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We describe an implementation of Hedin’s GW approximation for molecules and clusters, the com-
plexity of which scales as O(N3) with the number of atoms. Our method is guided by two strategies:
(i) to respect the locality of the underlying electronic interactions and (ii) to avoid the singulari-
ties of Green’s functions by manipulating, instead, their spectral functions using fast Fourier trans-
form methods. To take into account the locality of the electronic interactions, we use a local basis
of atomic orbitals and, also, a local basis in the space of their products. We further compress the
screened Coulomb interaction into a space of lower dimensions for speed and to reduce memory
requirements. The improved scaling of our method with respect to most of the published method-
ologies should facilitate GW calculations for large systems. Our implementation is intended as a
step forward towards the goal of predicting, prior to their synthesis, the ionization energies and elec-
tron affinities of the large molecules that serve as constituents of organic semiconductors. © 2011
American Institute of Physics. [doi:10.1063/1.3624731]

I. INTRODUCTION

Lars Hedin’s GW method 1 is an approximate treatment
of the propagation of electrons in condensed matter where an
electron interacts with itself via a Coulomb interaction that is
screened by virtual electron-hole pairs. In periodic semicon-
ductors, the GW approximation is known to lead to surpris-
ingly accurate gaps,2 while for finite clusters and molecules,
it provides qualitatively correct values of ionization energies
and electron affinities.3 Hedin’s GW approximation is also
needed, as a first step, when using the Bethe-Salpeter equa-
tion, to find the optical properties of systems in which the
Coulomb interaction is only weakly screened.

The present work is motivated by the rapid progress, dur-
ing the last decade, in the field of organic semiconductors,
especially in organic photovoltaics and organic luminescent
diodes.4 To optimize such systems, it would be useful to know
the key properties of their molecular constituents before actu-
ally synthesizing them. In order to make such predictions it is
necessary to develop algorithms with a favorable complexity
scaling, since many of the technologically relevant molecules
are fairly large. The method presented here is a step forward
along this direction. Its O(N3) scaling, with N being the num-
ber of atoms in the molecule, is an improvement over most
existing methodologies.

While computational techniques for treating the GW

approximation for clusters and molecules have become so-
phisticated enough for treating molecules of interest in
photovoltaics5 or in the physiology of vision,6 such calcu-
lations remain computationally expensive. The scaling with
the number of atoms of these recent calculations has not

a)Electronic mail: d.foerster@cpmoh.u-bordeaux1.fr.
b)Electronic mail: koval.peter@gmail.com.
c)Electronic mail: sqbsapod@sq.ehu.es.

been published. However, in many cases it is unlikely to
be better than O(N4).7 A recently published method for
computing total energies of molecules that uses the ran-
dom phase approximation also has O(N4) scaling.8 Actu-
ally, at this point it is difficult for us to envisage a scal-
ing exponent less than three because the construction of the
screened Coulomb interaction—the central element of the
GW approach—requires inverting a matrix of size O(N )
which, in general, takes O(N3) operations.

The algorithm described in this paper is based on two
main ingredients: (i) respecting the locality of the underly-
ing interactions and, (ii) the use of spectral functions to de-
scribe the frequency/time dependence of the correlators. The
latter ingredient allows the use of the fast Fourier transform
(FFT) to accelerate the calculations, while the former idea of
respecting locality has also been at the heart of other efficient
GW methods, such as the successful “space-time approach”
for periodic systems.9

Our method is based upon the use of spatially localized
basis sets to describe electronic states within the linear com-
bination of atomic orbitals (LCAO) technique. In particular,
we have implemented our method as a post processing tool
of the SIESTA code,10 although interfaces with other LCAO
codes should be simple to construct. The precision of the
LCAO approach is difficult to control and to improve, but a
basis of atom centered local orbitals is useful for systems that
are too large to be treated by plane-wave methods.11 In or-
der to solve Hedin’s equations we construct a basis set that
gets rid of the over completeness of the orbital products while
keeping the locality. In molecular computations this is fre-
quently done through a fitting procedure (using Gaussians or
other localized functions). We use an alternative mathemati-
cal procedure12, 13 that dispenses with this fitting and defines
a basis of dominant products. The basis of dominant products

0021-9606/2011/135(7)/074105/15/$30.00 © 2011 American Institute of Physics135, 074105-1
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was instrumental to develop an efficient linear response code
for molecular absorption spectra.14, 15 In the present paper we
have developed an additional, non-local compression tech-
nique that further reduces the size of the product basis. The
compression allows to store the whole matrix representation
of the screened Coulomb interaction at all times/frequencies
and needs much less memory. Moreover, the compression
strongly accelerates the calculation of the screened Coulomb
interaction because it involves a matrix inversion. This leads
to a gain in computational efficiency which is even more im-
portant than that associated with the reduction of the needed
memory.

Of course there are other methods that use a localized
basis different from LCAO and, thus, equally appropriate for
dealing with clusters and molecules while exploiting locality.
One method uses a lattice in real space.16 Another method
uses wavelets that represent a useful compromise between
localized and extended states.17 Localized Wannier orbitals
obtained from transforming plane waves18 have also been
used in GW calculations.19, 20 In this paper we use a basis
of dominant functions to span the space of products of atomic
orbitals12 and we use a compression scheme to deal with the
screened interaction. It is clear, however, that some of the
ideas and techniques of the present paper can be combined
with the alternative approaches quoted above.

The actual implementation of the algorithm that we re-
port in this paper can be considered as a “proof of princi-
ple” only and the prefactor of our implementation leaves room
for further improvement. Therefore, we validate our method
with molecules of moderate size (we consider molecules of
only up to three aromatic rings: benzene, naphthalene, and
anthracene), leaving further improvements and applications
to molecules of larger sizes for a future publication.

This paper is organized as follows. In Sec. II we recall the
equations of the GW approximation. In Sec. III we rewrite the
GW approximation for molecules in tensorial form. Section
IV describes the instantaneous component of the self-energy,
while in Sec. V we describe a spectral function technique for
solving these tensorial equations. Section VI describes our
GW results for benzene, a typical small molecule. Section VII
describes our algorithm for the compression of the screened
Coulomb interaction that is needed to treat larger molecules.
Section VIII explains how O(N3) scaling can be maintained
for large molecules by alternatively compressing and decom-
pressing the Coulomb interaction. Section IX presents a sum-
mary of the entire algorithm for performing GW calculations.
In Sec. X we present a convergence study with respect to
the size of the orbital basis, while in Sec. XI we test our
method on naphthalene and anthracene. Our conclusions are
presented in Sec. XII.

II. ELEMENTARY ASPECTS OF HEDIN’S GW
APPROXIMATION

The one-electron Green’s function of a many-body sys-
tem has proved to be a very useful concept in condensed mat-
ter theory. It allows to compute the total energy, the electronic
density, and other quantities arising from one-particle opera-
tors. The one-electron Green’s function G(r, r ′, t) has twice

as many spatial arguments as the electronic density, but it re-
mains a far less complex object than the many-body wave
function. Furthermore, Hedin has found an exact set of equa-
tions for a finite set of correlation functions of which the one-
electron Green’s function is the simplest element. This set of
equations has not been solved so far for any system whatso-
ever. However, as a zeroth order starting point to his coupled
equations, Hedin suggested the very successful GW approxi-
mation for the self-energy �(r, r ′, t). This approximation de-
scribes the change of the non-interacting electron propaga-
tor G0(r, r ′, t) due to interactions among the electrons. With
the help of a self-energy, one can find the interacting Green’s
function from Dyson’s equation,

G = G0 + G0�G0 + G0�G0�G0 + · · · = 1

G−1
0 − �

,

(1)
where products and inversions in the equation must be under-
stood in an operator sense as required in many-body pertur-
bation theory.

In Hedin’s GW approximation, the interaction of elec-
trons with themselves is taken into account by the following
self-energy:

�(r, r ′, t) = iG0(r, r ′, t)W0(r, r ′, t), (2)

where W (r, r ′, t) is a screened Coulomb interaction.
The key idea of Hedin’s GW approximation1 is to in-

corporate the screening of the Coulomb interaction from
the very beginning in a zeroth order approximation. Let
v(r, r ′) = |r − r ′|−1 be the bare Coulomb interaction and let
χ0(r, r ′, t − t ′) = δn(r,t)

δV (r ′,t ′) be the density response δn(r, t) of
non-interacting electrons with respect to a change of the ex-
ternal potential δV (r ′, t ′). Hedin then replaces the original
Coulomb interaction v(r, r ′) by the screened Coulomb in-
teraction W (r, r ′, ω) within the random phase approximation
(RPA) (Ref. 21):

W0(r, r ′, ω) = 1

δ(r − r ′′′) − v(r, r ′′)χ0(r ′′, r ′′′, ω)
v(r ′′′, r ′).

(3)
Here and in the following we assume integration over re-
peated spatial coordinates (in our case r ′′ and r ′′′) on the right
hand side of an equation if they do not appear on its left
hand side. This convention makes our equations more trans-
parent without introducing ambiguities and it is analogous to
the familiar Einstein’s convention of summing over repeated
indices.

We can justify expression (3) by considering an internal
screening field δVinduced(r, ω) that is generated by an extra ex-
ternal field δVexternal(r, ω):

δVtotal(r, ω) = δVexternal(r, ω) + δVinduced(r, ω), (4)

where

δVinduced(r, ω) = v(r, r ′′)δninduced(r ′′, ω)

= v(r, r ′′)χ0(r ′′, r ′′′, ω)δVtotal(r
′′′, ω).
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As a consequence we obtain a frequency dependent change of
the total potential:

δVtotal(r, ω) = 1

δ(r − r ′′′) − v(r, r ′′)χ0(r ′′, r ′′′, ω)

×δVexternal(r
′′′, ω). (5)

If we assume that large fields are screened the same way
as small field changes, then we may replace δVexternal(r, ω)
by the singular Coulomb interaction v(r, r ′) and we obtain
the screened counterpart W0(r, r ′, ω) of the original bare
Coulomb interaction as in Eq. (3).

Because of the relation

iχ0(r, r ′, t) = 2G0(r, r ′, t)G0(r ′, r,−t), (6)

the screening in Eq. (3) may be interpreted as being due to
the creation of virtual electron-hole pairs. The screening by
virtual electron-hole pairs is the quantum analogue of classi-
cal Debye screening in polarizable media.22 The factor of 2 in
Eq. (6) takes into account the summation over spins.

Many body theory uses Feynman-Dyson perturbation
theory23 and the latter is formulated in terms of time ordered
correlators. For instance, a Green’s function is represented as
a time ordered correlator of electron creation ψ+(r, t) and an-
nihilation ψ(r, t) operators:

iG(r, r ′, t − t ′) = θ (t − t ′)〈0|ψ(r, t)ψ+(r ′, t ′)|0〉
−θ (t ′ − t)〈0|ψ+(r ′, t ′)ψ(r, t)|0〉, (7)

where the minus sign is due to Fermi statistics, |0〉 denotes
the electronic ground state, and θ (t) denotes Heaviside’s step
function. This completes our formal description of Hedin’s
GW approximation.

In practice, Hedin’s equations are solved “on top” of a
density functional or Hartree-Fock calculation. The frame-
work of density functional theory (DFT) (Refs. 24, 25) al-

ready includes electron correlations at the mean-field level
via the exchange correlation energy Exc[n(r)], where [n]
denotes the functional dependence of Exc on the electron den-
sity. DFT calculations are usually performed using the Kohn-
Sham scheme,25 in which electrons move as independent par-
ticles in an effective potential. The Kohn-Sham Hamiltonian
HKS reads

HKS = −1

2
∇2 + VKS, (8)

VKS = Vext + VHartree + Vxc, where Vxc(r) = δExc

δn(r)
.

To avoid including the interaction twice, the exchange cor-
relation potential Vxc(r) must be subtracted from �(r, r ′, t)
in Eq. (2) when using the output of a DFT calculation as
an input for a GW calculation. This is done by making the
replacement

�(r, r ′, t) → �(r, r ′, t) − δ(r − r ′)δ(t)Vxc(r) (9)

in Dyson’s equation (1).
Our aim is to compute the electronic density of states

(DOS) that is defined as the trace of the imaginary part of
the electron propagator:

ρ(ω + iε) = − 1

π
Im

∫
G(ω + iε, r, r)d3r. (10)

The electronic DOS ρ(ω + iε) can be compared with exper-
imental data from direct and inverse photo-emission.26 From
it, we can read off the energy position of the highest occu-
pied and the lowest unoccupied molecular orbitals (HOMO
and LUMO) or, alternatively, the ionization energy and the
electron affinity.

Finally, let us list the equations that define the GW

approximation:

iχ0(r, r ′, t) = 2G0(r, r ′, t)G0(r ′, r,−t); non-interacting response,

W0(r, r ′, ω) = [δ(r − r ′′′) − v(r, r ′′)χ0(r ′′, r ′′′, ω)]−1v(r ′′′, r ′); RPA screening,

�(r, r ′, t) = iG0(r, r ′, t)W0(r, r ′, t); GW self-energy,

G−1(r, r ′, ω + iε) = G−1
0 (r, r ′, ω + iε) − �(r, r ′, ω + iε). Dyson equation.

(11)

Sections III–VI describe the tensor form of Eq. (11) as
well as the main ingredients of our implementation of the GW

approximation as embodied in Eq. (11) for the case of small
molecules. Sections VII and VIII will describe the compres-
sion/decompression of the Coulomb interaction that is needed
for treating large molecules without over flooding the com-
puter memory.

III. TENSOR FORM OF HEDIN’S EQUATIONS

In order to compute the non-interacting Green’s function
(7), we will use the LCAO method where one expresses the

electron operator in terms of a set of fermions ca(t) that be-
long to localized atomic orbitals:27

ψ(r, t) ∼
∑

a

f a(r)ca(t). (12)

Such a parametrization is parsimonious in the number of de-
grees of freedom, although its quality is difficult to control
and to improve in a systematic way.

The output of a DFT calculation (that serves as an in-
put for the GW calculation) is the Kohn-Sham Hamiltonian
Hab and the overlap matrix Sab of the LCAO basis func-
tions f a(r).28 One may use the eigenvectors {XE

a } of the
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Kohn-Sham Hamiltonian,

HabXE
b = ESabXE

b (13)

to express the (time-ordered) propagation of electrons be-
tween localized atomic orbitals:

G0
ab(ω ± iε) =

∑
E

XE
a XE

b

ω ± iε − E
. (14)

In this paper we measure energies relative to a Fermi en-
ergy, so that E < 0 (E > 0) refers to occupied (empty) states,
respectively, and the infinitesimal constant ε shifts the poles
of the Greens function away from the real axis. Moreover, to
avoid cluttering up the notation, we will often use Einstein’s
convention of summing over repeated indices, as in Eq. (13).

The set of Eq. (11) contains correlation functions, such
as the density response function χ (r, r ′, t) that must be repre-
sented in a basis of products of atomic orbitals: 23

iχ (r, r ′, t − t ′) = θ (t − t ′)〈0|n(r, t)n(r ′, t ′)|0〉
+ θ (t ′ − t)〈0|n(r ′, t ′)n(r, t)|0〉. (15)

Indeed, by virtue of Eq. (12), the electronic density n(r, t)
= ψ+(r, t)ψ(r, t) involves products of atomic orbitals:

n(r, t) = ψ+(r, t)ψ(r, t) =
∑
a,b

f a(r)f b(r)c+
a (t)cb(t).

The set of products {f a(r)f b(r)} is well known to be
strongly linearly dependent.29 As an improved solution of this
very old technical difficulty, we previously developed an algo-
rithm to construct a local basis of “dominant products” Fμ(r)
that (i) spans the space of orbital products with exponential
accuracy and which (ii) respects the locality of the original
atomic orbitals.12 Moreover, the products of atomic orbitals

f a(r)f b(r) relate to dominant products Fμ(r) via a product
vertex V ab

μ :

f a(r)f b(r) =
∑

μ

V ab
μ Fμ(r). (16)

Because the dominant products Fμ(r) are themselves
special linear combinations of the original products, arbitrary
extra fitting functions do not enter into this scheme. In or-
der to respect the principle of locality, the above decompo-
sition is carried out separately for each pair of atoms, the
orbitals of which overlap. By their construction, the set of
coefficients V ab

μ is sparse in the sense that V ab
μ �= 0 only if

a, b, μ all reside on the same atom pair.12 In the construction
of the dominant product basis, we made use of Talman’s al-
gorithms and computer codes for the expansion of products
of orbitals about an arbitrary center and we also used his fast
Bessel transform.30

To rewrite the defining equations of GW approxima-
tion (11) in our basis, we expand both G(r, r ′, t − t ′) and
�(r, r ′, t − t ′) in atomic orbitals f a(r):14

G(r, r ′, t − t ′) = Gab(t − t ′)f a(r)f b(r ′);

�(r, r ′, t − t ′) = �ab(t − t ′)f a(r)f b(r ′). (17)

We also develop the screened Coulomb interaction in
dominant products:

W
μν

0 (t − t ′) =
∫

d3rd3r ′Fμ(r)W0(r, r ′, t − t ′)Fν(r ′).

(18)
Using Eqs. (16)–(18) it is easy to show14 that Hedin’s Eq. (11)
takes the following tensorial form in our basis:

iχ0
μν(t) = 2V aa′

μ G0
ab(t)V bb′

ν G0
a′b′ (−t); non-interacting response, (19)

W
μν

0 (ω) = 1

δ
μ
α − vμβχ0

βα(ω)
vαν ; RPA screening, (20)

�ab(t) = iV aa′
μ G0

a′b′ (t)V b′b
ν W

μν

0 (t); GW approximation, (21)

G−1
ab (ω + iε) = G−1

0ab(ω + iε) − �ab(ω + iε). Dyson’s equation. (22)

Here, vμν denotes the Coulomb interaction vμν

= ∫
d3rd3r ′ Fμ(r) 1

|r−r ′ |F
ν(r ′) which, due to its positivity and

symmetry, we also refer to as a “Coulomb metric.” Indices are
raised or lowered using either the overlaps of the dominant
functions Fμ(r) or the overlaps of the atomic orbitals f a(r)
and which are defined as follows:

Oμν =
∫

d3r Fμ(r)Fν(r), Sab =
∫

d3r f a(r)f b(r).

(23)

Figure 1 shows the Feynman diagram corresponding to
Eq. (21). The local character of the product vertex V aa′

μ is em-
phasized in this figure.

IV. THE INSTANTANEOUS PART OF THE
SELF-ENERGY

When the screened Coulomb interaction W
μν

0 in Eq. (20)
is expanded as a function of vχ0, its first term is the bare
Coulomb interaction vμνδ(t − t ′) and the corresponding self-
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FIG. 1. Feynman diagram for the GW self-energy expressed in our local
LCAO and dominant products basis.

energy in Eq. (21) is frequency independent. In textbook treat-
ments of the theory of the electron gas, it is explained23 that
the Green’s function Gab(t − t ′) of the electron gas must be
defined, at t = t ′, by setting t − t ′ = 0− or by first anni-
hilating and then creating electrons. Using this prescription
and Eqs. (20) and (21), one finds the following result for the
frequency-independent self-energy that corresponds to the ex-
change operator:

�ab
x (t − t ′) = iV aa′

μ G0
a′b′ (0−)V b′b

ν δ(t − t ′)vμν.

In the frequency domain, the last operator becomes a fre-
quency independent matrix

�ab
x = V aa′

μ

∑
E<0

XE
a′X

E
b′V

b′b
ν vμν, (24)

which can be computed in O(N3) operations by using the
sparsity of the product vertex V aa′

μ .
For small molecules and clusters, the instantaneous self-

energy that incorporates the effects of electron exchange
may dominate over the remaining frequency dependent self-
energy. If this is the case, we may substitute �ab

x into Eq. (21)
and finish the calculation by computing the DOS,

ρ(ω + iε) = − 1

π
Sab ImGba(ω + iε),

where we have emphasized the non-orthogonality of the basis
orbitals by the explicit inclusion of the overlap Sab.

However, the frequency dependent part of the self-energy
contains correlation effects that significantly improve the cal-
culation quantitatively and qualitatively as we demonstrate in
Secs. VI and XI. Therefore, we shall present our approach for
the frequency dependent part of the self-energy in Sec. V.

V. USING SPECTRAL FUNCTIONS TO COMPUTE THE
SELF-ENERGY

One might want to solve Eqs. (19) and (21) directly
as matrix valued equations in time t and to use FFTs
(Ref. 31) to shuttle back and forth between the time and
frequency domains. Unfortunately, however, this direct ap-
proach is doomed to fail—the behaviour of the functions
{Gab(t), �ab(t),Wμν

0 (t)} at t = 0 leads to oscillations in
their Fourier transforms that die out very slowly at high
frequencies.13 We will now show how spectral functions come

to the rescue and allow us to (i) respect locality in our calcu-
lations and to (ii) accelerate our calculation by means of FFT.

Let us consider the energy dependent density matrix

ρab(ω) =
∑
E

XE
a XE

b δ(ω − E), (25)

and rewrite the electronic propagator equation (14) with the
help of it:

G0
ab(ω ± iε) =

∫ ∞

−∞
ds

ρab(s)

ω ± iε − s
. (26)

Integral representations such as these are very useful, even
in finite systems where the spectral weight is concentrated
at isolated frequencies.13, 14, 32 Because a spectral function is
broadened by the experimental resolution ε, it can be repre-
sented on a discrete mesh of frequencies, with the distance be-
tween mesh points somewhat smaller than ε. All the response
functions considered in the present paper have a spectral rep-
resentation because their retarded and advanced parts taken
together define a single analytic function in the complex fre-
quency plane with a cut on the real axis.

A spectral representation is merely a rather thinly dis-
guised Cauchy integral as we can see by considering the
Cauchy integral representation of the electronic Greens
function:

Gab(z) = 1

2π i

∮
C

Gab(ξ )dξ

ξ − z
, (27)

where C is a path surrounding the point z with Imz > 0 in
an anti-clockwise direction. If the point z = ∞ is regular, the
complex plane may be treated like a sphere and we may de-
form the contour on this sphere in such a way that it wraps
around the cut on the real axis in a clockwise direction. Fi-
nally, because Green’s functions take mutually hermitian con-
jugate values Gab(z∗) = G∗

ba(z) across the cut on the real axis,
the above integral can the rewritten as

Gab(z) =
∫

ds
ρab(s)

z − s
, ρab(z) = − 1

π
ImG0

ab(z) (28)

with z on the upper branch of the cut. In writing the pre-
ceding equation we have used the simplifying feature that
the electronic Green’s function is a symmetric matrix in
our real representation of angular momenta (the same is
true for the screened Coulomb interaction). In the follow-
ing, we will always reconstruct correlation functions such as
{Gab(ω), �ab(ω), W

μν

0 (ω)} from their imaginary part or from
their spectral functions. The time ordered version of such cor-
relators is determined above (below) the real axis for positive
(negative) frequencies, respectively.

A. The spectral function of a product of two
correlators

The well known convolution theorem31 tells us that the
spectral content of a product of two signals is the convolution
of the spectral contents of its factors. The situation is entirely
analogous for Green’s functions and the other correlators con-
sidered here and their spectral functions. To see this, we use
the spectral representations of the time ordered factors Gab(t),
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�ab(t), W
μν

0 (t) (the quantities in Eqs. (19)–(22) are time
ordered):

Gab(t) = −iθ (t)
∫ ∞

0
ds ρ+

ab(s)e−ist + iθ (−t)

×
∫ 0

−∞
ds ρ−

ab(s)e−ist ;

�ab(t) = −iθ (t)
∫ ∞

0
ds σ ab

+ (s)e−ist + iθ (−t)

×
∫ 0

−∞
dsσ ab

− (s)e−ist ;

W
μν

0 (t) = −iθ (t)
∫ ∞

0
ds γ

μν
+ (s)e−ist + iθ (−t)

×
∫ 0

−∞
dsγ

μν
− (s)e−ist , (29)

where “positive” and “negative” spectral functions define the
whole spectral function by means of Heaviside functions. For
instance, the spectral function of the electronic Green’s func-
tion reads

ρab(s) = θ (s)ρ+
ab(s) + θ (−s)ρ−

ab(s).

These representations can be checked by transforming
(for example) the representation of Gab(t) into the frequency
domain and by comparing with the known expression (26).
We then compute �ab(t) from Eq. (21) and compare the result
with the second equation of Eqs. (29). The spectral function
of the self-energy is seen to have the expected convolution
form:

σab
+ (s) =

∫ ∞

0

∫ ∞

0
δ(s1 + s2 − s) V aa′

μ

× ρ+
a′b′ (s1)V b′b

ν γ
μν
+ (s2)ds1ds2,

σ ab
− (s) = −

∫ 0

−∞

∫ 0

−∞
δ(s1 + s2 − s)V aa′

μ

× ρ−
a′b′ (s1)V b′b

ν γ
μν
− (s2)ds1ds2. (30)

Note that, as commented above, the V aa′
μ matrices are sparse

and respect spatial locality. Finally, we can easily construct
the full self-energy from its spectral functions σab

± (s) by a
Cauchy type integral:

�ab(ω ± iε) =
∫ ∞

−∞

σab(s)ds

ω ± iε − s
. (31)

By entirely analogous arguments, we can find the spectral
function of the non-interacting response χ0

μν from Eq. (19):

aμν(s) =
∫ ∞

0

∫ ∞

0
V ab

μ ρ+
bc(s1)V cd

ν ρ−
da(−s2)

×δ(s1 + s2 − s)ds1ds2, for s > 0;

aμν(−s) = −aμν(s), for all s;

χ0
μν(ω + iε) =

∫ ∞

−∞
ds

aμν(s)

ω + iε − s
, for ω > 0.

(32)

We implemented the convolutions in Eqs. (30) and (32) conve-
niently by FFT without encountering any singularities. Please

observe that analytic continuations are not needed in our
approach.

We have seen in this subsection that the locality of the
expressions for �ab(t) and χ0

μν(t) in Eqs. (19) and (21) can
be taken into account without multiplying singular Green’s
functions and by focusing instead on the spectral functions of
their products.

B. The second window technique

Although we only need results in a suitable low
energy window −λ ≤ ω ≤ λ of a few electronvolts,
Eqs. (31) and (32) show that high energy processes at |ω|
> |λ| influence quantities at low energies, for example, the
self-energy. Therefore, these high energy processes cannot
be ignored and we need the imaginary part of the screened
Coulomb interaction W

μν

0 not only for small |ω| ≤ λ but also
for larger frequencies. To find the imaginary part of W

μν

0 , we
also need, in view of Eq. (20), the non-interacting response
χ0

μν both at small and at large frequencies.
Let us see in the case of the density response, how the

necessary spectral information can be obtained from two sep-
arate calculations in two distinct frequency windows.13 In the
large spectral window −� ≤ ω ≤ �, a low resolution cal-
culation with a large broadening (and, therefore, a coarse
grid of frequencies) is sufficient to find χ0

μν at large energies
|ω| > |λ|:

χ0
μν(ω + iεlarge) =

∫ �

−�

ds
aμν(s)

ω + iεlarge − s
. (33)

To get correct results in the low energy window −λ ≤ ω ≤ λ,
we must take into account the spectral weight in this window:

χ0
μν(ω + iεsmall)

=
∫ λ

−λ

ds
aμν(s)

ω + iεsmall − s
+

(∫ −λ

−�

+
∫ �

λ

)
ds

aμν(s)

ω + iεlarge − s

= χ small window
μν (ω + iε small)

+ [
χ large window

μν (ω + iεlarge)
]

truncated spectral function
. (34)

Instead of doing the second Cauchy integral directly, we con-
struct χ

large window
μν from the large spectral window, using spec-

tral data that are truncated for |s| < λ to avoid counting the
spectral weight in −λ ≤ ω ≤ λ twice. Moreover, the broad-
ening constant ε is set differently in the first and second win-
dows and corresponds to the spectral resolution in these win-
dows. The broadening constant ε is chosen automatically in
each frequency window, by setting ε = 1.5�ω, where �ω

is the distance between two points on the corresponding fre-
quency grid. We use the second window technique (presented
in Eq. (34) for the case of the density response) again in the
calculation of the self-energy �ab(ω), where we also need the
screened interaction in two windows. We combine the spec-
tral functions of the self-energy in exactly the same way as
for the density response. For the cases considered here, com-
putations using two spectral windows were up to one order
of magnitude faster than computations using a single spectral
window. An alternative way of efficiently taking into account
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high energy features is by eliminating empty states altogether
as recently explored by several authors.33

VI. TESTING OUR IMPLEMENTATION OF GW ON A
SMALL MOLECULE

The methods presented above are sufficient to compute
the self-energy equation (2) of small molecules.34 As a test,
we will compute the interacting Green’s function by solving
Dyson’s equation (1). From this Green’s function we can ob-
tain the DOS and estimate the positions of the HOMO and
LUMO levels. Here, we illustrate this procedure in the case
of benzene. This molecule has been chosen because extensive
theoretical results and experimental data are available for it.
Our calculations show a considerable improvement using the
GW approximation as compared to the results obtained with
plain DFT calculations using local or semi-local functionals.
In general, for small molecules we find a reasonable agree-
ment with experimental data and previous GW calculations
of the ionization potentials and electron affinities.

The input for our GW method has been obtained from
calculations using the local density approximation (LDA) and
the SIESTA package.10 SIESTA uses a basis set of strictly con-
fined numerical atomic orbitals. The extension of these or-
bitals is consistently determined by an energy shift param-
eter. In general, the smaller the energy shift, the larger the
extension of the orbitals, although the procedure results in
different cutoff radii for each multiplet of orbitals.35 In the
present calculations we have used the default double-ζ po-
larized (DZP) basis, along with the Perdew-Zunger LDA
exchange-correlation functional36 and pseudo-potentials of
the Troullier-Martins type.37 Our calculations indicate (see
Table I) that it is necessary to use rather extended orbitals
to obtain converged results for the HOMO and LUMO levels.
For the most extended basis used here (determined from an
energy shift of 3 meV), all the orbitals in benzene have a non-
zero overlap and, in principle, the number of products of or-
bitals is 108(108+1)/2 = 5886. This number is reduced using
the algorithm described in Ref. 12, and the dominant product
basis (see Eq. (16)) only contains 2325 functions. The spectral
functions have been discretized using a grid with Nω = 1024
points in the range from −80 eV to 80 eV. The broadening
constant has been set automatically to ε = 1.5�ω = 0.23 eV.

TABLE I. Ionization potentials and electron affinities for benzene ver-
sus the extension of the basis functions. The extension of the atomic or-
bitals is determined using the energy shift parameter of the SIESTA method
(see Ref. 35). Note that rather extended orbitals are necessary to achieve
converged results. Differences associated with the use of the second win-
dow technique introduced in Sec. V B are of the order of 0.1 eV (see also
Table II). The experimental ionization potential is taken from the NIST server
(see Ref. 40). The electron affinity of benzene is taken from Ref. 41.

Energy-shift, One window Two windows

meV IP, eV EA, eV IP, eV EA, eV

150 8.48 −1.89 8.48 −2.01
30 8.71 −1.45 8.72 −1.57
3 8.76 −1.29 8.78 −1.41
Experiment 9.25 −1.12 9.25 −1.12

(a) (b)

FIG. 2. (a) Density of states of benzene computed from different Green’s
functions using as an input the results of a DFT-LDA calculation performed
with the SIESTA package. A DZP basis set, with orbital radii determined using
a value of the energy shift parameter of 3 meV, has been used. The results
shown in this figure are obtained with a single energy window. GWx refers
to the results obtained with only the instantaneous part of the self-energy
(only exchange), while GWxc labels the results obtained with the whole self-
energy (incorporating additional correlation effects). (b) Ball and stick model
of benzene produced with the XCRYSDEN package (see Ref. 39).

The frequency range was chosen manually by inspecting the
non-interacting absorption spectrum. The results of the calcu-
lation depend only weakly on the frequency range.

Figure 2 shows the DOS calculated with different Green’s
functions. As one can see, the input Green’s function G0 from
a DFT-LDA calculation has a very small HOMO-LUMO gap.
The Green’s function G obtained with the instantaneous part
of the self-energy (see Eq. (24)) opens the HOMO-LUMO
gap. This part of the self-energy �x incorporates the effect
of exchange and is very important for small molecules. How-
ever, the gap is over-estimated as one can already anticipate
from typical mean-field Hartree-Fock calculations. Correla-
tion effects are partially taken into account by the dynamical
part of the GW self-energy. This brings the HOMO-LUMO
gap closer to the experimental value. Our results stay also
in agreement with other works using similar approximations
(G0W0 on top of DFT-LDA).19, 38

Apart from the GW approximations to the self-energy
equation (2), our numerical method is controlled by preci-
sion parameters of a more technical nature. Table I presents
the results for the ionization (IP) and electron affinity (EA)
as a function of the extension of the atomic orbitals in the
original LDA calculation as determined from the energy shift
parameter.35 An energy shift of 150 meV is usually sufficient
to have an appropriate description of the ground-state prop-
erties of the molecules.10 However, we can see that our GW

calculation requires more extended (smaller energy shift) or-
bitals. The slow convergence of the ionization potential of
benzene with respect to the quality/completeness of the ba-
sis set has also been observed in the plane-wave calculations
(using Wannier functions) of Ref. 19.

Table I also shows the results of calculations using one
and two energy windows. The former calculation is more
straightforward but requires the same density of frequency
points at higher energies as in the region of interest near the
HOMO and LUMO levels. The latter calculation uses two
separate frequency grids: as described in Subsection V B, a
lower resolution and a larger imaginary part of the energy
are used for the whole spectral range, while a high reso-
lution and a small width are used in the low energy range
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FIG. 3. The density of states of benzene computed with a uniformly dis-
cretized spectral function and using the second window technique. The peak
positions are very weakly perturbed by using the two windows technique.
The parameters of the calculation are identical with those of Fig. 2. The two
windows technique allowed to reduce the number of frequency points from
Nω = 1024 to Nω = 192.

to resolve the HOMO and LUMO levels. Thus, the sec-
ond window technique requires the computation of both the
response function and the screened Coulomb interaction at
far fewer frequencies than the one-window calculation. For
instance, the one-window results presented above have been
obtained with Nω = 1024 frequencies, while the two-window
results used only Nω = 192 frequencies in both windows, im-
plying a gain of a factor of 2.7 in speed and in memory.
The first and second window are defined by λ = 12.58 eV
and � = 80 eV, respectively. The first window is chosen as
2.5(EDFT LUMO − EDFT HOMO). The computational result de-
pends only weakly on the extension of the first window. The
second window is chosen manually as in the one-window
calculation above. The broadening constant ε has been set
separately for each spectral window, using the default value
ε = 1.5�ω. The lower number of frequencies obviously ac-
celerates the calculation and saves the memory, while intro-
ducing very small inaccuracies in the low frequency region.
According to Table I the positions of the HOMO and LUMO
calculated with one and two energy windows agree within 0.1
eV. Figure 3 shows that the second window leads to changes
that are small, both in the HOMO and LUMO positions, and
in the density of states at low energies. Moreover, Table II
shows the dependence of the calculated IP and EA on the ex-
tension of the first frequency window (λ in Eq. (34)) when
using the two windows technique. The calculations have been
done using a first window of different sizes (λ = 40, 20, and
10 eV). The fineness of the frequency discretization �ω was
maintained; thus, a different number of frequencies is used in
each case (Nω= 512, 256, 128). The second window has been

TABLE II. The ionization potentials and electron affinities computed with
different first frequency windows in the second window technique. The sec-
ond energy window extends over a range of ±80 eV. Calculations were per-
formed using atomic orbitals whose extension is defined by a 3 meV energy
shift.

λ, eV IP, eV EA, eV

40 8.75 −1.29
20 8.78 −1.33
10 8.91 −1.40

set as previously with � = 80 eV. One can clearly see the
increase of the error in the position of the level as we decrease
the size of the first window. However, it is interesting to note
that the results remain far more accurate than the uncertain-
ties associated with the use of a coarse frequency grid over the
whole energy interval, as would be the case in one-window
calculations using a similar number of frequency points.48 It
is also important to see that using a first window defined by
λ = 40 eV we recover the results obtained with a single win-
dow extended over the ±80 eV range. This clearly indicates
that the use of two energy windows is an appropriate way to
reduce the computational load without substantially affecting
the quality of the results.

The calculations presented in this section needed a fairly
large amount of random access memory (RAM). The amount
of RAM increases as N2 with N being the number of
dominant products, which prohibits the treatment of larger
molecules using the methods described above in a straightfor-
ward manner. However, as we will see in Sec. VII, we can use
a compression method that dramatically reduces the required
memory.

VII. COMPRESSION OF THE COULOMB
INTERACTION

As shown in Ref. 14 it is possible to solve the Petersilka-
Gossmann-Gross equations42 for time-dependent density
functional theory (TDDFT) using a Lanczos type approach
if, for example, we are only interested in the polarizability
tensor of the system. In this way, we avoid keeping the entire
linear response matrix χ0

μν(ω) in the computer memory. Un-
fortunately, we were unable to find an analogous Lanczos type
procedure for the self-energy matrix. However, we have found
an alternative solution to this problem. It consists of taking
into account the electron dynamics and keeping preferentially
those dominant products that are necessary to describe χ0

μν in
the relevant range of frequencies.

A. Defining a subspace within the space of products

Consider the following closed form expression of the
non-interacting response χ0

μν(ω) of Eq. (19):

χ0
μν(ω + iε) = 2

∑
E,F

V EF
μ

nF − nE

ω + iε − (E − F )
V EF

ν ,

where V EF
μ = XE

a V ab
μ XF

b . (35)

This is a well known expression, but rewritten in the basis of
dominant products.13 It must be emphasized that we do not
use this equation to compute χ0

μν(ω) (it would require O(N4)
operations), but this explicit representation of the exact non-
interacting response is nonetheless crucial for motivating our
method of compression.

Clearly, χ0
μν(ω) is built up from O(N2) vectors V EF

μ . On
the other hand, the entire space of products is, by construction,
of only O(N ) dimensions. Therefore, there must be a signif-
icant amount of collinearity in the set of vectors V EF

μ and a
much smaller subset of such vectors should span the space
where χ0

μν(ω) acts. As candidates for the generators of this
subspace, we sort the vectors {V EF

μ } according to |E − F |
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up to a certain rank Nrank:

{Xn
μ} ≡ subset of

{
V EF

μ

}
limited according to

×|E − F | < Ethreshold, n = 1 . . . Nrank. (36)

Here, we treat {E,F } as electron-hole pairs, i.e., E < 0 and
F > 0.

As a first test of whether the subspace carries enough in-
formation, we define a projector onto it:

gmn = Xm
μ vμνXn

ν ;

Pμν = Xm
μ gmnX

n
ν , where gmn = (gmn)−1;

P μ
ν = vμμ′

Pμ′ν . (37)

It can be shown without difficulty that P μ
ν is indeed a pro-

jector in the sense of P 2 = P . We can use it to project the
screened Coulomb interaction onto the subspace generated by
the set {Xn

μ}n=1...Nrank :

W
μν

projected(ω) = P
μ

μ′P
ν
ν ′W

μ′ν ′
0 (ω). (38)

We must choose Nrank large enough so that the trace of the
projected spectral density W

μν

projected(ω) is sufficiently close to
the original one. We checked that this works even for Nrank

considerably smaller than the original dimension of the space
of products. We can go further and reduce the dimension of
the subspace by eliminating collinear vectors from it. We do
this by diagonalizing the matrix gmn in Eq. (37) and by defin-
ing new vectors Zκ

μ:43

gmnξκ
n = κξκ

m,

Zκ
μ ≡ Xm

μ ξκ
m/

√
κ. (39)

To define the vector space {Zκ
μ}, we first discard the

eigenvectors ξκ
m that correspond to eigenvalues κ smaller than

a threshold κmin with respect to the Coulomb metric vμν and
we then normalize the remaining vectors, for simplicity. As
a result of this procedure, we obtain a smaller set of vectors
that we denote again by {Znμ} with n = 1 . . . Nsubrank, with
Nsubrank ≤ Nrank, and the additional property that they are or-
thonormal with respect to the Coulomb metric vμν :

Zμ
mZnμ = δmn, where

Zμ
m = vμνZmν, for m, n = 1 . . . Nsubrank. (40)

B. Construction of the screened interaction from the
action of the response function in the subspace

From the preceding discussion we know that χ0
μν can be

adequately represented in the previously constructed subspace
{Zn

μ} in the sense of

χ0
μν = Zmμχ0

mnZnν, with χ0
mn = Zμ

mχ0
μνZ

ν
n. (41)

To see which form the screened Coulomb interaction (3) takes
for such a density response χ0

μν , we write it as a series:

W
μν

0 =
(

1

v−1 − χ0

)μν

= vμν + vμμ′
χ0

μ′ν ′v
ν ′ν

+vμμ′
χ0

μ′ν ′v
ν ′μ′′

χ0
μ′′ν ′′v

ν ′′ν + · · · . (42)

Because χ0 acts—by hypothesis—only in the subspace, the
series may be simplified. Lets insert the representation of the
response function χ0

μν of Eq. (41) into the series (42):

W
μν

0 = vμν + vμμ′ [
Zmμ′χ0

mnZnν ′
]
vν ′ν + vμμ′ [

Zmμ′χ0
mnZnν ′

]
× vν ′μ′′ [

Zmμ′′χ0
mnZnν ′′

]
vν ′′ν + · · · ,

then use the orthogonality property of the basis vectors Zmμ,
Eq. (40), and find

W
μν

0 = vμν + Zμ
mχ0

mr

[
δrn + χ0

rn + χ0
rsχ

0
sn + · · ·] Zν

n

= vμν + Zμ
mχRPA

mn Zν
n. (43)

Here, we introduced the new response function χRPA
mn

≡ (δmk − χ0
mk)−1χ0

kn. From the preceding arguments we con-
clude that the dynamically screened Coulomb interaction
W

μν

0 can be computed in terms of the response function χRPA
mn

within the previously constructed subspace, and the matrix in-
version in this smaller space is of course much cheaper than
in the original space. This is a welcome feature—the number
of operations for matrix inversion scales with the cube of the
dimension and a compression by a factor of 10 will lead to a
1000 fold acceleration of this part of the computation.

It is important to note that, although an energy cut-off
Ethreshold is used to choose the relevant {V EF

μ } vectors, high
frequency components of the response and the screened inter-
action are explicitly calculated. Ethreshold only serves to con-
struct the frequency independent basis vectors {Zν

n} according
to Eq. (39). This basis is later used to calculate the response
function χ0

μν(ω) in the whole frequency range (see Eq. (41)).
Of course, we can expect that, if Ethreshold is chosen too small,
the ability of the compressed basis to represent the high en-
ergy components of the response will eventually deteriorate.
However, we are interested in the low energy excitations of
the system and, as we will show in Subsection VII C, those
can be accurately described using values of Ethreshold which
allow for a large reduction in the size of the product basis.
Furthermore, it is also important to note that the instantaneous
self-energy �x, for which a compression criterion based on
our definition of Ethreshold is dubious, is calculated within the
original dominant product basis, i.e., before this non-local
compression is performed.

C. The compression in the case of benzene

The non-local compression depends on two parameters:
(i) the maximum energy Ethreshold of the Kohn-Sham electron-
hole pairs {V EF

μ } in Eq. (36) , and (ii) the eigenvalue threshold
κ for identifying the important basis vectors {Zν

n} in Eq. (39).
Table III shows the electron affinity of benzene as a func-

tion of Ethreshold and κmin. The computational parameters have
been chosen as described in Sec. VI and the energy shift to de-
fine the extension of the orbitals is 3 meV. Table III illustrates
a general feature that we have found in many tests for several
systems: Nrank can be chosen of the order of the number of
atomic orbitals Norb. We have found that Nrank ≈ 5Norb usu-
ally guarantees a converged result for the HOMO and LUMO
levels. In any case, the number of relevant linear combina-
tions Nsubrank was always much smaller than the number of
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TABLE III. Electron affinities for benzene versus the compression param-
eters Ethreshold and eigenvalues cutoff κmin in Eq. (39). In brackets the di-
mension of compressed subspace is given, Nsubrank. The dimension Nrank

is governed by Ethreshold and was 39, 297, and 765 for Ethreshold = 10 eV,
Ethreshold = 20 eV, and Ethreshold = 40 eV, accordingly. The number of atomic
orbitals is Norb = 108, while the number of dominant products is Nprod

= 2325.

κmin = 10−2 κmin = 10−3 κmin = 10−4

Ethreshold = 10eV 2.48 (33) 2.46 (37) 2.45 (39)
Ethreshold = 20eV 1.38 (96) 1.39 (133) 1.40 (171)
Ethreshold = 40eV 1.41 (132) 1.41 (192) 1.41 (279)

dominant functions, with a typical compression ratio of ten or
more.

To further illustrate the quality of the basis, we will
compare the trace of the original screened interaction with
the trace of the projected screened interaction for the ben-
zene molecule. The result of the comparison can be seen in
Fig. 4. In this test calculation, the dominant product basis
consists of 921 functions, while the compressed basis con-
tains only 248 functions. Examples of compression for larger
molecules will be presented in Sec. XI.

The examples presented in this section show that the
screened Coulomb interaction can be effectively compressed.
A practical algorithm that uses the non-local compression and
maintains the O(N3) complexity scaling of the calculation
will be presented in Sec. VIII.

VIII. MAINTAINING O(N3) COMPLEXITY SCALING BY
COMPRESSING/DECOMPRESSING

The favorable O(N2) scaling of the construction of the
uncompressed non-interacting response χ0

μν is due to its lo-
cality. On the other hand, we need compression for χ0

μν to
fit into the computer memory and the compressed χ0

mn is no
longer local. To satisfy the two mutually antagonistic crite-
ria of (i) locality (for computational speed) and (ii) small di-
mension (to fit into the computer memory), we shuttle back
and forth as needed between the uncompressed/local and the

compressed/non-local representations of the response χ0 and
of the screened interaction W0. Both compression and decom-
pression are matrix operations that scale as O(N3) and this,
along with the matrix inversion in Eq. (43) in the computation
of the screened Coulomb interaction, and the computation of
the spectral densities ρ±

ab(s) is the reason why our implemen-
tation of GW scales as O(N3).

A. A construction of the subspace response in O(N3)
operations

Let us describe an efficient construction of the response
χ0

μν and its compressed counterpart χ0
mn that, besides, gives us

an opportunity to describe our use of frequency and time do-
mains during the calculation. Consider Eq. (32) that involves
convolutions of the spectral functions ρ+

bc(ω) and ρ−
ad (ω)

≡ ρ−
ad (−ω). To make use of the convolution theorem, we will

first compute the spectral function of the non-interacting re-
sponse aμν(s) in the time domain:

aμν(t) =
∫

ds

2π
aμν(s)eist = 2π

∫ ∞

0
V ab

μ ρ+
bc(s1)eis1t

ds1

2π

·
∫ ∞

0
V cd

ν ρ−
ad (−s2)eis2t

ds2

2π

= 2πV ab
μ ρ+

bc(t)V cd
ν ρ−

ad (t). (44)

In other words, we prepare the use of the FFT driven convo-
lution by first computing the Fourier transforms of the elec-
tronic spectral densities ρ± and once aμν(t) is computed, we
return to aμν(s) by an inverse Fourier transformation. This is
nothing else but the fast convolution method with the Fourier
transform of the spectral densities ρ+

bc(ω) and ρ−
ad (ω) carried

out prior to the tensor operations in Eq. (44).
Above we saw how to compute the spectral function of

the non-interacting density response. However, as we men-
tioned before, we cannot easily store this information in the
memory of the computer and we must therefore compress
this quantity as soon as it is found to avoid over flooding the
computer memory. An efficient way to do this is to compute
aμν(t), the spectral function of the non-interacting response
in the time domain, in a “time by time” fashion, with the

(a) (b)

FIG. 4. (a) Comparison of the screened interaction calculated for benzene using our original dominant product basis and the screened interaction projected to a
compressed product basis (see Eq. (38)). We plot the sum of all the matrix elements of the imaginary part of the screened interaction. (b) A plot of the difference
of the functions represented in panel (a). The change in spectral weight of the screened interaction due to compressing the space of dominant products is seen
to be small. Please notice the different scales of the y-axis in both panels.
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time variable t in the outer loop. Fortunately, the compres-
sion of the response χ0

μν according to Eq. (41) can be done
on the level of its spectral function aμν(t) separately for each
time t .

B. A construction of the self-energy in O(N3)
operations

Although we use the spectral function given by Eq.
(30) to compute the self-energy in the second equation of
Eqs. (29), it is useful to think also of Eq. (21) that corre-
sponds to the Feynman diagram of Fig. 1 and which has the
same locality properties. Please recall that the product vertex
in Eq. (16) is sparse and local and that the indices {a, a′, μ}
and {b, b′, ν} must each reside on a single pair of overlap-
ping atoms. Once the indices a, b of the self-energy are spec-
ified, there are only O(N0) possibilities of choosing the re-
maining indices. Therefore, the calculation of �ab(t) requires
asymptotically O(N2) operations provided that the screened
Coulomb interaction W

μν

0 in a basis of localized functions
is known. However, the local screened Coulomb interaction
W

μν

0 in the original space of dominant products does not fit
into the computer memory as opposed to the compressed,
but non-local, response χRPA

mn that we store (see Eq. (43)).
We may, however, regain locality by decompressing χRPA

mn at
the cost of O(N3) operations, using the identity W

μν

dynamical

= Z
μ
mχRPA

mn Zν
n in Eq. (43). As we cannot keep W

μν

dynamical in
the computer memory, we must try to “decompress χRPA

mn on
the fly.” To do this, let us transform the first equation of Eqs.
(30) into the time domain. For instance, for the positive part
of the spectral density σab

+ (t) of the self-energy, we find

σab
+ (t) = 2πV aa′

μ ρ+
a′b′ (t)V b′b

ν γ
μν
+ (t).

Again, the representation in time of ρ+
a′b′ (t) is prepared only

once. However, the transform γ
μν
+ (t) = − 1

π
Z

μ
mImχRPA

mn (t)Zν
n

for all times does not fit into the computer memory. Therefore,
we also decompress γ

μν
+ (t) time by time by letting the time t

run in the outer loop, by computing γ
μν
+ (t) via decompression

for a single time, and by storing only the result σab
± (t) for each

time. Once we have computed σab
± (t) for all times, we can find

σab
± (s) from it.

IX. A SUMMARY OF THE COMPLETE ALGORITHM

At this point, it is useful to briefly recapitulate the differ-
ent steps of our implementation of Hedin’s GW approxima-
tion. It consists of the following steps:

1. Export the results of a DFT code that uses numerical
local atomic orbitals as a basis set. Here, we use the
SIESTA code,10 but other codes like the FHI-AIMS code44

could also be used.
2. Set up a basis of dominant products in O(N ) operations.

Here, we use the method of Ref. 12.
3. Set up a space of reduced dimension where the screened

Coulomb interaction will act and exploiting the low ef-
fective rank of this set. Such a subspace is determined by
a set of Nrank vectors V EF

μ that correspond to electron-
hole pairs with a predetermined maximum value of

|E − F |. Further compression is obtained by diagonal-
izing the Coulomb metric projected onto this subspace.
This step requires O(N3) operations.

4. Choose low and high energy spectral windows and a
frequency grid. Prepare the electronic spectral density
ρab(s) in these two windows from the output of the DFT
calculation.

5. Find χRPA
mn by constructing and compressing the local

χ0
μν on the fly in O(N3) operations and by solving for

χRPA
mn for all frequencies in O(N3) operations. The con-

struction must be done in two frequency windows. Trun-
cate the spectral data where needed in order to avoid
double counting and store χRPA

mn in the two windows.
6. Find the spectral function of the self-energy by decom-

pressing χRPA
mn → W

μν

0 on the fly in O(N3) operations
and by convolving it with the electronic spectral func-
tion. Again this must be done in two frequency windows
and the results must be combined consistently.

7. Construct the self-energy from its spectral
representation.

8. Solve Dyson’s equation and find the density of states
from the interacting Green’s function. Obtain the desired
spectroscopic information from the density of states.

Results obtained with the above algorithm will be dis-
cussed in Secs. X and XI.

X. TESTS FOR DIFFERENT BASIS SET SIZES

The concept of locality is a key ingredient in the algo-
rithm described in the present paper. To take into account
the locality of the electronic interactions we use a basis set
of atomic orbitals to describe the electronic states. In par-
ticular, the results presented here have been obtained start-
ing from DFT Kohn-Sham calculations performed with the
SIESTA code.10 SIESTA uses a basis set numerical atomic
orbitals of finite support which has been specially designed
to improve the efficiency of the calculations by reducing
the interaction range, and thus the number of non-zero
Hamiltonian and overlap matrix elements.10 However, it is
important to stress that the algorithm presented here does
not depend critically on this choice. Our GW can also be
coupled to other codes using numerical atomic orbitals as a
basis set.

So far we have only used a DZP basis in our calculations.
DZP basis are known to provide results in reasonably good
agreement with those obtained with plane-wave calculations
for a large variety of systems35 and, for this reason, they have
become the standard choice for ground-state calculations with
SIESTA.10 However, the performance of DZP basis for the cal-
culation of the IP and EA is more uncertain. For this reason
we present here a study of the effect of the size of the basis
on the results of our GW calculations for benzene. We will
consider the cases of single-ζ polarized (SZP), DZP, triple-ζ
polarized (TZP), and triple-ζ doubly-polarized (TZDP) ba-
sis sets. SZP basis set contains only one radial shape to de-
scribe each shell of valence electrons occupied in the atomic
ground-state configuration plus a polarization shell. There-
fore, for carbon it has one 2s and three 2p orbitals, plus five
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TABLE IV. Convergence of the calculated ionization potential and affinity level as a function of the number Norb of
numerical atomic orbitals (see Ref. 10) in the basis set describing a benzene molecule. The convergence of the total
energy with respect to the TZDP result �Etotal = Etotal,TZDP − Etotal,Basis and that of the HOMO and LUMO levels in
the DFT-LDA calculations is also displayed. This allows to check the improvement of the description of the ground
state of the molecule as we increase the size of the basis. The calculations are performed for a fixed geometry obtained
using the TZDP basis. DZP is the standard basis used in ground-state SIESTA (see Ref. 10) calculations. See the text
for the definition of the acronyms describing the different basis. Nprod is the number of dominant products, i.e., before
performing a non-local compression, for different basis sizes.

Basis type Norb �Etotal, eV ELDA
HOMO, eV ELDA

LUMO, eV IP, eV EA, eV Nprod

SZP 78 7.680 −7.90 −2.98 9.85 −0.32 2319
DZP 108 0.506 −6.72 −1.67 8.78 −1.31 4155
TZP 138 0.329 −6.71 −1.66 8.78 −1.27 5493
TZDP 186 0.000 −6.67 −1.62 8.78 −1.24 8487

polarization orbitals with d symmetry. For hydrogen, we have
one 1s orbital and three polarization orbitals with p symme-
try. In DZP and TZP basis the number of valence orbitals is
doubled and tripled, respectively, while the number of polar-
ization orbitals is also doubled in the TZDP basis. We only
consider automatic basis sets generated following the algo-
rithms presented in Ref. 10. The radii of the orbitals is chosen
using an energy shift of 3 meV. We restrict here to this type
of basis because currently it is the most widely used with the
SIESTA code. It is possible to further improve the accuracy of
the ground-state calculations using smoothly confined varia-
tionally optimized orbitals as described in Ref. 35. The ge-
ometry of the molecule is optimized with the TZDP basis and
then used in other calculations.

The second column in Table IV shows the convergence
of the total energy of the benzene molecule with respect to
the basis size. The energy increases as the size of the basis
decreases, reflecting the limitations of the small basis to accu-
rately represent the molecular ground state. The main change
takes place when moving from the SZP to the DZP basis. This
strong effect of the doubling of the basis is well known. It is
related to limitations in the generation of optimal basis func-
tions for molecules from isolated atoms.10, 35, 47 In compari-
son, the effect of including a third radial shape or an addi-
tional shell of polarization orbitals is much smaller. As shown
in Table IV, the situation is similar for the Kohn-Sham eigen-
values corresponding to the HOMO and LUMO levels. They
are relatively insensitive to the increase of the size of the basis
beyond DZP when using this type of basis.10

The IP and EA computed with different basis sets are also
collected in Table IV. The GW calculations have been carried
out with a single frequency window defined by � = 80 eV and
a large number of frequency points Nω = 2048. The conver-
gence is strikingly fast for the IP, for which the DZP basis
provides the same result as the larger basis. For the EA the
convergence is slower, although the DZP basis already pro-
vides a result which is only 0.07 eV lower than the value
obtained with our largest basis. Our converged results are
close to those obtained in other G0W0 calculations on top of
DFT-LDA results.19, 38 However, their very fast convergence
is somewhat surprising if we consider, for example, the re-
sults by Umari et al.19 This reference reports a very slow con-
vergence of the IP of the benzene molecule as a function of
the number of unoccupied bands included in the calculation.

Although our value of 8.78 eV is close to the values reported
in that work using a large number of bands (energy cutoff
close to ∼100 eV), it is still far from the extrapolated result of
9.1 eV for an infinite energy cutoff. This clearly indicates that
the convergence shown in Table IV does not reflect a satura-
tion of the basis, but rather the fact that the additional orbitals
do not provide the necessary additional degrees of freedom
for full convergence. Thus, more work should be carried out
to investigate how this kind of numerical basis can be im-
proved for the description of one-electron excitations. A pos-
sible route that we plan to investigate is a projection technique
similar to that described in Ref. 47, which can be applied to
improve the description of unoccupied states. Still the results
obtained with our DZP basis are quite satisfactory, particu-
larly if we take into account the relatively small number of
orbitals in such basis, and we will use it for larger molecules
in Sec. XI.

XI. TESTS FOR MOLECULES OF INTERMEDIATE SIZE

The compression technique has been carefully tested
in the case of the benzene molecule. The tests show ex-
cellent agreement of the density of states computed with
and without compression. In this section, we will consider
larger molecules, such as the hydrocarbons naphthalene and
anthracene.34 These molecules are well known to differ
in their character as electron acceptors: naphthalene, like

TABLE V. Ionization potentials and electron affinities for naphthalene and
anthracene and their dependence on the extension of the atomic orbitals. For
naphthalene we compared the results obtained with spectral functions dis-
cretized in one or two windows. The experimental data has been taken from
the NIST server (see Ref. 40). For naphthalene and anthracene, vertical ion-
ization potentials are not available at the NIST database. Therefore, we give
experimental ionization energies including effects of geometry relaxation.

Naphthalene Anthracene

Energy-shift One window Two windows Two windows

meV IP, eV EA, eV IP, eV EA, eV IP, eV EA, eV

200 7.24 − 0.68 7.27 − 0.79 6.44 0.20
20 7.61 − 0.083 7.67 − 0.18 6.89 0.77
Experiment 8.14 − 0.191 8.14 − 0.191 7.439 0.530
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(a) (b)

FIG. 5. (a) Density of states for naphthalene. The results have been obtained with our most extended basis orbitals (corresponding to an energy shift of 20 meV
(see Ref. 35)). We can appreciate the accuracy of the second window technique. (b) Ball and stick model of naphthalene produced with the XCRYSDEN package
(see Ref. 39).

benzene, has a negative electron affinity, while anthracene is
an electron acceptor with positive electron affinity.

A compression of the dominant product basis is neces-
sary to treat the molecules considered in this section. These
molecules are too large for a calculation without compression
on ordinary desktop machines because of memory require-
ments. For naphthalene the dominant product basis contained
4003 functions, which were reduced to 433 functions after
compression. In the case of anthracene, the dominant product
basis contained 5796 functions, while the compressed basis
had only 598 functions.

Table V shows our results for naphthalene and an-
thracene. The computational details were similar to those
used for benzene and were already described in Sec. VI.
The two-window results were obtained with frequency
grids of only 128 points for naphthalene (in the ranges
±8.32 eV and ±80 eV) and yet it provides an accuracy on
the 0.1 eV level, while the one-window calculation is done
again with 1024 frequencies (in the range of ±80 eV). In the
case of anthracene, results using frequency grids of 256 points
(in the ranges ±16 eV and ±0 eV) are presented.

Again we find a large improvement over the position of
the Kohn-Sham levels in a DFT-LDA calculation. The agree-

ment with the experimental data is certainly improved, al-
though there are still significant deviations, particularly with
respect to the reported ionization potentials. Interestingly,
however, our calculations recover the important qualitative
feature of anthracene being an electron acceptor. In the case
of anthracene, the results obtained with our most extended
basis orbitals (energy shift of 20 meV) are in excellent agree-
ment with the recent calculations by Blase et al.5 In the case
of naphthalene we can see that the two frequency windows
technique introduces only tiny differences (below 0.1 eV) in
the positions of the HOMO and LUMO levels.

The corresponding DOS is shown in Figs. 5 and 6. One
can see in Fig. 6 that it is the dynamical part of the self-
energy, including correlation effects, that turns our theoretical
anthracene into an acceptor, while including only the instan-
taneous self-energy predicts anthracene to be a donor.

These results for molecules of modest size are just a first
application of our algorithm. With its favorable scaling, our
method aims at GW calculations for larger molecules of the
type used in organic semiconductors. However, before car-
rying out such studies, we should reduce the initial number
of dominant products, i.e., before any compression is applied
to it.

(a) (b)

FIG. 6. (a) Density of states for anthracene. The results have been obtained using the extended basis orbitals corresponding to an energy shift of 20 meV
(see Ref. 35). Here, we compare calculations using the instantaneous (exchange-only) self-energy and the full self-energy (including correlation effects). The
correlation component of the self-energy is crucial to reproduce the experimental observation that anthracene is an acceptor. In contrast, the exchange-only
calculation locates the LUMO level above the vacuum level. (b) Ball and stick model of anthracene produced with the XCRYSDEN package (see Ref. 39).
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XII. CONCLUSIONS AND OUTLOOK

In the present paper we have described our approach to
Hedin’s GW approximation for finite systems. This approach
provides results for densities of states and gaps that are in
reasonable agreement with experiment and it requires only
modest computer resources34 for the systems presented here.
The complexity of our algorithm scales asymptotically as the
third power of the number of atoms, while the needed mem-
ory grows with the second power of the number of atoms.
We hope that these features, along with a further reduction
of the size of the basis describing the products of localized
orbitals, will allow to apply our method to describe the elec-
tronic structure of large molecules and contribute to an ab
initio design of organic semiconductors for technological ap-
plications.

The algorithm described here is built upon the LCAO
technique10 and uses a previously constructed basis in the
space of orbital products that preserves their locality and
avoids fitting procedures.12 Moreover, a (non-local) compres-
sion technique has been developed to reduce the size of this
basis. This allows to store the whole matrix representation of
the screened Coulomb interaction at all time/frequencies in
random access memory while significantly reducing the com-
putational time. The time (and frequency) dependence of ob-
servables is treated with the help of spectral functions. This
avoids analytical continuations and allows for operations to
be accelerated by the use of FFTs. As a useful byproduct of
our focus on spectral functions we obtain, as primary result,
an electronic spectral function of the type observed in photo-
emission and from which we then read off the HOMO and
LUMO levels.

We have applied our method to benzene, naphthalene,
and anthracene. As expected, we find that our estimations of
the HOMO and LUMO positions and the corresponding gaps
are significantly improved over the results obtained from the
Kohn-Sham eigenvalues in a plain DFT-LDA calculation. Our
results approach the experimental data but, as observed by
other authors,5 these “single-shot” GW -LDA calculations (or
G0W0-LDA using a more standard terminology) still present
sizeable deviations from the measured ionization potentials
and electron affinities. In general, our results are in good
agreement with previous G0W0-LDA calculations for similar
systems.5, 19, 38 Thus, we expect further improvements by iter-
ating our procedure until self consistency or, as suggested by
other authors in the case relatively small molecules,5, 20, 45 by
using Hartree-Fock results as an input for our G0W0 calcula-
tions. For periodic systems it is well known that G0W0-LDA
systematically underestimates the size of the gaps of semi-
conductors. The best results so far were found using the so-
called “improved quasi-particle method.”2, 46 A realization of
this method in our framework should also improve the preci-
sion of our results.

The method presented in this paper depends crucially on
the quality and size of the original LCAO basis. A possible
limitation is that the typical LCAO basis used in electronic
structure calculations is constructed and optimized in order
to describe ground-state properties.35 However, it is possible
to optimize an LCAO basis, for example, using a technique

similar to that described in Ref. 47, to represent electronically
excited states. This will increase the accuracy and applica-
bility of the method and could even allow to reduce the size
of the original LCAO basis used to represent the electronic
states. Moreover, by comparing our basis with that of other
authors, there are indications that the (local) basis of dominant
products used in this paper can be reduced in dimension with-
out changing the physical results.5 Such a reduction should
lead to an important improvement of the prefactor in our im-
plementation of GW , but also, as a side effect, introduce a
similar acceleration in our published TDDFT algorithm14 that
is already competitive, in its present form, with other TDDFT
codes.

The quantities calculated in the presented algorithm can
be useful in other branches of many-body perturbation the-
ory. For instance, the screened Coulomb interaction is a cru-
cial ingredient of the Bethe-Salpeter technique that is needed
to study excitons and the optical response of excitonic sys-
tems. In this context it is interesting to note 49 that the solution
of the Bethe-Salpeter equation scales as O(N3) for clusters
of size N , at least when suppressing the dynamic part of the
fermion self-energy and the dynamic part of the screening of
the Coulomb interaction. Calculations of the transport proper-
ties of molecular junctions50 are another possible application
of the GW approach described here.
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