
Mitotic arrest and JNK-induced proteasomal
degradation of FLIP and Mcl-1 are key events in the
sensitization of breast tumor cells to TRAIL by
antimicrotubule agents
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Breast tumor cells are often resistant to tumor necrosis factor-related apoptosis-inducing ligand (tumour necrosis factor-related
apoptosis-inducing ligand (TRAIL)/APO-2 L). Here, we describe the sensitization by microtubule-interfering agents (MIAs) to
TRAIL-induced apoptosis in breast tumor cells through a mitotic arrest and c-Jun N-terminal kinase (JNK)-dependent
mechanism. MIA treatment resulted in BubR1-dependent mitotic arrest leading to the sustained activation of JNK and the
proteasome-mediated downregulation of cellular FLICE-inhibitory protein (cFLIP) and myeloid cell leukemia-1 (Mcl-1)
expression. The JNK inhibitor SP600125 abrogated MIA-induced mitotic arrest and downregulation of cFLIP and Mcl-1 and
reduced the apoptosis caused by the combination of MIAs and TRAIL. Silencing of cFLIP and Mcl-1 expression by RNA
interference resulted in a marked sensitization to TRAIL-induced apoptosis. Furthermore, in FLIP-overexpressing cells, MIA-
induced sensitization to TRAIL-activated apoptosis was markedly reduced. In summary, our results show that mitotic arrest
imposed by MIAs activates JNK and facilitates TRAIL-induced activation of an apoptotic pathway in breast tumor cells by
promoting the proteasome-mediated degradation of cFLIP and Mcl-1.
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Tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL)/APO-2 L, a member of the tumor necrosis factor
(TNF) gene superfamily, induces apoptosis on binding to the
death domain (DD)-containing receptors TRAIL-R1/DR4 and
TRAIL-R2/DR5.1 As TRAIL induces apoptosis selectively in
transformed cells of diverse origin but not in most normal cells
in vitro, it is an attractive candidate for antitumor therapies.2–4

In the western world, breast cancer is the most common
neoplasia among women, emphasizing the importance of
developing effective treatments. Despite the fact that many
cancer cells are sensitive to TRAIL-induced apoptosis,
a number of them, and in particular breast cancer cells,
are resistant to TRAIL.5 In these cases, a combination
therapy using chemotherapeutic agents and TRAIL may be
more suitable than using TRAIL as a single agent. Recently,
we and others have reported that interferon-g, DNA-damaging
drugs, ionizing radiation and cyclin-dependent kinase inhibi-
tors can sensitize breast cancer cells to TRAIL-induced
apoptosis.6–9

On binding to its proapoptotic receptors, TRAIL induces the
formation of the death-inducing signaling complex (DISC),
recruiting the dual adaptor Fas-associated death domain

(FADD) molecule through its DD. In turn, this complex recruits
the initiator caspase-8 through its death effector domain
(DED),10 which is activated at the DISC by oligomerization.
The processing and activation of caspase-8 at the DISC
stimulates an apoptotic cascade that provokes cell death.11,12

The apoptotic signal from the DISC may be inhibited by the
cellular FLICE-inhibitory protein (FLIP).13 In most cells, two
alternatively spliced isoforms of cellular FLICE-inhibitory
protein (cFLIP) exist: a caspase-8 homolog cFLIPL that lacks
the amino acids critical for proteolytic caspase activity; and
cFLIPS, which consists of only the DEDs.13 Although the role
of cFLIP in apoptotic signaling remains controversial, there is
strong evidence that it displays antiapoptotic activity.14–16 The
expression of cFLIP varies in a cell type-specific manner and
fluctuates in response to various stimuli. Although it can be
transcriptionally controlled by the nuclear factor-kB (NF-kB)
pathway,17 altered rates of proteasomal degradation also
regulate its protein activity,18 making it a versatile inhibitor of
the apoptotic responses mediated by death receptors.

Microtubules are dynamic polymers composed of a/b
tubulin dimers that have important roles in various cellular
functions.19 Disruption of the spindle with microtubule-
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interfering agents (MIAs) such as nocodazole or taxol
activates the spindle assembly checkpoint causing the arrest
of cells in mitosis,20 which may eventually lead to apoptosis.21

Although several MIAs are successfully being used in cancer
chemotherapy,22 the development of resistance against these
drugs and their inherent toxicities call for either the develop-
ment of new agents with improved efficacy or the use of
combination regimes with other anticancer treatments.23

Here, we report that TRAIL-resistant human breast cancer
cells can be sensitized to TRAIL-induced apoptosis by
exposure to MIAs. The molecular mechanisms underlying
the effects of MIAs involve the induction of a mitotic arrest and
c-Jun N-terminal kinase (JNK)-dependent proteasome-
mediated decrease in cFLIP and Mcl-1 levels that facilitates
the activation by TRAIL of the apoptotic pathway.

Results

MIAs sensitize human breast tumor cell lines to TRAIL-
induced apoptosis. Drugs that affect microtubules
dynamics are one of the most important types of antitumor
agents. To determine whether MIAs sensitize breast tumor
cells to the apoptotic ligand TRAIL, several breast tumor cell
lines were treated either with the microtubule-depolymerizing
agent nocodazole or with the microtubule-stabilizing drug
taxol before the addition of TRAIL. In MDA-MB231 and
SKBr-3 cell lines, MIAs caused a significant arrest at the
G2/M phase of the cell cycle (Figure 1a). Interestingly, in
these cell lines, MIAs markedly sensitize the cells to TRAIL-
induced apoptosis (Figure 1b). Similar results were obtained

when apoptosis was determined by visualization of nuclear
fragmentation by 406-diamidino-2-phenylindole (DAPI)
staining (results not shown). In contrast, in the BT-474 cell
line, MIAs only partially arrested cells at the G2/M phase and
did not induce sensitization to TRAIL (Figures 1a,b). These
data were further confirmed in dose–response experiments
(Figure 1c). MDA-MB231 cells were markedly sensitized to
TRAIL-induced apoptosis by MIAs and this correlated with
G2/M arrest. In contrast, BT-474 cells were very resistant to
G2/M arrest and apoptosis sensitization by nocodazole even
at doses 100 times higher than those needed to sensitize
MDA-MB231 cells to TRAIL. However, BT-474 cells can be
sensitized to TRAIL by other agents such as flavopiridol and
cycloheximide (Supplementary Figure S1a), which indicates
that BT-474 cells have an intact TRAIL apoptosis pathway,
as previously reported by our group using FLIP siRNA.8

Caspase activation was required for the sensitization
observed as the pan-caspase inhibitor Z-VAD-fmk
completely abrogated the cell death induced by the
combination of MIA and TRAIL (Figure 1d). One of
the consequences of MIA-induced G2/M arrest is the
detachment of cells from the extracellular matrix.
Furthermore, cell detachment from the extracellular matrix
may increase the susceptibility of breast tumor cells to
TRAIL.24 To further explore this issue, MDA-MB231 cells
were seeded in poly-HEMA-coated tissue culture dishes to
prevent cell attachment and apoptosis was assessed
following incubation with TRAIL. Results shown in
Figure 1e indicate that cell detachment is not sufficient to
sensitize these cells to TRAIL-induced apoptosis.
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Figure 1 MIAs sensitize human breast tumor cells to TRAIL-induced apoptosis. (a, b) Different breast tumor cells were incubated for 15 h in complete medium without or
with nocodazole (0.4mg/ml) or taxol (10 mM) before the addition of TRAIL. Apoptosis was measured 6 h after the addition of TRAIL (500 ng/ml) as the percentage of cells with
sub-G1 DNA content, as described in Materials and Methods. Error bars represent S.D. from three independent experiments. **Po0.01. (c) Cells were treated for 15 h with a
range of concentrations of either nocodazole or taxol before incubation with or without TRAIL for 6 h. Quantitative analysis of cell cycle and apoptosis was determined as
described in Materials and Methods. Error bars represent S.D. from three independent experiments. (d) MDA-MB231 cells incubated in the presence or absence of
nocodazole (0.4mg/ml) for 15 h were treated with or without Z-VAD-fmk (50 mM) for 1 h and subsequently exposed to TRAIL (500 ng/ml) for 6 h in the same culture media.
Apoptosis was measured as described in Materials and Methods. Error bars represent S.D. from three independent experiments. (e) MDA-MB231 cells were seeded on
regular culture plates and treated with nocodazole for 15 h (nocodazole) or on poly-HEMA-coated dishes for 24 h (poly-HEMA). Following these incubations, cells were treated
without or with TRAIL (500 ng/ml) for 6 h and apoptosis was assessed as the percentage of cells with sub-G1 DNA content. Error bars represent S.D. from three independent
experiments
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To get further insight into the mechanism of sensitization to
TRAIL-induced apoptosis promoted by MIA in breast tumor
cells, we examined different biochemical events that occur on
TRAIL binding to its receptors at the cell surface. TRAIL
initiates apoptosis by inducing the recruitment of the adapter
molecule FADD to the apoptotic TRAIL receptors and the
subsequent engagement and activation of procaspase-8.11,12

We determined whether caspase-8 was activated in MDA-
MB231 cells by analyzing the processing of the pro-caspase
to the 43/41 kDa intermediate proteolytic fragments, and

through the generation of the mature p18 caspase-8 subunits
on TRAIL stimulation. Accordingly, TRAIL-induced activation
of caspase-8 was clearly enhanced by pretreatment with
nocodazole or taxol (Figure 2a and Supplementary Figure
S1b). Activation of caspase-8 leads to the processing of its
substrate BID, generating a 15-kDa fragment that translo-
cates to the mitochondria.25 Data shown in Figure 2a show
that only in nocodazole-pretreated cells was TRAIL capable of
inducing a decrease in the level of intact Bid and the
generation of truncated BID (tBID). Moreover, on death
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receptor activation, the cytoplasmic protein Bax migrates to
the mitochondria, where it cooperates with tBID in the release
of cytochrome c (Cyt c).26 Thus, we examined the activation of
the mitochondria-controlled apoptotic pathway by TRAIL in
nocodazole-treated MDA-MB-231 cells by determining the
release of Cyt c from the mitochondria. Results shown in
Figure 2a indicate the presence of Cyt c in cytosolic extracts
from MDA-MB-231 cells on pretreatment with nocodazole and
TRAIL receptor ligation. This effect was associated with the
loss of Cyt c levels in the mitochondria-containing membrane
fraction of digitonin-lysed MDA-MB-231 cells. Furthermore,
processing of procaspase-9 and complete activation of
caspase-3 were only observed in cells treated with MIAs
and TRAIL (Figure 2a and Supplementary Figure S1b).

Several treatments have been shown to upregulate the
expression of the TRAIL death receptors, resulting in
enhanced TRAIL-induced apoptosis.27 We therefore exam-
ined the effect of nocodazole on the surface expression of
TRAIL death and decoy receptors by flow cytometry
(Figure 2b). MDA-MB231 cells only express TRAIL-R2 and -
R4 on the cell surface and the expression of these TRAIL
receptors at the cell membrane was not significantly altered by
exposure to nocodazole (Figure 2b). Hence, nocodazole does

not appear to sensitize MDA-MB231 cells to TRAIL-induced
apoptosis by modulating the surface expression of TRAIL
receptors.

Treatment of breast tumor cells with MIAs alters the
cellular levels of different apoptosis-related proteins. To
elucidate the molecular mechanisms underlying the
sensitization to TRAIL-induced apoptosis by MIAs in breast
tumor cells, we determined the expression levels of different
pro- and antiapoptotic proteins, which are known to be
relevant to mechanisms of TRAIL signaling, in MDA-MB231
cells treated either with nocodazole or with taxol. After
treatment with MIAs for times up to 24 h, no changes in the
levels of Bid, Bax, procaspase-8, procaspase-9, procaspase-3,
procaspase-2 and XIAP were observed (data not shown).
Interestingly, we observed a marked decrease in the cellular
levels of the antiapoptotic Bcl-2 family member Mcl-1 in cells
treated with nocodazole (Figure 3a) or taxol (Figure 3b), with
barely detectable levels observed after 24 h. Likewise,
treatment with nocodazole or taxol caused an important
decline in the levels of the cFLIP isoforms FLIPL and FLIPS,
inhibitors of caspase-8 activation at the DISC in death
receptor-mediated apoptosis (Figures 3a and b). In addition,
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treatment of MDA-MB231 cells with MIAs resulted in
changes in expression levels and/or the electrophoretic
mobility of the apoptosis-related proteins Bim, FADD and
Bcl-2 (data not shown), which is indicative of alterations in
their phosphorylation pattern.28–30 Interestingly, none of
these effects of MIAs were observed in the BT-474 cell
line (Figure 3c), refractory to MIA-induced sensitization to
TRAIL-activated apoptosis (Figures 1b and c).

MIA treatment causes the proteasome-mediated
degradation of apoptosis-related proteins. Mcl-1 and
cFLIP are short half-life proteins that are subject to
constitutive polyubiquitination and subsequent degradation
by the proteasome.31,32 To further explore the mechanism by
which MIAs promoted the sensitization to TRAIL in breast
tumor cells, we first examined the role of the proteasome in
the loss of Mcl-1 and cFLIP proteins observed on MIAs
treatment. As shown in Figure 4a, pretreatment of MDA-
MB231 cells with the proteasome inhibitor MG-132
completely prevented the disappearance of both Mcl-1 and
cFLIP proteins induced following 24 h exposure to either
nocodazole or taxol, suggesting a role for the ubiquitin–
proteasome pathway in the disappearance of these
antiapoptotic proteins on MIA treatment. It was recently
reported that the BH3-only E3 ubiquitin ligase Mule/HectH9/
ARF-BP1/HUWE1 is responsible for the polyubiquitination of
Mcl-1 in different cell types.33 To examine the role of Mule in
the degradation of Mcl-1 in breast tumor cells treated with
MIAs, we eliminated Mule expression by an RNA
interference approach and examined the effect of
nocodazole treatment on the cellular levels of Mcl-1
protein. Data shown in Figure 4b show that Mule silencing
prevented the loss of Mcl-1 by nocodazole treatment in MDA-
MB231 cells. In contrast, downregulation of cFLIP
(Figure 4b) and Bim (data not shown) levels by nocodazole
was not affected by Mule siRNA. The E3 ubiquitin ligase Itch
has recently been reported to mediate the ubiquitination and
proteasomal degradation of cFLIP in TNF a-induced
apoptosis.34 To determine whether Itch was involved in
the proteasomal degradation of both FLIPL and FLIPS in
breast tumor cells treated with nocodazole, we performed
RNA interference experiments with an siRNA specific for
Itch. Downregulation of the Itch protein by siRNA did not
prevent the proteasomal degradation of FLIPL and FLIPS in
MDA-MB231 cells treated with nocodazole (Figure 4c). We
are currently characterizing the E3 ubiquitin ligase
responsible for the proteasomal degradation of cFLIP in
MIA-induced sensitization to TRAIL-activated apoptosis in
breast tumor cells.

cFLIP and Mcl-1 downregulation cooperate in the
sensitization of breast tumor cells to TRAIL. Cellular
levels of both cFLIP and Mcl-1 have been reported to have
an important role in the resistance of tumor cells to
TRAIL.8,35 To ascertain whether downregulation of these
antiapoptotic proteins by nocodazole was an important event
in the sensitization of breast tumor cells to TRAIL, we
performed RNA interference experiments with siRNA
oligonucleotides specific for cFLIP or Mcl-1. Thus, we
tested whether the specific silencing of cFLIP expression
by siRNA has a similar effect on TRAIL-induced apoptosis. In
MDA-MB231 cells, the levels of both cFLIPL and cFLIPS

were substantially reduced by a specific siRNA (Figure 5a),
whereas a similar concentration of a scrambled control
siRNA did not modify cFLIP protein expression. Most
importantly, silencing of cFLIP expression resulted in a
clear sensitization to TRAIL-induced apoptosis (Figure 5b) as
previously reported.8 These data correlated well with the
effects of nocodazole and support the hypothesis that
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downregulation of cFLIP expression by MIAs is critical for the
sensitization to TRAIL-induced apoptosis in breast tumor
cells. In contrast, silencing Mcl-1 expression by specific
siRNA (Figure 5a) has a very weak effect on TRAIL-induced
apoptosis (Figure 5b). Interestingly, simultaneous
knockdown of both cFLIP and Mcl-1 by siRNA
oligonucleotides significantly augmented the sensitization
caused by either siRNA alone (Figure 5b).

To further substantiate the role of cFLIP in the sensitization
observed, we used MDA-MB231 cells overexpressing cFLIPL

and determined the effect of nocodazole treatment on
apoptosis by TRAIL. Results shown in Figure 5c show that
cells overexpressing cFLIPL were clearly more resistant to
nocodazole-induced sensitization to TRAIL apoptosis than
cells expressing normal cFLIP levels.

Mitotic arrest imposed by MIAs activates JNK and
facilitates TRAIL-induced apoptosis. Accumulated
evidence indicates that altering microtubule dynamics by
treatment with MIAs activates the JNK/SAPK pathway in a
variety of cells.36 On the other hand, the activity of the JNK/
SAPK pathway may regulate the sensitivity of human tumor
cells to TRAIL.37 To further investigate the mechanism of
MIA-induced sensitization to TRAIL-activated apoptosis in
breast tumor cells, we analyzed the activation of the JNK/
SAPK pathway in MDA-MB231 cells treated with nocodazole
or taxol. We first examined the effect of MIAs on the
activation of JNK/SAPK by measuring the dual
phosphorylation of JNK/SAPK (Thr183/Tyr185) as a
function of time. Interestingly, incubation of cells with
nocodazole or taxol caused a sustained activation of
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JNK/SAPK that persisted up to 24 h, the latest time examined
in our studies (Figure 6a). Moreover, incubation of cells with
MIAs in the presence of the JNK/SAPK inhibitor SP60012538

completely abrogated the phosphorylation observed. To find
out the role of JNK/SAPK activation by MIAs in the
sensitization to TRAIL, we next determined the effect of
SP600125 on the changes in pro- and antiapoptotic proteins
observed in cells treated with MIAs. Most importantly, the
presence of SP600125 in the incubation medium completely
prevented the loss of FLIPL, FLIPS and Mcl-1 proteins
induced by MIA treatment in MDA-MB231 cells (Figures 6b
and c). Furthermore, the changes in the electrophoretic
mobility of the apoptosis-related proteins FADD, Bim and
Bcl-2 observed in cells treated with MIAs were markedly
inhibited in the presence of the JNK/SAPK inhibitor (results
not shown).

We next examined the effect of SP600125 on apoptosis
induced by incubation of cells with either nocodazole or taxol

and subsequently treated with TRAIL. Results in Figures 6d
and e show that SP600125 drastically reduced the apoptosis
elicited by the combination of MIA and TRAIL, consistent with
a role of JNK/SAPK activation in the regulation of cFLIP and
Mcl-1 degradation by the proteasome- and TRAIL-induced
apoptosis. Interestingly, the inhibitor of JNK/SAPK specifically
inhibited the apoptosis induced by MIAs and TRAIL but not by
other combination treatments (flavopiridol, cycloheximide)
with TRAIL, which do not cause a sustained activation of the
JNK/SAPK pathway (Figure 6f and results not shown).

To further investigate the mechanism of MIA-induced
sensitization to TRAIL, we examined the importance of the
mitotic checkpoint induction in the sensitization process.
Mitotic checkpoint activation was assessed by monitoring the
levels of BubR1 and histone H3 phosphorylation in cells
treated with nocodazole.39 As shown in Figure 7a, nocodazole
treatment resulted in a shift of BubR1 to its hyper-
phosphorylated form and a marked phosphorylation of histone
H3 in MDA-MB231 cells. Other treatments such as flavopiridol
or cycloheximide, which cause SP600125-insensitive sensi-
tization to TRAIL, did not induce mitotic arrest (Supplementary
Figure S2). Interestingly, BT-474 cells were clearly refractory
to nocodazole-induced activation of these mitotic checkpoint-
related events, thus confirming the cell cycle data shown in
Figure 1a that indicated inefficient G2/M arrest in these cells
following MIAs treatment. It has been reported that the JNK
inhibitor SP600125 could abrogate spindle assembly check-
point function in human cells by inhibiting the activity of the
mitotic checkpoint kinase monopolar spindle 1 (Mps1).40 We
have investigated this issue by monitoring histone H3
phosphorylation in MDA-MB231 cells treated with nocoda-
zole. Histone H3 phosphorylation induced by nocodazole was
markedly reduced in cells treated with SP600125 (Figure 7b),
thus indicating that cells did not enter mitotic arrest under
these conditions. It has been described that siRNA knock-
down of BubR1 results in mitosis acceleration and spindle
assembly checkpoint abrogation,41 thus indicating that the
control of BubR1 levels might be an essential regulatory step
in checkpoint activity. To further study the role of the mitotic
arrest imposed by MIAs in the activation of JNK and the
regulation of TRAIL-induced apoptosis, we performed siRNA
experiments to knock down BubR1 expression levels in MDA-
MB231 cells. Silencing of BubR1 expression drastically
reduced histone H3 phosphorylation (Figure 7c) and rounding
up of cells (not shown) induced by nocodazole, indicating an
efficient bypass of the mitotic arrest imposed by MIAs.
Interestingly, BubR1 knockdown clearly inhibited the activa-
tion of JNK and the downregulation of Mcl-1 and FLIP proteins
by nocodazole. Furthermore, silencing of BubR1 expression
significantly reduced the apoptosis elicited by the combination
of MIA and TRAIL (Figure 7d), consistent with a role of mitotic
arrest in TRAIL-induced apoptosis.

Discussion

TRAIL induces selective cell death in human tumor cells,
sparing most untransformed cells. On the basis of these
findings, phase 1 and 2 clinical trials of TRAIL and agonistic
TRAIL receptor antibodies for the treatment of cancer are
currently under way.42 However, resistance to TRAIL is not
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uncommon in primary tumors and tumor cell lines, similar to
those of the breast. Hence, sensitization of cells to TRAIL-
induced apoptosis through different strategies would augment
the therapeutic potential of TRAIL and combination treat-
ments have been implemented to facilitate TRAIL apoptotic

signaling.43 Microtubules are a major component of the
cytoskeleton and have important roles in many cellular
functions. They are a crucial component of the cell division
machinery, and as such are highly attractive targets for
anticancer drug design. In this work, we have examined how
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altering microtubules dynamics may increase the sensitivity of
breast tumor cells to the death ligand TRAIL. Although an
increase in the total expression of proapoptotic TRAIL
receptor proteins by taxol and other chemotherapeutic agents
has been reported,44,45 we do not observe an upregulation of
TRAIL-R1 or TRAIL-R2 at the cell surface in breast tumor cells
treated with MIAs. Hence, the step(s) involved in the
sensitization to TRAIL should reside downstream of ligand
binding to the receptor.

We have been studying the resistance of human breast
tumor cells to TRAIL and previously reported that the

formation of DISC is a common target for different sensitizing
regimes.8,46 Furthermore, resistance of tumor cells to TRAIL
can be overcome by treatment with metabolic inhibitors such
as cycloheximide or actinomycin D.47 These compounds
induce a strong downregulation of cFLIP expression.48 In this
regard, a potential mechanism involved in the regulation of
TRAIL sensitivity is the modulation of the expression of the
caspase-8 inhibitors cFLIPL and cFLIPS,13 proteins with very
short half-lives18 that are expressed at high levels in breast
tumors.49 Although enhancement of TRAIL-induced caspase-
8 activation and apoptosis does not always correlate with
cFLIP levels,46 it has been shown that different treatments can
induce downregulation of cFLIP and subsequent sensitization
to TRAIL-induced apoptosis.50,51 In our study, treatment of
breast tumor cells with MIAs induced a marked downregula-
tion of both cFLIPL and cFLIPS proteins. It is well documented
that cFLIP can be transcriptionally regulated through the
NF-kB pathway.17 However, we did not observe a decrease in
cFLIP mRNA in breast tumor cells treated with MIAs at
concentrations that caused maximal sensitization to TRAIL
(results not shown), thus excluding the transcriptional regula-
tion of cFLIP as the major target for the inhibitory action of
MIAs on cFLIP levels. cFLIP protein levels can be down-
regulated by proteasomal degradation18 and this modulation
may lead to TRAIL sensitization.52 Our results show that in
breast tumor cells MIA treatment leads to the proteasome-
mediated degradation of both cFLIP isoforms through a
mitotic arrest and JNK-dependent mechanism. Inhibition of
cytoskeletal dynamics results in the activation of signal
transduction pathways. MIAs have been shown to induce a
sustained activation of JNK in a variety of human cells through
both Ras and apoptosis signal-regulating kinase (ASK1)-
dependent pathways.36 MEK1 kinase (MEKK1) is also
required for the activation of JNK following exposure of cells
to MIAs.53 In this study, we have shown that inhibiting
microtubule dynamics causes a sustained activation of the
JNK and markedly sensitizes breast tumor cells to TRAIL-
induced apoptosis. We have also shown that JNK activation
by MIAs requires the spindle checkpoint machinery as it is
markedly abrogated in cells depleted of the mitotic checkpoint
kinase BubR1. Downregulation of cFLIP and sensitization to
TRAIL-induced apoptosis correlated well with the activation of
JNK by MIAs in the various breast tumor cell lines examined.
Regarding the mechanism of cFLIP degradation, it has been
shown that JNK activation by TNF-a reduces cFLIPL stability
by a mechanism involving JNK-mediated phosphorylation and
activation of the E3 ubiquitin ligase Itch, which ubiquitinates
cFLIPL and induces its proteasomal degradation.34 Further-
more, in cisplatin-treated tumor cells, Itch forms a complex
with cFLIP and p53 to promote cFLIP ubiquitination and
degradation through the proteasome.54 However, our siRNA
data suggest that Itch is not responsible for the proteasomal
degradation of cFLIP in breast tumor cells treated with MIAs,
indicating that other E3 ubiquitin ligases must be involved in
the degradation of cFLIP proteins following inhibition of
microtubule dynamics.

The role of Mcl-1 in the resistance of tumor cells to TRAIL-
induced apoptosis is a controversial issue. It has been
reported that downregulation of Mcl-1 expression either by
RNA interference or by the multikinase inhibitor sorafenib
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sensitizes tumor cells to TRAIL-induced apoptosis.55–57 On
the contrary, our results indicate that siRNA to Mcl-1 only
weakly facilitates activation of apoptosis by TRAIL in breast
tumor cells. These conflicting results suggest that
Mcl-1 involvement in the resistance of cells to TRAIL might
be cell type-dependent. Interestingly, simultaneous silencing
of Mcl-1 and cFLIP by siRNA significantly enhances sensiti-
zation to apoptosis induced by siRNA alone, suggesting the
cooperation between Mcl-1 and cFLIP in the mechanism of
resistance to TRAIL in breast tumor cells. Hence, treatments
that target cFLIP and Mcl-1 for proteasomal degradation, such
as antimicrotubule agents, may be therapeutically relevant
tools to fight cancer in combination with agonist TRAIL
receptor antibodies or recombinant TRAIL. Once activated
by TRAIL, caspases may further contribute to tumor cell death
by MIAs through the degradation of protein components of the
checkpoint machinery.58

We show for the first time that MIAs induce the proteasomal
degradation of both apoptosis inhibitors by a mechanism
involving the spindle checkpoint machinery and the sustained
activation of JNK. Proteasome-mediated degradation of Mcl-1
is regulated by phosphorylation.59 In growth factor-dependent
cells, Mcl-1 protein levels are regulated by growth factor
signaling at the level of protein half-life through phosphoryla-
tion by GSK-3.60 It has been suggested that JNK could be
responsible for the priming phosphorylation of Mcl-161

necessary for the docking of GSK-3 to Mcl-1. It remains to
be determined whether in breast tumor cells treated with
MIAs, GSK-3 is also involved in the proteasome-mediated
degradation of Mcl-1. Mcl-1 is a target for the BH3-containing
E3 ubiquitin ligase Mule (also known as Huwe1, UreB1, ARF-
BP1, Lasu1 and HectH9).33 Our results indicate that Mule is
required for the proteasome-mediated degradation of Mcl-1 in
breast tumor cells treated with MIAs. It will be important to
determine whether phosphorylation of Mcl-1 by JNK and
possibly GSK-3 may regulate the direct recognition of Mcl-1
by the HECT-family member Mule.

JNK activation by MIAs also posttranslationally affects
other apoptosis-related proteins such as Bim, Bcl-2 and the
death receptor adaptor FADD. Although the role of these
modifications on TRAIL-induced apoptosis is not clear, we
cannot exclude that they may contribute to the sensitization
observed. JNK-mediated phosphorylation of Bim has been
proposed to mediate sensitization to TRAIL in other tumor
cells.62 Furthermore, it has been shown that under nonapop-
totic conditions, Bim is sequestered by Mcl-1 and loss in Mcl-1
expression significantly enhances the mitochondrial apoptotic
response to TRAIL mediated by freed Bim.63 On the other
hand, it has been reported that Bcl-2 phosphorylation by JNK
is functionally linked to apoptosis induced by taxol.64 Similarly,
FADD phosphorylation through a JNK-dependent mechanism
is observed in tumor cells treated with taxol and is closely
associated with chemosensitivity.65 However, the role of Bcl-2
and FADD phosphorylation by JNK in the regulation of TRAIL-
induced apoptosis remains to be elucidated.

In conclusion, it is likely that inhibition of microtubule
function by MIAs sensitizes tumor cells to TRAIL by reducing
the cellular levels of apoptosis inhibitors, which leads to the
complete activation of the apoptotic machinery as we have
shown in this work. The present findings provide further

support for the general strategy of combining TRAIL and
agents that affect the mitotic checkpoint in anticancer
strategies.

Materials and Methods
Reagents and antibodies. MG-132, nocodazole and taxol were obtained
from Sigma Chemical Corp. (St. Louis, MO, USA). Soluble human His-tagged
recombinant TRAIL was generated in our laboratory as described.66 Antihuman
TRAIL Receptor R1, R2, R3 and R4 antibodies and anti-cFLIP monoclonal antibody
(NF6) were from Alexis Corp. (San Diego, CA, USA). Cyt c, BubR1, Itch and FADD
antibodies were from BD Bioscience (Erembodegem, Belgium). The monoclonal
antibody to a-tubulin was purchased from Sigma Chemical Corp. Antibodies against
GAPDH, H3 histone, phospho-H3 histone and Mcl-1 (S-19) were from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA, USA). Mouse anti-Bcl-2 mAb was purchased
from DAKO (Glostrup, Denmark). Antibodies to Bim and phospho-JNK were from
Calbiochem (San Diego, CA, USA) and Cell Signaling (Denvers, MA, USA),
respectively. Anti-caspase 8 was a gift from Dr. Gerald Cohen (Leicester University,
Leicester, UK). Rabbit anti-Bid polyclonal antibody was generously provided by Dr.
X. Wang (Howard Hughes Medical Institute, Dallas, TX, USA). Horseradish
peroxidase or FITC-conjugated, goat anti-mouse and goat anti-rabbit secondary
antibodies were obtained from DAKO (Cambridge, UK). Z-VAD-fmk was from
Bachem AG (Bachem, Bubendorf, Switzerland). Cleaved caspase-3 polyclonal
antibody was from Cell Signaling (Danvers, MA, USA). Caspase 9 monoclonal
antibody was purchased from MBL International (Woburn, MA, USA).

Cell culture. The human tumor cell line MDA-MB231 was maintained in RPMI
1640 medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine and
40mg/ml gentamycin. SKBr-3 and BT-474 were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM
L-glutamine and 40mg/ml gentamycin. The cells were maintained at 371C in a
humidified 5% CO2, 95% air incubator. A stable cell line overexpressing cFLIPL was
generated on transfection of MDA-MB231 cells with pCR3.V64-Met-Flag-FLIPL

(a kind donation from Dr. J. Tschopp, University of Lausanne, Lausanne,
Switzerland) by electroporation. Mock-transfected cells and cells overexpressing
FLIPL were selected in culture medium with 1 mg/ml G418 (Sigma Chemical Co.,
St. Louis, MO, USA) and analyzed for the expression cFLIPL by western blot. For
cultures of MDA-MB231 cells in suspension, 6-well plates were coated with a film of
poly-HEMA following published procedures.67

Analysis of apoptosis. Cells (3� 105 per well) were treated in six-well plates
as indicated in the figure legends. After treatment, hypodiploid apoptotic cells were
detected by flow cytometry according to published procedures.9 Basically, cells
were washed with phosphate-buffered saline (PBS), fixed in 70% cold ethanol and
then stained with propidium iodide while treating with RNAse. Quantitative analysis
of the cell cycle and sub-G1 cells was carried out in a FACSCalibur cytometer using
the Cell Quest software (Becton Dickinson, Mountain View, CA, USA).

RT-PCR. RT-PCR analyses were performed according to standard protocols.
Total RNA was isolated from cells with Trizol reagent (Life Technologies, Inc., Grand
Island, NY, USA) as recommended by the supplier. cDNA was synthesized from
2mg of total RNA using an RNA PCR kit (Perkin-Elmer, Indianapolis, IN, USA) with
the supplied Random Hexamers under the conditions described by the
manufacturer. PCR reactions were performed using specific primers for Mule
(forward: 50-GGGGTTATGACCCAAGAGGT-30 and reverse: 50-CCCATCTCGAG
ACTCCTCTG-30) and actin.

Immunoblot analysis of proteins. After detachment with trypsin, cells
(3� 105) were washed with PBS, and protein content was measured following cell
lysis using the Bradford reagent (Bio-Rad Laboratories, Hercules, CA, USA) before
adding Laemmli sample buffer. Samples were sonicated, and proteins were
resolved on SDS-polyacrylamide minigels and detected as described previously.9

Measurements of Cyt c release. Cells (3� 105 per well) were treated in
six-well plates as indicated in the figure legends. After treatment, cells were
detached from the plate with RPMI/EDTA and trypsin, washed with PBS and lysed
in 30ml ice-cold lysis buffer (80 mM KCl, 250 mM sucrose, 500mg/ml digitonin and
protease inhibitors in PBS). For measurements of Cyt c release from mitochondria,
cell lysates were centrifuged for 5 min at 10 000 g to separate the supernatant
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(cytosolic fraction) and pellet (mitochondria-containing fraction). The amount of
protein in each fraction was determined by the Bradford protein assay (BIO-RAD,
Hertfordshire, UK). Proteins from the supernatant and pellet were mixed with
Laemmli buffer and resolved on SDS-12% PAGE minigels. Cyt c was determined by
western blot analysis.

Analysis of TRAIL receptors by flow cytometry. MDA-MB231 cells
were detached with RPMI 1640/EDTA, washed in ice-cold PBS and resuspended in
PBS. Cells were then labeled with anti-TRAIL receptor antibodies (5mg/ml) or no
antibody (negative control), and then incubated with goat anti-mouse FITC-
conjugated antibody F(ab0)2 fragment. Labeled cells were analyzed by flow
cytometry using the CellQuest software (Becton Dickinson, Mountain View, CA,
USA).

RNA interference. siRNAs against cFLIP (50-GGGACCUUCUGGAUAUUU
Utt-30), Mcl-1 (50-GAAACGCGGUAAUCGGACUtt-30), Mule (50-GAGUUUGGAGUU
UGUGAAGtt-30), BubR1 (50-CUUCACUUGCGGAGAACAUtt-30), Itch (50-AAGUGC
UUCUCAGAAUGAUGAtt-30) and nontargeting scrambled siRNA were synthesized
by Sigma Proligo (St. Louis, MO, USA). Cells were transfected with siRNAs using
DharmaFECT-1 (Dharmacon, Lafayette, CO, USA) as described by the
manufacturer. After 48 h, the transfection medium was replaced with regular
medium before further analysis.

Statistical analysis. Data are presented as mean±S.E.M. of at least three
independent experiments. Differences between treatment groups were determined
by using Student’s t-test. Statistical significance was evaluated by calculating
P-values. P-values below 0.05 were considered significant.
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