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Abstract: Most applications of the extreme value theory have assumed stationarity, i.e. that the statistical 

properties of the process do not change over time. However, there is evidence suggesting that the occurrence 

of extreme events is not stationary but changes naturally, as it has been found for many other climate 

variables. Of paramount importance for hazard analysis is whether the observed precipitation time series 

exhibit long-term trends or cycles; such information is also relevant in climate change studies. In this study 

the theory of non-stationary extreme value analysis was applied to data series of daily precipitation using the 

peaks-over-threshold approach. A Poisson/Generalized Pareto model, in which the model parameters were 

allowed to vary linearly with time, was fitted to the resulting series of precipitation event’s intensity and 

magnitude. A log-likelihood ratio test was applied to determine the existence of trends in the model 

parameters. The method was applied to a case study in northeast Spain, comprising a set of 64 daily rainfall 

series from 1930 to 2006. Statistical significance was achieved in less than 5% of the stations using a linear 

non-stationary model at the annual scale, indicating that there is no evidence of a generalised trend in extreme 

precipitation in the study area. At the seasonal scale, however, a significant number of stations along the 

Mediterranean (Catalonia region) showed a significant decrease of extreme rainfall intensity in winter, while 

experiencing an increase in spring. 

Keywords: extreme events, precipitation, time series analysis, climate variability, regional climate change, 

non-stationary extreme value analysis, Iberian Peninsula, Spain
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1. Introduction 

Analysis of the characteristics of extreme precipitation over large areas has received considerable 

attention, mainly due to its implications for hazard assessment and risk management (Easterling et al., 2000). 

Hazardous situations related to extreme precipitation events can be due to very intense rainfall, or to the 

persistence of rainfall over a long period of time. Reliable estimates of the probability of extreme events are 

required for land planning and management, the design of hydraulic structures, the development of civil 

protection plans, and in other applications. 

The extreme value (EV) theory provides a complete set of tools for analyzing the statistical distribution 

of extreme precipitation, allowing for the construction of magnitude–frequency curves (Hersfield, 1973; Reiss 

and Thomas, 1997; Coles, 2001; Katz et al., 2002). Derived statistics such as quantile estimates (the average 

expected event for a given return period) have been widely used to express the degree of hazard related to 

extreme precipitation at a given location. In most cases the analysis of extreme events has been reduced to 

the daily intensity, although other important aspects, including event duration and magnitude, have recently 

been incorporated into the analysis of extreme precipitation (Beguería et al., 2009). 

An important assumption of the classical EV theory refers to the stationarity of the model, which 

implies that the model parameters do not change over time. However, climatic series are known to be non-

stationary, and hence many studies have been devoted to analyzing the occurrence of temporal trends and 

cycles, including the frequency and severity of extreme events (Smith, 1989; Karl et al., 1995; Karl and 

Knight, 1998; Groisman et al., 1999). In addition, several models have highlighted a likely increase in the 

frequency of extreme events under modified greenhouse gas emissions scenarios (Meehl et al., 2000; 

Groisman et al., 2005; Kyselý and Beranová, 2009), so advances in methodologies for assessing such changes 

are needed. 
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The importance of these issues has stimulated the development of techniques to identify trends in 

extreme events. A large number of studies are based on analyzing the time variation of statistics defined by 

fixed magnitudes or quantiles (Karl et al., 1995; Groisman et al., 1999; Brunetti et al., 2004; López-Moreno et 

al., 2009). These approaches can provide information about changes in high precipitation values, but not 

necessarily about the most extreme precipitation events, which by definition occur intermittently. For this 

reason other approaches have been developed to analyze changes and trends in hydrological extremes based 

on parametric approaches, which are based on an extension of the EV theory, namely the non-stationary 

extreme value (NSEV) theory (i.e., Coles, 2001). NSEV methods allow analysis of the time dependence of 

extreme precipitation within the extreme value theory context, enabling estimation of the time evolution of 

the most extreme precipitation events. The NSEV theory is the most reliable framework for analyzing the 

time variation of extreme events, providing the means to address important issues including the occurrence 

of trends and cycles in data series, as well as co-variation with other climatologic and meterological factors.  

Most applications of the NSEV theory, however, have been based on block maxima data, in which only 

the n highest observations are retained at regular time intervals. The annual maxima method is a common 

example of this approach. The resulting data series are fitted to extreme value distributions such as the 

Gumbel distribution or the Generalized Extreme Values distribution (Hershfield, 1973), and there are 

examples of non-stationary analysis of extreme rainfall using the GEV distribution (Nadarajah, 2005; Pujol et 

al., 2007). There has been criticism of the waste of useful information when the block maxima approach is 

applied to datasets containing data in addition to the maxima (Coles, 2001; Beguería, 2005). As an alternative, 

the peaks-over-threshold (POT) approach is based on sampling all observations exceeding a given threshold 

value, and fitting the resulting data series to the Exponential or the Generalized Pareto (GP) distributions 

(Cunnane, 1973; Madsen and Rosbjerg, 1997). 

There are some studies demonstrating non-stationarity on POT data. Li et al. (2005) used a split-sample 
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approach to demonstrate temporal changes on extreme precipitation in Western Australia. Hall and Tajvidi 

(2000) used a moving kernel sampling approach to analyze non-stationarity on the GP parameters of extreme 

temperature and wind speed data. Non parametric approaches (split sampling and moving kernel sampling) 

are interesting as a preliminary tool for exploring the presence of non-stationarity on POT data, but do not 

provide a functional relationship between the GP distribution parameters and time. Parametric methods to 

account for this relationship have been developed based on the maximum likelihood estimation (MLE) 

method (Smith, 1999; Coles, 2001), but the examples of their application to hydroclimatic data are relatively 

scarce. One of the first applications of the MLE method to model time dependence on temperature and 

precipitation POT data is due to Smith (1999). Chavez-Demoulin and Davison (2005) used a penalized 

likelihood approach and generalized additive modeling (GAM) to fit the co-variation between GP distribution 

parameters and other covariates. Nogaj et al. (2006) used MLE for fitting linear and quadratic trends to the 

parameters of temperature extremes over the North Atlantic region. A similar approach was used by Laurent 

and Parey (2007) and Parey (2007) for temperature extremes in France. Méndez et al. (2006) analyzed long 

time trends and seasonality of POT wave height data. Yiou et al. (2006) analyzed trends of POT discharge 

data in the Czech Republic. Abaurrea et al. (2007) used MLE to model covariation between the scale 

parameter of a GP distribution and mean temperature data to check for trends of POT temperature series. 

Applications of the NSEV theory to POT precipitation data have been very scarce, due mostly to difficulties 

inherent to the irregular and clustered character of rainfall time series. The study by Smith (1999) is one of 

the very few references, and it does not incorporate recent advances in POT analysis of precipitation data 

such as declustering (i.e., using series of rainfall events instead of the original daily series), nor compares the 

MLE method with other alternative methods such as the non-parametric ones. 

Whether there are trends in extreme precipitation records is currently of major interest in climate 

change studies, and the evaluation of observational datasets at regional scales is still a key research focus for 
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better understanding of the implications of climate change for precipitation extremes. In this study we explain 

the principles of application of non-stationary peaks-over-threshold analysis to time series of extreme 

precipitation events, considering both their intensity and magnitude. One non-parametric (moving kernel 

sampling) and one parametric (MLE) methods are presented and practical aspects on their use are discussed. 

We illustrate the use of these techniques with a case study based in the northeast sector of the Iberian 

Peninsula, which has a strong Atlantic−Mediterranean climate gradient. The purpose of the study is twofold: 

i) to expand current knowledge of the temporal evolution of extreme precipitation in the Iberian Peninsula, 

and ii) to demonstrate the application of non-stationary peaks-over-threshold analysis to detection of changes 

in the most extreme precipitation events. 

 

2. Methods 

2.1. Stationary peaks-over-threshold analysis 

A classical approach to EV analysis involves fitting a given probability distribution function to the 

highest values of a data series, in order to obtain reliable estimates of quantiles. The peaks-over-threshold 

(POT) approach is based on sampling only the observations above a given threshold value x0 (Cunnane, 

1973; Madsen and Rosbjerg, 1997). The choice on the value of x0 allows control over the amount of data in 

the analysis. 

Once it is established that the value of x0 is sufficiently high, the inter-event arrival times 1−−= nn ttA  

can be considered random, and the process is defined as a Poisson process with average occurrence 

frequency λ (number of events per year). The probability distribution of a POT variable with random 

occurrence times belongs to the Generalized Pareto (GP) family (Leadbetter et al., 1983). The Poisson/GP 
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model has frequently been used for EV analysis (van Montfort and Witter, 1986; Hosking and Wallis, 1987; 

Wang, 1991; Madsen and Rosbjerg, 1997; Martins and Stedinger, 2001; Beguería et al., 2009). The GP 

distribution is a flexible, long-tailed distribution described by a shape parameter κ and a scale parameter α. It 

has the cumulative distribution function (Rao and Hamed, 2000): 
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where α can take any arbitrary value, and κ controls the shape of the function, and hence the more or less 

pronounced character of its right tail. For κ > 0 the distribution is long-tailed (longest for smaller values of 

κ), and for κ < 0 it becomes upper-bounded, with the endpoint at −α/κ. In the special case where κ = 0 the 

GP distribution yields an exponential distribution. It is possible to calculate the expected value of the n-year 

return period quantile, xn, as well as its standard deviation, σxn (for more details see Rao and Hamed, 2000). 

The choice of an appropriate threshold value, x0, is an important step in POT modelling, as this 

parameter controls the sample size, and also affects the assumption of independence of arrival times and the 

adequacy of the GP distribution (Valadares-Tavares and Evaristo-da Silva, 1983). The suitability of the P/GP 

model for a POT series defined by a threshold value x0 can be tested by the mean excess plot. Given a rainfall 

amount at time t, xt, a new variate yt=xt-x0 can be constructed giving the exceedance over the threshold if 

xt>x0. The mean excess plot represents the average threshold exceedances 

€ 

E yt | xt > x0( )  against the value of 

x0. The mean excess plot allows definition of an appropriate threshold value as the lowest value of x0 for 

which )E( ty is a linear function of x0 (Coles, 2001). Besides, goodness-of-fit tests have been developed for 

assessing if the time arrival of an event greater than the threshold fit a Poisson process, and if the magnitude 

of the exceedances over the threshold fit a GP distribution. For the events to be considered time-

independent it is necessary that the dispersion index DI (the ratio between the variance and the average 
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occurrences per year) of the event series must be approximately 1. Confidence limits for DI can be obtained 

from a chi2 distribution at n-1 degrees of freedom, n being the number of years of the series (Cunnane, 1979). 

Similarly, the one sample Kolmogorov-Smirnov test can be used to check the validity of the GP distribution 

for the POT series. 

Several numerical methods exist for obtaining sample estimates of the P/GP model parameters (Rao 

and Hamed, 2000). In this study we adopted the maximum likelihood method, which has the advantage over 

other procedures (such as the probability-weighted method) of being flexible enough to accommodate both 

stationary and non-stationary models. 

2.2. The non-stationary POT model 

In the classical POT theory, the model parameters are assumed to remain stationary over time. In 

contrast, in non-stationary POT (NSPOT) analysis the model parameters are allowed to vary. Non-

stationarity can arise in time series of extreme values due to seasonal and interannual effects including varying 

atmospheric circulation patterns and synoptic types predominating in different months, or arising from long-

term cycles or trends, for example as a consequence of climate change. In fact, it is appropriate to suggest 

that non-stationarity is more common than stationarity in series of climate extremes, and to recommend the 

use of the NSPOT methodology unless the assumption of stationarity can be proven for a given data series. 

Non-stationarity of the POT model parameters can be modelled in several ways, and we will refer here 

to the non-parametric and the parametric NSPOT models. It should be noted that in this study the terms 

non-parametric and parametric refer only to the way in which time dependence of the model parameters was 

modelled, but in both cases the P/GP model was used. Letting P/ ( )λκα ,,,0xGP  be a stationary 

Poisson/Generalized Pareto model with threshold x0 and parameters α , κ  and λ, as defined in the previous 

section, the non-parametric NSPOT model is defined by: 



NSPOT analysis of extreme rainfall events, NE Iberian Peninsula 

9 / 26 

€ 

Xs > x − x0,s | Xs > x0,s( )  ~   P /GP α s,κs,λs( ) ,    (eq. 2) 

where s0x , , sα , sκ  and sλ  are the model parameters for a given time period s . These are assumed to be 

independent of the parameters for other time periods, so they can be estimated directly from a sample of data 

for that period. The simplest approach is to split the complete time series into n periods of equal length. A 

split-sample approach was followed, for example, by Li et. al (2005) for identifying non-stationarity of POT 

rainfall data in Australia. Another approach is to use a moving time kernel of fixed time span m, to obtain 

subsamples for each year of the time series. Such an approach was used, for example, by Hall and Tajvidi 

(2000) to model non-stationarity of annual maxima and POT temperature and wind data. Independent 

models can also be fitted to POT data for different months, or for each season (Beguería et al., 2009). A 

similar approach was used by Brath et al., (2001) for annual maxima precipitation data. 

Time dependence is modelled in a more sophisticated way in the parametric NSPOT model: 

( ) ( ))(),(),(  ~  )()(|)()( tttGPtxtXtxxtX 00 λκα>−> ,    (eq. 3) 

where a functional relationship exists between the model parameters and time. This could be linear, for 

example: 

€ 

π t( ) = β0 + βit
i

i=1

p

∑ , 

where )(tπ  represents one of the NSPOT model parameters, βi 

€ 

0 ≤ i ≤ p( ) are the linear coefficients, and p 

is the polynomial order. A simple linear model (n = 1) is normally used (Smith, 1999; Katz et al., 2002), but 

higher order linear and even nonlinear relationships may also be used. Although high order polynomials allow 

fitting of almost any time series they can easily lead to unreliable models due to overfitting, so linear or log-

linear models are usually preferred when searching for trends in the occurrence of extreme events. It is 

possible to define a model with time dependence in all parameters, or with a combination of stationary and 
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non-stationary parameters. As no data sub-sampling is required, all the data in the POT series are used in 

fitting the model, which constitutes one of the main advantages of the parametric NSPOT model over the 

non-parametric model. Maximum likelihood estimations of the parameters βi can be easily obtained (Coles, 

2001). 

As a consequence of the large number of alternative model formulations, it is important to have an 

objective method for model selection, enabling choice of the simplest model that explains the largest amount 

of variance in the data. The process usually involves: i) the definition of a set of candidate NSPOT models; ii) 

fitting the model parameters; and iii) using a log-likelihood ratio test based on the distance statistic D  (e.g., 

Coles, 2001): 

{ })()(2 0011 MMD  −−= ,      (eq. 4) 

where 1  and 0  are the maximized log-likelihoods of two nested models, 1M  and 0M , respectively, the 

former being more complex (i.e. having a larger number of parameters) than the latter. Large values of D  

indicate that model 1M  explains substantially more of the variance in the sample than 0M , and low values of 

D  suggest that the gain in explanatory capacity of 1M  over 0M  does not compensate for its greater 

complexity. The model 0M  can be rejected for αcD > , where αc  is the ( )α−1  quantile of a 2
kχ  

distribution, k being the difference in the number of parameters between 1M  and 0M , and α  the 

significance level of the test. In order to check the power of the D statistic test a numerical experiment was 

carried out involving the generation of a high number (10,000 replications) of synthetic time series following 

i) stationary and ii) linearly time-dependent P/GP models and having the same length than the series used in 

this study was carried out. The results were satisfactory, since the test yielded approximately the expected 

number of false positives at the significance level α = 0.05 (5%). 
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3. Study case 

3.1. Study area and data set 

The study area is in the north-eastern quadrant of Spain (Fig. 1), and has boundaries corresponding to 

administrative units that include 18 provinces with a total area of 160,000 km2. The study area has contrasting 

relief, with the Ebro Depression located in the centre (~200 m a.s.l.) and surrounded by high mountain 

ranges. The Cantabrian Range and the Pyrenees delimit the area to the north, with maximum elevations 

above 3,000 m a.s.l. The Iberian Range (maximum elevations 2,000−2,300 m a.s.l) encloses the Ebro 

Depression to the south. To the west of the study area the main unit is the Meseta, a plain structure with 

elevations of 700−1,000 m a.s.l. To the east, parallel to the Mediterranean coast, the Ebro Depression is 

enclosed by the Catalan Coastal Range (maximum elevation 1,000−1,200 m a.s.l.). The climate of the area is 

dominated by westerly fluxes from the west and northwest, although rainfall also responds to the influence of 

the Mediterranean Sea. 

Data were collected from a network of 64 climate observatories that have recorded daily precipitation 

data continuously for the period 1930−2006 (Figure 1). The data series underwent a quality control process 

that included reconstruction, gap filling and homogeneity testing (Vicente-Serrano et al., 2010). A declustering 

algorithm was applied to the original daily series to obtain series of precipitation events. A precipitation event 

was defined as a series of consecutive days with precipitation, so a period of one or more days with zero 

precipitation was the criterion used to separate events. Declustering has important consequences for the 

analysis, as it allows elimination of undesirable serial dependence in the point process (Coles, 2001; Beguería, 

2005). It also allows for a more complete analysis compared with a daily series, as the magnitude of the events 

can be also analyzed. Hence, two variables were obtained for each precipitation event: its magnitude (the total 

amount of precipitation cumulated over the event, i.e. the sum of all daily precipitations, in mm) and its 
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intensity (the highest daily precipitation during the event, in mm d-1). Each event was assigned to the last day 

of the cluster, which enabled construction of a time series of precipitation events. Five data sets were 

constructed: one including all the events, and four seasonal datasets including only the events occurring in 

winter, spring, summer and autumn, respectively. 

3.2. Analysis design 

POT series were created from the original event magnitude and intensity series by selecting an 

appropriate threshold value for each series using the mean excess plot method. POT series were constructed 

for the complete series and for the four seasonal event series. 

Non-parametric NSPOT models were obtained by fitting, for each year nt  (1939>n>1997), an 

independent P/GP model by fitting a subsample of all the events in the POT series within the 20-year period 

( )1010, +− nn tt . This allowed time series of the model parameters (scale and shape) and the 10-year return period 

quantiles (q10) to be obtained for the period 1940-1996. These time series were used as an exploratory tool 

due to the reduced time span of the series. 

Parametric NSPOT P/GP models were fitted to the POT series using a linear relationship for 

parameters α and κ and time. The models were stationary with respect to the threshold value, x0, which was 

kept constant and not time-dependent. The maximum likelihood method was used for fitting the models. 

The D statistic test was used to determine the significance of the linear model in each case. Time series were 

constructed of the model parameters, and of q10 and their 95% confidence intervals. Plots of these series, 

together with their non-parametric counterparts, were produced, and the two approaches were visually 

compared for inconsistencies. Finally, maps of the difference between q10 estimates by a linear NSPOT model 

at the end and the beginning of the study period 1930-2006 were produced for visualizing the results. 
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All calculations (mean excess plots, parameter estimation, model selection and factor analysis) were 

performed in R (R Development Core Team, 2008) using the ismev and the evd packages (Coles, 2001; 

Stephenson, 2002). Mapping was performed using ArcGIS 9.3 (ESRI, 2009). 

3.3. Results 

A threshold value corresponding to the 90th percentile of the distribution of the event’s intensity and 

magnitude for the 76 years of data was established with the help of the mean excess plot (Fig. 2). The use of a 

percentile instead of an absolute value (in mm) allowed use of a single value to define the threshold for all the 

data series. The absolute value corresponding to the 90th percentile was readily determined for each data 

series. Several percentiles were initially considered as possible threshold values, and their validity was checked 

for each series by means of the linearity of the mean excess plot, plus the use of the DI test for the event’s 

arrival times and the K-S test for adequacy of the GP distribution. The 90th percentile represented a 

conservative choice, as a lower value could have been selected for several stations. However, according to the 

P/GP model theory it represented a good threshold for all the event series. It must be noted that, when 

working with daily precipitation data, it is common to use values higher than the 95th percentile as the 

threshold value, and often the 99th percentile is used. This results in an event arrival frequency of (0.05*365) 

18.25 events per year for the 95th percentile, (0.01*365) 3.65 events per year for the 99th percentile, etc. The 

case is different when analyzing precipitation event data instead of daily data, since the number of events per 

year is substantially reduced. As a consequence, the same percentiles applied to event data result in 

significantly lower arrival frequencies. In the case reported in this study the average arrival frequency was 

4.14±0.59 events per year. Time plots of the POT series did not allow distinguishing differences in the 

density of the variable, as expected from a series of extreme (and thus rare) events (Fig. 3). 

The results of the DI and K-S tests allowed accepting the hypothesis of the convenience of the P/GP 
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model for the POT event series above the 90th percentile for a majority of stations, both at the annual and the 

seasonal time scales (Table 1). The K-S test was positive in all cases, demonstrating the goodness of fit of the 

POT series generated this way to the GP distribution. The DI test for the independence of the point process 

was not positive for all stations, although the percentage of positive cases seemed appropriate for accepting 

the P/GP model for the whole dataset. Other studies have shown a better result of the DI test for POT event 

series above the 90th percentile (Beguería, 2005), although in the context of stationary POT analysis. It is 

possible that non-stationarity affects the Poisson assumption of the P/GP model, most especially in the 

presence of a temporal trend. This hypothesis, however, could not be validated in this study, since no 

significant differences were found between the P/GP model parameter trends of positive and negative results 

of the DI test. 

The POT series that resulted from taking the exceedances over the threshold value were fitted to linear 

NSPOT models, and their significance was checked using a log-likelihood ratio test against a stationary 

model. At the annual scale only 11.0% (seven cases) and 4.7% (three cases) of the linear NSPOT models were 

significantly better than a stationary one for the event intensity and magnitude, respectively (Table 1). At the 

seasonal scale, winter and spring showed a higher fraction of significant non-stationary models, raising up to 

20 (13 cases) and 17% (11 cases) for the event intensity, respectively, while for the event magnitude and for 

both variables in the other seasons the fraction of positive NSPOT models was lower than 10%. Time series 

of the model parameters and the q10 show the importance that non-stationarity had in certain series (Figs 4 

and 5). Although for some series there were no major differences in q10 between the beginning and the end of 

the study period (e.g. the series X287 for the event’s intensity), in many cases the estimated q10 at both 

extremes differed by more than 50% (e.g. series X164). The time evolution of q10 depended on the evolution 

of both α (scale) and κ (shape), although the effect of the latter parameter was much stronger. The amplitude 

of the confidence band was also well correlated to the value of κ, with a negative relationship. It is 
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noteworthy that, although a linear model was used for both parameters, their combined effect can lead to a 

curvilinear relationship between q10 and time, although the highest / lowest values of q10 always occurred at 

the beginning / end of the time period. 

Comparison of the non-parametric and the parametric approaches to NSPOT modelling (dots and 

lines in Figures 4 and 5) shows the main advantages of the latter approach: i) to provide estimates of extreme 

events at the beginning and the end of the time series, which are lost in the non-parametric model due to the 

moving window necessary to obtain subsamples; and ii) to offer robustness against the occurrence of very 

extreme events, which have a major impact on the non-parametric model due to the shorter time span of the 

subsamples. This is clearly shown by the magnitude of the standard error of q10, which was much higher for 

the non-parametric model (Fig. 6). The standard error of the parametric NSPOT model was, in average, 

equivalent to that of the (parametric) stationary POT model, illustrating one of the principal advantages of 

the parametric NSPOT approach. 

High order polynomial NSPOT models were also fitted to the data (Fig. 7). Models of increasing 

complexity were tested for significance against the stationary model, and the most parsimonious (i.e. with the 

lowest polynomial order) was chosen. Following this approach, statistical significance was found in 45 

(70.3%) models for intensity and 42 (65.5%) for magnitude. The models had orders between 5 and 9 for both 

α and κ, which reflects quite a high complexity. It is evident that high order polynomials are more flexible for 

fitting complex data, but that comes at the expense of reduced reliability. In fact, the models have the same 

drawbacks as the non-parametric approach: i) excessive impact of outlier observations resulting in over-

fitting, and ii) non-reliability at the beginning and the end of the study period, as shown by the large increase 

in the uncertainty bands in many cases (e.g. series X9198 in Fig. 7, and short-dashed lines in Fig. 6). 

With respect to the time series of q10, differences were occasionally found between adjacent 
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observatories, reflecting the influence of single, very localized extreme events. Maps of q10 where produced to 

visualize the spatial distribution of the q10 difference at the beginning and the end of the period of study, and 

to check the regional coherence of the stations for which a linear NSPOT model was significant (Figs. 8 and 

9). Differences in q10 were not very high for both the event intensity and magnitude at the annual level 

(ranging between -10 and +30% in most cases), and the spatial distribution of the few significant series was 

random, suggesting that no trends exist in the study area. 

At the seasonal level, however, the differences between the beginning and the end of the period of 

study were larger, especially for the event’s intensity in winter (for which a decrease of both intensity a 

magnitude was recorded in most of the region) and spring (with a generalised increase). For these seasons a 

cluster of stations with significant NSPOT models appeared close to the Mediterranean coast line (Catalonia) 

for the event’s intensity, suggesting that the results found with respect to the time variation of q10 are 

consistent in this area. For the event’s intensity in summer and autumn, and for the event’s magnitude in all 

four seasons, the spatial patterns were weaker and the distribution of the significant series seemed random. 

4. Discussion and conclusions 

The stationarity hypothesis is an important assumption of conventional extreme events analysis, although it 

has been shown to do not hold for many environmental variables. Methodologies such as the one used in this 

study are able to accommodate non-stationarity on POT time series, and even allow testing for stationarity. 

Non-stationary POT models allow finding temporal trends in extreme event series, and are of special interest 

in the context of climate change studies. At this respect, regional assessments comprising many data series 

within a region could aid identification of relevant patterns in the time evolution of extreme events. 

The non-stationary peaks-over-threshold (NSPOT) methodology facilitates assessment of the temporal 

occurrence of extreme climatic events or other environmental variables, allowing time series of associated 
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statistics of applied interest (such as low-frequency quantiles) to be obtained. Once a threshold value in the 

form of a quantile value is set (here we used the 90th quantile of the complete time series of precipitation 

events), a Poisson/Generalized Pareto model can be defined in which the values of the model parameters 

(the scale and shape of the distribution) are time dependent. Such a model can be fitted using the maximum 

likelihood method. One of the difficulties in using the NSPOT model lies in the definition of the time 

dependency model, as many alternative relationships can be proposed. A test based on the D statistic, 

representing the gain in log-likelihood between two alternative models, can be used as a statistically sound 

model selection criterion. The proposed test penalizes the increased complexity involved in higher order 

models, thus constituting a trade-off between gain in explanatory power and complexity. Here we propose to 

use this test to establish the statistical significance of the non-stationary model against the stationary one. In 

addition to the parametric NSPOT model we used a non-parametric approach involving the fitting of a series 

of stationary models to subsamples of the original time series, following a moving window approach. This 

method was used as an exploratory tool, as it has many drawbacks affecting its reliability as a tool to model 

non-stationarity in extreme event analysis. 

We applied this methodology to a dataset of peaks-over-threshold rainfall events magnitude and 

intensity series covering the northeast of Spain. At the annual scale, our results showed that at most stations a 

linear NSPOT model was not significant according to the D statistic test, and the spatial distribution of the 

significant stations was apparently random. Hence no strong evidence was found in support of a change in 

the frequency and magnitude of extreme events in the region. The results from the non-parametric approach, 

which are not tied to any parametric trend model, showed a complex time pattern in most cases, with a 

strong influence of extremely high events. High order polynomial NSPOT models were able to fit such 

complex temporal patterns, but were constrained by the same drawbacks found in the non-parametric 

approach. At the seasonal scale, a higher number of stations for which a linear NSPOT model was significant 
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were found for the event’s intensity in winter (decreasing) and spring (increasing). A large fraction of this 

stations were clustered spatially in the Mediterranean part of the study region (Catalonia), suggesting that 

these results are consistent in that area. Difficulties for fitting linear NSPOT models to the observed data may 

be due to the fact the model parameters were set as time dependent only. This situation could be improved if 

covariates such as the NAO index or other tele-connexions would be included in the analysis. Previous 

studies (Lana et al., 1995; Martín-Vide et al., 2008; Vicente-Serrano et al., 2009) shown that extreme 

precipitation in north-east Spain may be linked to westerly flows associated with Atlantic depressions and 

other influences from the east (Mediterranean), most especially during winter, spring, and autumn. 
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Tables 

Table 1. Fraction of stations yielding a positive result (significance level  α = 0.05) of the DI test for the 

Poisson model of arrival times, K-S test for the Generalized Pareto model of exceedances and D test for a 

linear NSPOT model. 

 DI test K-S test D test 
 Intensity Magnitude Intensity Magnitude Intensity Magnitude 
Year 0.89 0.91 1.00 1.00 0.11 0.047 
Winter 0.88 0.97 1.00 1.00 0.20 0.063 
Spring 0.97 0.92 1.00 1.00 0.17 0.078 
Summer 0.92 0.94 1.00 1.00 0.078 0.094 
Autumn 0.89 0.92 1.00 1.00 0.094 0.063 
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Figure captions 

Figure 1. Map of the study area and spatial distribution of the observatories. 

Figure 2. Mean residual life plots for four observatories: x axis, event intensity (mm d−1); y axis (left), average 

exceedance over threshold (mm d−1) and confidence band at α = 0.05 (dashed line); y axis (right), cumulative 

distribution of the variable. The straight lines indicate the absolute value (mm d−1) corresponding to the 90th 

percentile. 

Figure 3. Peaks-over-threshold (POT) time series over the annual 90th percentile at four stations. Location of 

the stations is shown in Fig 1. 

Figure 4. Time variation of the GP model scale and shape parameters and of the 10-year expected return 

period q10 for the event intensity (mm d−1) at four stations, as estimated by non-parametric (circles) and 

parametric linear (solid lines) NSPOT approaches. The dashed lines in the q10 plots are uncertainty bands for 

α = 0.05. 

Figure 5. Time variation of the GP model scale and shape parameters and of the 10-year expected return 

period q10 for the event magnitude (mm) at four stations, as estimated by non-parametric (circles) and 

parametric linear (solid line) NSPOT approaches. The dashed lines in the q10 plots are uncertainty bands for 

α = 0.05. Location of the stations is shown in Fig 1. 

Figure 6. Model uncertainty: time variation of the 10-year return period event intensity standard error (mm 

d−1) by a non-parametric NSPOT model (dots), a linear NSPOT model (solid line), a high order polynomial 

NSPOT model (short-dashed line) and a stationary POT model (long-dashed line) in four stations. Location 

of the stations is shown in Fig 1. 

Figure 7. Time variation of the GP model scale and shape parameters and of the 10-year expected return 
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period q10 for the event intensity (mm d−1) at six stations, as estimated by non-parametric (circles) and 

parametric high order polynomial (solid lines) NSPOT approaches.. The dashed lines in the q10 plots are 

uncertainty bands for α = 0.05. Location of the stations is shown in Fig 1. 

Figure 8. Percent variation of the 10-years return period quantile (q10) over the period 1930-2006, 

( ) ( )( ) ( ) 100193019302006 101010 ×− qqq , as estimated by a linear NSPOT model: event’s intensity (a) and 

magnitude (b). The black dots indicate stations for which the linear NSPOT model was significantly better 

than the stationary one. 

Figure 9. Percent variation of the 10-years return period quantile (q10) over the period 1930-2006, 

( ) ( )( ) ( ) 100193019302006 101010 ×− qqq , as estimated by a linear NSPOT model: seasonal event’s intensity (a) 

and magnitude (b). The black dots indicate stations for which the linear NSPOT model was significantly 

better than the stationary one. 
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