysis of the cavity structure.
The evaluations of the basic free volume measurements, like
the cavity number, cavity volume, and the cavity geometries,
apply only on individual cavities. In the case of the percolated
cavity a bias from the simulated box sizes may take place.
The problem of percolating cavity might not be encountered
in dense systems, such as hydrogen bonded liquids, even for
small probes around radius of 0.5 Å.15 This is because even
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FIG. 6. (a) and (b) The integral distributions of the free volume computed at different temperatures. The corresponding temperature is indicated with a number
by the lines in units of K. The shown distributions are computed for two probe radii 0.7 and 0.9 Å. The distributions are normalized by relating to the total
amount of the free volumes.

the smaller probe radii were larger than the radius belonging
to the cavity number maxima. However, in a later investigated
polymer system we coped with the problem of the percolat-
ing cavity. In order to break the cavity into quasicavities, we
have redistributed the free volume structure around the local
maxima of the free volume occurrence as suggested in earlier
works.14, 17–19 Such maxima can be determined as probing po-
sitions for which all 26 neighboring nodes have lower distance
from atoms. These criteria, however, can be too tight and may
lead to splitting even bulky cavities according to subtle irregu-
larities, which could be associated to the level of a cavity sur-
face. As a result, the distributions of the cavity sizes may oc-
cur around lower values. In our approach, we determined local
maxima in a different way. The local maxima were given as
centers of large cavities determined by larger probe radii. The
probe radii used were close above the position of the cavity
number maxima (Fig. 5). This approach also allows scaling
the position of the peak of the free volume sizes distribution.

As it has been reported in earlier works, and as we show
in Fig. 7, the former delta wing shaped distribution [Fig. 7(a)]
of the free volume changes after the redistribution into the
probabilistic distribution [Fig 7(b)]. Now, the origin of the
probabilistic distribution can be explained by the distribution
of the cavity centers in the sample volume. As we have shown
in our recent work,17 based on the cavity—cavity radial distri-
bution function the distribution of the large cavities in space
is completely random, contrary to small cavities, for which a
certain pattern has been detected. Now consider that the free
volume structure is redistributed around the centers of these
large cavities. Finally, the distribution of the free volume ob-
served here is bimodal. We suggest that the bimodal character
of the distribution is given by two different packings in the
structure. One is related to the atomic packing, the other orig-
inates from the packings of the whole polymer segments on a
scale of Kuhn segments.

Moreover, we may remark that the procedure of the free
volume redistribution is in its principle familiar with the
Voronoi or Delaunay tessellations (e.g., Ref. 43). However, in
this case instead of atoms, the volume is associated to the ran-
dom points corresponding to centers of large cavities and only
free volume part of space is considered. It can scale to larger
free volume structures too (for example determining coordi-

nation or percolation of the large cavities). Finally, let us note
that the percolation phenomena predicted by the free volume
theory9 should be explored also on larger scales, where a per-
colation of the larger free volume formations should be ex-
amined. At small scales on the level of atoms, the percolation
can be hidden in the primary formation of cavities based on
the probe geometry as shown in Secs. III A–III D.

F. Cavity shape

The next property of the free volume evaluated is the
cavity geometry. The cavity geometry can be evaluated in
a discrete way by computing the main axes of the ellipsoid
of inertia. The ellipsoid of inertia represents a momentum
distribution of probes forming the cavity.44 Another com-
mon way to expressing the geometry is computing a surface-
to-volume ratio. The previous geometrical evaluation of the
cavity geometry showed that the irregularities expressed as as-
phericity, acylindricity,35, 44 or statistical deviations like vari-
ance and uniformity increase with the volume of cavities.13

In our recent work, we compared the match of the cavity
geometry with several basic geometrical shapes.17 Here, we
provide further view on the cavity geometry computed for
different probes and temperatures. At first, the side-to-length
ratios of the main axes of the ellipsoid of inertia are computed
and based on these ratios the histograms of occurrence are
created. In Fig. 8 we show the histograms computed for two
temperatures from our temperature range of interest, by using
four probes 0.53, 0.9, 1.1, and 1.5 Å. We may see that for the
smallest one no stable distribution is observed. It is because
most of the free volume is situated in a percolated cavity and
only casual individually existing free volume cavities appear
in the structure. For larger probes, the percolated structure
starts to fall apart into individual cavities. Here, a probabilistic
distribution of the side-to-length ratios can be observed cen-
tered about a characteristic ratio 0.6:1.0. For larger probes,
the values of the side-to-length ratios around unity become
frequented because even the large cavities can contain only
single probes. We may see that the main features observed
on histograms are shifted with temperature so that the same
features occur for a smaller probe at lower temperature. In
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FIG. 7. Distributions of cavity numbers and volumes for two temperatures 300 (1) and 400 K (2), represented as a portion of cavities, by normalizing to the
overall cavity numbers or the total free volume, respectively. Graph (a) shows the normalized distribution of the volume computed for a probe with radius RP
= 0.53 Å. The distribution starts with a steep descent corresponding to single probe cavities. Arrows show the percolated cavities. Graph (b) shows the
distribution of the cavity number after redistributing the free volume structure into the quasicavities. The dashed line shows where we put cavity threshold limit.
Graph (c) shows the distribution of the free volume in terms of the cavity sizes. Before redistribution of the microstructure into quasicavities, the major part of
the volume is situated in percolated cavities. Graph (d) shows the distribution of the quasi-cavity sizes.

FIG. 8. Distribution of the side-to-length ratios of the axes of the ellipsoid of inertia. The brighter gray tones correspond to a higher frequency of occurrence
of computed ratios. The most abundant single probe cavities, with the ratios 1:1 are not shown.
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principle, this shift follows the shifting of the cavity number
maxima with the increasing temperature [Fig. 5(a)]. The ge-
ometrical dimensions computed on the quasicavities keep a
constant value of the match to a simplified geometrical repre-
sentation, as well as the side-to-length ratios, within the tem-
perature range investigated (81% for cylinder). The variation
of the matching with the temperature was within the bound-
aries of the standard deviation. Figure 9 shows the geomet-
rical features discussed above in a different view, as surface-
to-volume ratios. The graph shows that the ratio computed
for the empty space by a zero point probe slightly decreases
with increasing temperature. For the zero point probe, the area
of the free volume cavities corresponds to the van der Waals
surface of the molecules. The decrease occurs because at the
higher temperatures the molecules get separated and more of
the molecular space is accessible to the probe. The decrease of
the surface to volume ratio has been already manifested by the
specific area (Fig. 4). The ratios start to increase with increas-
ing the probe radius reaching a maximum. The maximum oc-
curs approximately in the region of the cavity formation and
slightly shifts toward large probes with the increasing tem-
perature. For very large probes, the data become unstable and
the computed values occasionally provide the side-to-length
ratios corresponding to a sphere with the given probe radius.
An apparent global maximum of the surface-to-volume ratio
computed for 350 K can be a result of two factors: the largest
surface-to-volume ratios are obtained for isolated mid-sized
cavities (Fig. 8) and the occurrence of a global maximum of
cavity number close to 350 K [Fig. 5(b)].

G. The computed free volume cavities and the PALS

In a consecutive step, the computed free volume sizes or
the positronium lifetimes can be compared to the experimen-
tally obtained values. In our comparison we will show the
positronium lifetimes rather than volumes, since the positro-
nium lifetime is the quantity directly obtained from the PALS
experiment. The input data for the positronium lifetime com-
putations are the cavity volumes and dimensions computed
within the free volume analyses. The corresponding lifetimes
are calculated based on the lifetime-to-volume semiempirical

FIG. 9. The overall surface to volume ratio of the free volume computed for
four characteristic temperatures from our investigated temperature region.

quantum mechanical correlations. In the experimental deter-
mination of the free volume, the same equations are used to
calculate the cavity sizes from the positronium lifetimes. In
extension to the experimental determination, we also use the
model with enhanced assumption of the cylindrical geometry
and use the cavity dimensions obtained within the geometrical
analyses.

In previous studies of the high free volume systems, it
has been suggested that probes with small radii can be too
sensitive to provide the picture of the cavity structure.45 As we
have shown, the number density of cavities can be reproduced
by using the larger probes with radii around 1.0 Å; however,
the free volume dropped dramatically. Therefore, within the
free volume determination we used a small probe with ra-
dius of an ortho-positronium (o-Ps) atom, RP = 0.53 Å, and
additionally redistributed the percolated free volume struc-
ture as suggested in related works.14, 18, 19 However, the de-
termination of the local maxima in the original approach may
be too tight and leads to predicting smaller cavities around
2–3 Å of hole-size equivalent radii.27 In our approach we de-
termine the cavity maxima in a different way, as centers of
cavities determined by larger probes with radii close above
to the cavity number maxima. As suggested from our recent
work, by changing probe size criteria, the positronium life-
times can be obtained in a span between those of percolated
structure to those computed on quasicavities.17 Naturally, in
the case of larger cavities the role of the shape factor becomes
more important, decreasing the computed lifetimes. In order
to obtain the experimental values, small cavities below some
threshold volume should be discarded. In Fig. 10(a) we show
that the overall cavity number drops with temperature, con-
sistently with what was already observed in the low molecu-
lar systems.15, 16 The overall number of cavities corresponds
to the number of large cavities obtained from redistribution of
the free volume, plus a larger cavity number sampled by very
small probes. When eliminating cavities with certain small
volumes, the cavity number in the temperature region below
∼350 K remains constant. As shown previously,17 these small
cavities could correspond to some subtle structural feature
sampled along the atomic structure of the polymeric chain
and they are not accessible to o-Ps atom localization. As we
have also shown in Figs. 3 and 7 in this work, this structural
feature can be sampled particularly by small probes at sizes,
where the fractal division of the interstitial space occurs. Con-
sistently with the distributions in Fig. 7, the amount of the
small cavities to be neglected drops with the increasing tem-
perature. The number (density) of holes is often assumed to be
related to the relative intensity of an o-Ps signal during anni-
hilation measurements.46, 47 On the other hand, some other ex-
perimental works argued that the intensity of the annihilation
signal has a more complicated origin, showing that the inten-
sity is affected by light of a particular wavelength or chem-
ical composition.48 Understanding the origin of the relative
intensity can enhance amount of unique information obtain
by the PALS measurements. As the computational approach
of the free volume analyses provides also information on the
cavity number, a direct comparison with the relative inten-
sity is afforded. Figure 10(a) plots the relative intensity on the
right y-axis versus the normalized temperature. Despite scat-
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FIG. 10. A comparison of computed (solid lines) and experimental (+ symbols) data. The arrows show the glass transition temperature (1) and the onset of
a plateau in PALS (2). Graph (a) The graph shows the number density of cavities as a function of the normalized temperature and cavity threshold given in
cubic Ångströms. The graph also shows relative intensities from o-Ps lifetime experimental measurements. Graph (b) The comparison of the ortho-positronium
lifetimes as computed from spherical model (open circles), cylindrical model (gray area), and experimental data (+ symbols). The values for the spherical
model were computed for cavity threshold of 30 Å3. The solid lines representing the values from the cylindrical model are computed for 40, 50, and 60 Å3.

tered values at high temperature above 1.2Tg, the dependence
of the relative intensity seems to have a slightly increasing
trend. However, the total difference is smaller than 9% in the
investigated temperature region. The slightly increasing trend
is, however, comparable with the increasing trends of larger
cavities [Fig. 5(b)]. This could be consistent with an assump-
tion that o-Ps atom localize in larger cavities. The number
of computed quasicavities obtained after redistribution of the
free volume seems to preserve this trend (0.8–1.0)Tg. A use of
larger probes to determine cavity centers for the free volume
redistribution could even pronounce the increasing trend of
computed values. On the other hand, as the observed variation
of the relative intensity as well as computed cavity numbers
show only slight variations with the temperature, the assump-
tion of a constant cavity number given in some models for the
free volume fractions (Ref. 49) is fairly satisfied too.

Figure 10(b) compares the experimental data from PALS
measurements50 to computed values. The computations in-
volved two models considering different geometries. One is
the most simplified and the most common model for spher-
ical holes.51–53 The second cylindrical model54 was shown
to reproduce the PALS data when considering a geometrical
representation of cavity closest to the real cavity shape.17 We
prefer comparing lifetimes because the o-Ps lifetime is the
actual quantity directly obtained by the PALS experiment.
The computed and experimental data are normalized to corre-
sponding glass transition temperatures observed in the PALS
experiment T PALS

g
∼= 250 K,50 or obtained in the molecular

dynamics simulations T MD
g = 300 K (Fig. 1). The gray area

between solid lines corresponds to the values computed by
cylindrical model, with thresholds of cavity volumes between
40–60 Å3. The thick line is computed for 50 Å3. The life-
times computed by using the spherical model are represented
by open circles. In the case of the spherical model, idealized
geometry provides an overestimate of cavity lifetimes;17, 55

hence, a smaller cavity threshold of 30 Å3 had to be consid-
ered. From the comparison between the computed values, we
may see that after using different cavity thresholds to compen-

sate the overestimates of values between models, the values
keep the same temperature dependence. The reason for this
can be that overall geometrical parameters represented by the
ratio of the main dimensions of cavities do not change (sig-
nificantly) with temperature as discussed in Sec. III F. The
computed data qualitatively agree well with the experimen-
tally measured lifetimes up to the onset of plateau region. The
plateau region is not reproduced what indicates that the ori-
gin of the plateau observed in the experiment cannot be ex-
plained only by the shape factor of the cavities. Quantitatively
the computed o-Ps lifetimes for a given cavity threshold are
longer than the experimental values. After scaling the graph
by normalizing to the corresponding glass transition temper-
ature, the data showed roughly constant difference in the in-
vestigated temperature region up to the onset of the plateau.
This is quite clearly the result of large cooling rate which
causes the structure to freeze at higher amounts of the free
volume.15, 16

H. The cavity environment

In our previous work, we have investigated the cavity
environment in terms of the cavity–cavity radial distribution
functions. The distributions showed a prepeak occurring at
small separations or detected by small probes, respectively.
We have suggested that this peak may correspond to some
structural feature sampled along the polymeric chain. In the
present work, we furthermore provide an investigation of
the cavity environment. From the experimental point of view,
the PALS has been shown to have the ability to detect chem-
ical environment for particular chemical elements. However,
the existing data are rare and exist for only a few chemical
systems.56, 57 Hence, no particular comparison of experimen-
tal results is done here, and rather we show the ability of pro-
viding such kind of information by the simulation approach
too.
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FIG. 11. Histograms show portions of polymeric segments (from total 700) coordinated by a particular number of cavities. The graphs are shown for two
temperatures 300 and 400 K, and the data were computed as an average over 1000 structures for the given temperature and particular probe radius.

In Figure 11, the histograms enumerating the numbers of
cavities neighboring to each of 700 polymer segments in the
simulated structures are shown. Two limit cases are analyzed
from our investigated temperature range. The data were av-
eraged over 1000 structures. The graphs infer that the small
probe, with the radius 0.53 Å, is a very sensitive probe to

which all segments are accessible during probing. However,
for the probes with larger radii there are a considerable num-
ber of inaccessible regions. This number is decreased as the
structure opens with the increasing temperature. In the case of
the small probe, the number of segments detected to be sur-
rounded by only one cavity increases. It is because of spread-

FIG. 12. The free volume structure has been shown as a slice for 250, 300 (top row), 350, and 400 (bottom row) K. The green regions represent large free
volume regions accessible to probes with large radii. Black regions represent interstitial volume probed by very sensitive probes with radii below the percolation
threshold RP < 0.5 Å. The pictures show also the chemical environment of the free volume cavities. Two length scales in units of Å as well as Kuhn lengths
(for PVME ∼ 13 Å) (Ref. 58) are shown for reference.
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ing of the percolated cavity. We may, further, observe that
rather large number of segments participates in formation of
more than one cavity. This may occur in the case of small
single-probe cavities. As we suggested earlier,17 this portion
of small cavities sample some subtle feature, in principle rep-
resented by the interstitial volume. For larger cavities, even
represented by a single probe of 1.20 Å, associating of a poly-
mer segment by more than one cavity becomes unlikely.

A complex view on the object of our investigation in
this work is given in Fig. 12 by representative visualiza-
tions. The visualizations show slices of the molecular struc-
ture together with the free volume cavities. The visual-
izations are provided for four characteristic temperatures
from our investigated range. Cavities with large free vol-
ume amounts accessible to larger probes are distinguished
by a color scale from blue to green. Probes with radii below
0.5 Å are considered to be able probing the intermolecular
space in detail. This space, however, would correspond to the
interstitial volume and no cavity formation is supposed here.
This detailed space is shown in black color. In the actual
slice, we may observe that only a few really large cavities
can be found. These cavities may have approximately size on
a scale of Kuhn segments. Within the centers of these large
cavities the free volume has been associated, producing the
probabilistic distributions of the cavity sizes (see Sec. III E).
Redistributing of a free volume sampled by more sensitive
probes increases the cavity surface, and it is responsible for
the complicated cavity shape generally computed in previous
geometrical investigations.17, 35, 37, 39, 43 In agreement with the
previous study the elongated cavity shape can be remarked.

IV. SUMMARY AND CONCLUSIONS

We have investigated free volume structure at different
temperatures starting from a point probe. The temperature de-
pendences of the free volume fractions computed for different
probes show linear dependence on temperature. The thermal
expansion coefficient of the free volume drops with increasing
temperature as the free volume fractions computed for larger
probes are a function of both, density and the probe geometry.

The dependence of the free volume with increasing probe
radius follows an exponential behavior. This describes how
large defects develop from the disordered atomic structure
spontaneously. The bending on the exponential curve is re-
lated to the formation of individual cavities. The bending can
distinguish the free volume existing in two different forms.
The region of the steep drop of the occupiable volume is as-
sociated with depletion of large amounts of probing sites and
corresponds to a percolated free volume. This part of the in-
termolecular space can be characterized with a fractal divi-
sion of space. The region below the bending represents a free
volume existence as individual cavities, which have larger
geometrical freedom for probing. Further, comparison with
the concentric model shell infers decrease of hardness of the
molecular structure with rising temperature. The randomness
or disorder of the structure can be related to the developing
of larger cavities. The formation of cavities, as change of the
character of the free volume, reflects on different properties
evaluated, such as temperature dependences of the occupi-

able volume, cavity numbers, specific surface, or geometri-
cal parameters. The cavity formation is also reflected by the
dependence of the free volume quantities on a probe size,
such as the occupiable volume, occupiable-to-accessible vol-
ume ratios, thermal expansivity of free volume, expansivity of
surface, shifting of cavity number distributions, or producing
probabilistic distributions.

The complicated and qualitatively different behavior of
the cavity number computed for small and large probes was
explained. Additionally, the maximum was observed to shift
slightly with increasing temperature. Hence, for certain probe
radii around the position of the cavity number maxima the
system was observed to be passing through a cavity number
maximum also with increasing temperature. The cavity num-
ber increases or drops with temperature according to the po-
sition of the cavity number maximum. In the same time, the
cavity number maximum characterizes a percolation thresh-
old value in the primary cavity formation/free volume per-
colation. This percolation is not necessarily connected with
the dramatic change of physical properties predicted by the
classical free volume theory. An approach for investigation of
larger free volume formations and examining their percolation
over the structure with the change of the physical properties
was suggested.

The distributions of the cavity numbers and volumes
show polymodal distributions in percolating structures. Prob-
abilistic distributions were produced by redistributing the free
volume around local maxima of the free volume occurrence.
A modified way for obtaining these maxima as centers of
large cavities prevented bulky cavities from crumbling. The
procedure is similar to construction of space tessellations. The
distributions of the free volume produced in this way are bi-
modal. The bimodal character of the distributions is natural
and can originate from two different packings—atomic and
segmental.

The geometry of cavities was evaluated by side-to-length
ratio of the main axes of ellipsoid of inertia and by the surface-
to-volume ratios for different probes and temperatures. The
evaluations show that the same features are computed at
higher temperatures when larger probes used. The behavior
follows the shift of the position of the cavity number max-
ima and the percolation threshold. The geometrical dimen-
sions computed on the quasicavities keep a constant value
in the temperature range investigated. The variation of the
geometrical evaluations computed on quasicavities with the
temperature was within the boundaries of the standard devia-
tion. The evaluations can be important from the aspect of the
classical free volume theory, supposing that a constituent can
move if it has a space to. The slightly flat-shaped geometry
with side-to-length ratio 1:2 suggest that for most molecu-
lar probes including the polymer segments the constituents in
structure will affect the structure and produce their own free
volume. From the aspect of the semiempirical PALS models
with enhanced geometry, the constant ratio of the geometrical
dimensions predicts that the data from spherical model will
be overestimated by a constant difference value.

The comparison with the PALS data showed that ex-
perimental values of the ortho-positronium lifetimes/cavity
volume can be obtained under two assumptions: (i) cavities
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below certain threshold volume are not able to localize
positronium atom, (ii) the free volume structure is redis-
tributed into quasicavities. In the low temperature region, the
computed lifetimes increase with a smaller slope; however,
our glassy region is probably shifted to higher temperatures.
The shift is due to some scale effects, such as cooling rate
or box sizes employed. The comparison has also showed that
the shape factor is not sufficient to explain the plateau, which
seems to be observed in experiments at higher temperatures.
Underestimate of the lifetime values in the mid-region of tem-
peratures could be compensated by rearranging the free vol-
ume around even bigger cavities. It may suggest that the cav-
ity centers of longest persisting cavities should be determined
upon some dynamic criteria.

The evaluation of the cavity environment demonstrates
the ability of the computational approaches in the free vol-
ume evaluations to be used as a complementary tool in the
exploration of the free volume environment suggested by re-
cent developments in the experimental method. The computed
data show that a probe with 0.53 Å is a sensitive probe able
to access all polymer segments. In the case of larger probes
only segments around larger free volume cavities can be as-
sociated. In some case a polymer segment can be associated
with more than one cavity. This happens mainly in the case
of the probes with the radii around the position of the cavity
number maxima or percolation threshold, respectively.

For a direct visual examination of the properties investi-
gated in this work a complex visualizations has been prepared,
showing the free volume regions in color scale according to
the probe size used. In the same picture, the molecular bod-
ies forming the polymer are shown and the atoms are distin-
guished based on their chemical origin.
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