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ABSTRACT  1 

The ecological impacts of forest plantations are a focus of intense debate, from studies 2 

that consider plantations as “biological deserts” to studies showing positive effects on plant 3 

diversity and dynamics. This lack of consensus might be influenced by the scarcity of studies 4 

that examine how the ecological characteristics of plantations vary along abiotic and biotic 5 

gradients. Here we conducted a large-scale assessment of plant regeneration and diversity in 6 

plantations of southern Spain. Tree seedling and sapling density, plant species richness, and 7 

Shannon’s (H’) diversity index were analysed in 442 pine plantation plots covering a wide 8 

gradient of climatic conditions, stand density, and distance to natural forests that act as seed 9 

sources.  10 

Pronounced variation in regeneration and diversity was found in plantation understoreys 11 

along the gradients explored. Low-mid altitude plantations showed a diverse and abundant 12 

seedling bank dominated by Quercus ilex, whereas high-altitude plantations showed a virtually 13 

monospecific seeding bank of Pinus sylvestris. Regeneration was null in plantations with stand 14 

densities exceeding 1500 pines/ha. Moderate plantation densities (500-1000 pines/ha) promoted 15 

recruitment in comparison to low or null canopy cover, suggesting the existence of facilitative 16 

interactions. Quercus ilex recruitment diminished exponentially with distance to the nearest Q. 17 

ilex forest. Richness and H’ index values showed a hump-shaped distribution along the 18 

altitudinal and radiation gradients, and decreased monotonically along the stand density gradient.  19 

From a management perspective, different strategies will be necessary depending on 20 

where a plantation lies along the gradients explored. Active management will be required in 21 

high-density plantations with arrested succession and low diversity. Thinning could redirect 22 

plantations towards more natural densities where facilitation predominates. Passive management 23 
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might be recommended for low-moderate density plantations with active successional dynamics 1 

(e.g., towards oak or pine-oak forests at low-mid altitudes). Enrichment planting will be required 2 

to overcome seed limitation, especially in plantations far from natural forests. We conclude that 3 

plantations should be perceived as dynamic systems where successional trajectories and diversity 4 

levels are determined by abiotic constraints, complex balances of competitive and facilitative 5 

interactions, the spatial configuration of native seed sources, and species life-history traits. 6 

 7 

Key words: competition; environmental gradients; facilitation; management strategy; 8 

Mediterranean forests; pine plantations; regeneration; seed dispersal; species diversity; stand 9 

density. 10 

 11 

INTRODUCTION 12 

Humans play a key role in shaping the structure and abundance of most ecosystems 13 

around the world (Sanderson et al. 2002, Haberl et al. 2007). The significance of the human 14 

footprint has been formally recognized in the term “emerging ecosystems”, defined as 15 

ecosystems where species occur in combinations and relative abundances that have not occurred 16 

previously within a given biome and that are the result of deliberate or inadvertent human action 17 

(sensu Hobbs et al. 2006). An example of this type of novel or emerging ecosystems are forest 18 

plantations (Chazdon 2008), usually characterized by higher stand density, lower tree diversity, 19 

and different specific composition than in natural forests (Hartley 2002, FAO 2005). The area 20 

covered by forest plantations has increased dramatically in recent decades, currently representing 21 

approximately 140 million ha worldwide (FAO 2005). Although only a 22% of this area has a 22 

primarily protective function (i.e., conservation of soil, water and biodiversity), the importance 23 
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of plantations in landscape management and restoration has increased recently, environmental 1 

protection being considered a legitimate objective even for productive plantations (Lamb 2005, 2 

Cummings and Reid 2008). 3 

The ecological impacts of forest plantations  is a focus of intense debate, from studies that 4 

consider plantations as “biological deserts” with deprived vegetation diversity and dynamics, to 5 

studies showing neutral or even positive effects on environmental conditions and biodiversity 6 

(Lugo 1997, Cannell 1999, Moore and Allen 1999, Kanowski et al. 2005, Stephens and Wagner 7 

2007). Thus, there is evidence that plantation forests can accelerate forest succession on 8 

previously deforested sites and abandoned agricultural areas where persistent ecological barriers 9 

to succession (e.g., extreme climatic conditions, competition with grasses) might otherwise 10 

preclude re-establishment of native species (Gardiner et al. 2004, Lamb et al. 2005, Brockerhoff 11 

et al. 2008). However, plantations have also been shown to strongly decrease resource levels in 12 

the understorey (i.e., light, soil water, and nutrients) negatively affecting diversity and 13 

performance of native plant species (Cavelier and Tobler 1998, van Wesenbeeck et al. 2003, 14 

Bellot et al. 2004, Maestre and Cortina 2004). This lack of consensus has relevant applied 15 

consequences, since it questions the value of plantations as restoration tools. 16 

Discrepancies around the ecological consequences of forest plantations can arise, among 17 

other reasons, from the scarcity of studies that examine plantations along gradients of 18 

environmental conditions and stand characteristics. First, abiotic conditions (i.e., climatic 19 

characteristics, soil fertility) will influence the suitability of a plantation for natural regeneration 20 

and diversity recovery. For example, a few studies have shown that the suitability of pine 21 

plantations for woody species regeneration in Mediterranean areas is reduced in dry years and 22 

sites, presumably due to more intense competition for water (Maestre et al. 2004, Arrieta and 23 
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Suarez 2006). Secondly, the stand structure of the plantation will influence the establishment of 1 

native species through biotic interactions such as competition (Grace and Tilman 2003) and 2 

facilitation (Callaway 2007). In this sense, the sign and magnitude of overstorey-understorey 3 

interactions might change as a function of overstorey density (Thomas et al. 1999, Arévalo and 4 

Fernández-Palacios 2005, Paquette et al. 2006). However, the scarcity of studies that explore 5 

plantation effects along tree density gradients precludes identifying density thresholds that define 6 

the transition between negative and positive net effects on understorey vegetation. Finally, in 7 

fragmented landscapes, dispersal distances and the frequency of long-distance dispersal events 8 

have a major influence on the probability of plant colonization and persistence in habitat patches 9 

(Cain et al. 2000, Pearson and Dawson 2005, Kunstler et al. 2007). Therefore, plantations close 10 

to seed sources could be expected to have more active recruitment and successional dynamics 11 

than plantations far from seed sources (Hewitt and Kellman 2002, White et al. 2004). In 12 

summary, the ecological consequences of a forest plantation will be largely influenced by its 13 

position along abiotic, biotic, and dispersal distance gradients. 14 

 In this study, we conduct a large-scale assessment of the ecological impacts of forest 15 

plantations in mountain landscapes of southern Spain. For this, we analysed plant regeneration 16 

and diversity in 442 pine plantations plots covering a wide gradient of climatic conditions, stand 17 

density, and distance to natural forest fragments that act as seed sources. Plantations (mainly 18 

pines) cover millions of hectares in the Iberian Peninsula, as well as in most countries of the 19 

Mediterranean Basin, where they have been widely used to recover the forest surface area lost 20 

over thousands of years of human timber exploitation and conversion to agricultural lands 21 

(Pausas et al. 2004, FAO 2005). Fast-growing pines were considered an intermediate 22 

successional stage between the transitional shrubs and the mature tree community, and therefore 23 
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assumed to facilitate the introduction of late-successional hardwoods (Barbéro et al. 1998, 1 

Pausas et al. 2004, Barčić et al. 2006). However, since most reforestation initiatives were not 2 

followed up with subsequent management or monitoring, it is unknown to what extent 3 

plantations successfully promote the recovery of native vegetation. Specifically, we ask: 1) what 4 

is, on average, the abundance of tree regeneration and the plant diversity of pine plantations, in 5 

comparison to native broadleaf forests? and 2) how does regeneration and diversity in plantations 6 

vary along gradients of climatic conditions, stand density, and distance to seed sources? The 7 

answers to these questions represent critical information to develop efficient strategies of 8 

plantation management that integrate the environmental heterogeneity found in the extensive 9 

areas covered by this type of novel ecosystem.   10 

 11 

MATERIAL AND METHODS 12 

Study site 13 

The study was conducted at the Sierra Nevada National Park (Andalusia, SE Spain; Fig. 14 

1). The climate is Mediterranean, characterized by cold winters and hot summers, with 15 

pronounced summer drought (July-August). Precipitation is concentrated mainly in autumn and 16 

spring. Sierra Nevada includes an altitudinal gradient from around 300 m to 3482 m a.s.l. (the 17 

highest peak in the Iberian Peninsula). Precipitation increases and temperature drops with 18 

altitude (García-Canseco 2001). Annual precipitation ranges from less than 250 mm in the lowest 19 

parts of the mountain range to more than 700 mm in the highest peaks. Winter precipitation is 20 

mainly in the form of snow above 2000 m of altitude. Mean annual temperatures vary from 12-21 

16ºC in the low mountain to 8-12ºC at 2000-2500 m, and to < 0ºC above 3000 m a.s.l.. 22 
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Additionally, the complex orography of the mountains causes strong climatic contrasts between 1 

the sunny and dry south-facing slopes and the shaded and wetter north-facing slopes. 2 

The main native forests of Sierra Nevada are stands dominated by the evergreen oak 3 

Quercus ilex subsp. ballota (Desf,) Samp. (which represents about 13% of the forested cover of 4 

the national park), and stands dominated by the deciduous oak Quercus pyrenaica Willd. (5.5% 5 

of the forested cover of the park) accompanied by other deciduous tree species such as Acer 6 

opalus subsp. granatense (Boiss.) Font Quer & Rothm and Sorbus aria (Pérez-Raya et al. 2001). 7 

Plantations of four pine species (Pinus halepensis Mill., Pinus pinaster Ait., Pinus nigra Arnold. 8 

subsp. salzmannii (Dunal) Franco, and Pinus sylvestris L.) represent 79% of the forested cover of 9 

the national park. These plantations were established mainly during the period 1960-1980 on 10 

highly degraded, extensive agricultural landscapes abandoned after the Spanish Civil War (1936-11 

1939). Soil preparation in most plantations consisted of terracing, and 1-2 year old pines were 12 

planted in 1 m2 manually dug holes. Pinus halepensis was the pine species most commonly used 13 

in low-altitude plantations (<1300 m a.s.l.) due to its drought tolerance, whereas montane pines 14 

(P. nigra and P. sylvestris) were the most widely used species in high-altitude plantations (>1900 15 

m a.s.l.). The four pine species are found in plantations at intermediate altitudes (1300-1900 m 16 

a.s.l.), sometimes forming mixed stands. Planted pines can also appear intermingled with 17 

remnants of natural Quercus forests at low-mid altitudes, and autochthonous P. sylvestris var. 18 

nevadensis forests in the high mountain.  19 

 20 

Data set 21 

We analysed a large data set from a forest inventory conducted for the Sierra Nevada 22 

National Park during 2004-2005. The forest inventory included an extensive network of 600 23 
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long-term permanent plots (20 x 20 m) distributed within the main forest units of the park: pine 1 

plantations, evergreen Q. ilex forests, and deciduous broadleaf forests. The network of plots is a 2 

random sample stratified by land cover and altitude, covering a gradient of 974 to 2439 m a.s.l. 3 

Within the 20 x 20 m plots, each live tree with a diameter at breast height (DBH) > 7.5 cm was 4 

mapped, its species identity annotated and the DBH measured. Two additional circular subplots 5 

were established within each larger plot: a 5-m radius plot (78.5 m2 in area) for the estimation of 6 

the number of seedlings (DBH < 2.5 cm and height < 1.3 m) and saplings (DBH = 2.5-7.5 cm) of 7 

tree species, and a 10-m radius plot (314 m2 in area) for estimation of understorey herbaceous 8 

and woody species composition and abundance. For resprouting species (i.e., Quercus sp.) our 9 

approach does not allow a clear distinction between ramets and genets. This difficulty 10 

nevertheless did not significantly affect the main conclusions of the paper on regeneration 11 

patterns, which were based more on relative differences between natural forests and plantations, 12 

and among plantation plots, than on absolute numbers of recruits. 13 

Our analyses of natural regeneration and diversity along gradients focused on the 442 14 

plots of the network in which planted pines form part of the canopy (Fig. 1). About 85% of the 15 

442 plantation plots had a canopy composed exclusively by planted pines, whereas the remaining 16 

15% of the plots had some representation of natural pine and broadleaf tree species (mainly P. 17 

sylvestris var. nevadensis, Q. ilex, Q. pyrenaica, A. opalus subsp. granatense, and S. aria). Pine 18 

density ranged from 25 to 2800 pines/ha (basal area = 0.01-77.4 m2/ha). Natural broadleaf forest 19 

plots were used only as a reference to compare mean values of regeneration and diversity with 20 

plantation plots (n = 45 for Q. ilex forests, n = 26 for deciduous forests; Fig. 1). Tree density 21 

ranged between 26 and 721 trees/ha (basal area = 0.04-18.9 m2/ha) in Q. ilex forests, and 22 

between 26 and 1038 trees/ha (basal area = 0.01-23.1 m2/ha) in deciduous forests.   23 
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Each of the 442 plantation plots was characterized with 19 topographic and climatic 1 

variables. Raster maps and plot locations (UTM coordinates) were combined to determine the 2 

values of each abiotic variable in each plot using ArcView Gis 9.2 (ESRI Inc., Redlands, USA, 3 

2000). The 19 abiotic variables were: altitude (determined from a digital elevation model with a 4 

10-m resolution); annual and seasonal (i.e., spring, summer, fall, and winter) precipitation (from 5 

Sánchez et al. 1999); annual mean, maximum, and minimum temperature (from Sánchez et al. 6 

1999); annual and seasonal (i.e., spring, summer, fall, and winter) radiation (obtained from a 7 

digital elevation model with a 10-m resolution); annual potential evapotranspiration, measured 8 

as a function of mean temperature (Thornthwaite 1948); annual water deficit, calculated as the 9 

sum of negative differences between annual precipitation and potential evapotranspiration; 10 

annual water surplus, calculated as the sum of positive differences between annual precipitation 11 

and potential evapotranspiration; drought length, taken as the number of months in which 12 

potential evapotranspiration exceeded precipitation; and weeks with snow, calculated as the 13 

average number of weeks with snow per year (period 2001-2007) using the Normalized 14 

Difference Snow Index (NDSI) from MODIS images (Salomonson and Appel 2004). The 15 

relationship among the 19 abiotic variables were explored with Principal Component Analyses 16 

(PCA). The first axis of the PCA (explaining 67.7% of the variance) was strongly correlated with 17 

altitude, precipitation, temperature, and drought indices. The second axis (explaining 15.6% of 18 

the variance) was strongly correlated with radiation variables. Therefore, we chose for our 19 

modelling analyses two variables representative of each of the two axes: altitude and annual 20 

radiation. Altitude summarizes the simultaneous variation in precipitation and temperature 21 

associated with altitudinal gradients in mountain areas, whereas annual radiation summarizes the 22 

variation in solar irradiance that occurs due to variations in slope (higher radiation at low slopes), 23 
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aspect (higher radiation in southern orientations) and altitude (higher radiations at high altitudes). 1 

We considered these two variables to represent a synthesis of the complex climatic regimes of 2 

the Sierra Nevada mountains. 3 

 For each inventory plot, we also calculated the distance to the nearest natural Q. ilex 4 

forest using a GIS and a digital vegetation map (Pérez-Raya et al. 2001). In this way, we aimed 5 

to evaluate the importance of the distance to seed sources in the re-colonization of plantations by 6 

this species, the dominant broadleaf tree at the landscape scale in Sierra Nevada.  7 

  8 

A maximum-likelihood analyses of regeneration and diversity 9 

We used likelihood methods and model selection as an alternative to traditional 10 

hypothesis testing (Johnson and Omland 2004, Canham and Uriarte 2006) for analysis of our 11 

data. Following the principles of likelihood estimation, we estimated model parameters that 12 

maximized the likelihood of observing the regeneration and diversity data measured in the field 13 

given a suite of alternate models.  14 

Regeneration models.- We conducted separate analyses of seedling density (i.e., number 15 

of seedlings [DBH < 2.5 cm and height < 1.3 m] in the 5-m radius subplots) for the 5 most 16 

common tree species (Q. ilex, P. halepensis, P. pinaster, P. nigra, and P. sylvestris). These 17 

species comprised 94.3% of the total number of seedlings found in the 442 plantation plots (n = 18 

4215 seedlings). Seedlings of deciduous native tree species were not analysed due to insufficient 19 

number. We also conducted an additional analysis for the density of Q. ilex saplings (DBH = 2.5-20 

7.5 cm). This analysis was not conducted for pine saplings because we could not distinguish 21 

which of these small pines were natural recruits and which were suppressed adult planted pines. 22 
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In fact, most pine saplings appeared in plantations with extremely high (> 2000 pines/ha) canopy 1 

densities.  2 

Our analyses of tree seedling and sapling density in plantations estimated three terms: 1) 3 

average potential regeneration (PotReg, in number of individuals per 5-m radius plot), and three 4 

sets of scalar modifiers ranging from 0 to 1 that quantify the effects on average potential 5 

regeneration of 2) local climatic conditions (expressed in terms of altitude and annual radiation), 6 

3) stand density (number of pines per ha), and 4) distance (in m) to the nearest seed source. This 7 

last scalar was considered only for analyses of Q. ilex seedlings and saplings, since seedlings of 8 

pine species never appeared in plots without conspecifics in the canopy (i.e., distance to seed 9 

sources equalled zero in all cases). Our full model has the following form: 10 

Regeneration = PotReg x Climatic effect x Density effect x Distance effect                                (1) 11 

Potential regeneration (PotReg) in this model represents the expected number of 12 

seedlings/saplings in a 5-m radius plot when the other factors are at optimal values. The climatic 13 

effect was modelled using a bivariate Gaussian function: 14 

Climatic effect = exp 
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where X10 and X20 are the altitude (A) and annual radiation (Ran) values, respectively, at which 16 

maximum potential seedling/sapling number occurs; and X1b and X2b are estimated parameters 17 

that control the breadth of the function (i.e., the variance of the normal distribution). Equation 2 18 

produces the classic Gaussian distribution of species performance along an environmental axis 19 

usually assumed to describe vegetation-environment relationships (e.g., Curtis 1959, Whittaker 20 

1975, Gauch 1982), but can also produce sigmoidal, monotonic curves within restricted ranges of 21 
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either axis. We also tested univariate functions in which terms for one of the two axes were 1 

dropped from the analysis.  2 

 The density effect was modelled using a univariate Gaussian function: 3 

Density effect = exp 
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1                                                                                  (3) 4 

where X30 represents the pine density (pines/ha) at which maximum seedling/sapling density 5 

occurs, and X3b controls the breadth of the function. The density effect was also tested using pine 6 

basal area instead of density as predictor, but in no case were the models a better fit (data not 7 

shown). 8 

We also tested a variant of the Eq. 3 in which the density effect was allowed to vary as a 9 

function of the climatic conditions of the plot. This effect is independent of the underlying direct 10 

effect of climate on potential regeneration (i.e., the climatic effect). For this, the mode term (X30) 11 

in Eq. 3 was allowed to vary as a function of climatic variables (either altitude or annual 12 

radiation): 13 

X30 = variableClimatic*X30                                                                                                        (4) 14 

If γ > 0, then maximum seedling/sapling density (i.e., the mode of the function) is reached at 15 

higher pine densities with increasing altitude or radiation. If γ < 0, then maximum 16 

seedling/sapling density is reached at lower pine densities with increasing altitude or radiation.  17 

We tested two alternative forms to model the distance effect: a Weibull dispersal function 18 

(the most used in previous studies; see Ribbens et al. 1994, Clark et al. 1998, LePage et al. 2000) 19 

and a lognormal dispersal function (suggested by Greene et al. 2004 to fit empirical data as well 20 

as or better than Weibull functions). However, because the lognormal function was in no case a 21 
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better fit to the data than the Weibull function (results not shown for simplicity), we selected the 1 

Weibull dispersal kernel to model the distance effect. The Weibull function has the form: 2 

Distance effect = exp (-α * Distanceβ)                                                                                            (5) 3 

where α controls the rate of decrease of seedling/sapling density with distance, and β controls the 4 

shape of the function. 5 

Diversity models.- We conducted separate analyses for two different diversity indexes: 6 

species richness (or species number) and the Shannon’s (H’) diversity index (a more complex 7 

index that combines species richness and relative abundance), both calculated at the 10-m radius 8 

plot scale. Models were run for the two indexes because some authors have argued that species 9 

richness and evenness may be independent, and thus should be treated separately (Weiher and 10 

Keddy 1999, Bell 2000, Ma 2005, Gónzalez-Megías 2007). Models were run for all species 11 

together and for species sub-groups, in order to explore differences among life-forms and 12 

dispersal syndromes. Plant species were classified into three different functional groups: fleshy-13 

fruited woody species (with endozoochorous dispersal), dry-fruited woody species (with 14 

dispersal syndromes other than endozoochory, mainly abiotic dispersal), and herbaceous species 15 

(Appendix A). Herbaceous species were not divided into subgroups according to dispersal 16 

syndrome because most of them (>95%) were dry-fruited and abiotically dispersed. Following 17 

the same reasoning as for regeneration, our analyses of richness and H’ index estimated three 18 

terms: 1) average potential richness (PotRich) or H’ index (PotH’), and two sets of scalar 19 

modifiers ranging from 0 to 1 that quantify the effects on PotRich/PotH’ of 2) local climatic 20 

conditions (altitude and annual radiation), and 2) plantation density (pines/ha). The climatic and 21 

density effects on diversity were modelled using the same forms as in Eqs. 2, 3 and 4. 22 

 23 
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Parameter estimation, model comparison, and model evaluation 1 

We first compared evidence for each of the three independent factors (climate, stand 2 

density, distance to seed sources) separately by comparing the Akaike Information Criterion 3 

(AIC) of their regression models to the AIC of the value of a null model (i.e., mean or intercept-4 

only model). Null models were also run for total regeneration (i.e., number of seedlings/saplings 5 

of all tree species together) in both plantation and natural forest plots, as well as for richness and 6 

H’ index in natural forest plots, in order to compare mean values of natural regeneration and 7 

diversity in pine plantations vs. natural broadleaf forests. We then tested increasingly complex 8 

models by combining sets of independent factors for which there was evidence (as measured by 9 

AIC) of univariate effects. The absolute magnitude of the differences in AIC between alternate 10 

models (ΔAIC) provides an objective measure of the strength of empirical support for the 11 

competing models. ΔAIC values were also used to derive the Akaike weights (wi) for the set of 12 

candidate models (Burnham and Anderson 2002). The Akaike weight of model i can be 13 

interpreted as the expected probability of that model being selected as best when repeated 14 

independent samples are taken from the same population. The best model is considered to be 15 

clearly superior to the other candidate models when its wi ≥ 0.9. 16 

The number of recruits (i.e., seedlings or saplings) in a 5-m radius plot was assumed to 17 

follow a zero-inflated Poisson (ZIP) distribution. By using this distribution, we modelled 18 

regeneration as the result of two distinct processes: first, the occurrence of recruitment, and 19 

second, the number of recruits conditional on the occurrence of recruitment. The ZIP function 20 

has the form: 21 

 p (Y = yi) = 














0iy,λexp
!iy

iy
iλ)pz1(

0iy,λexp)pz1(pz

                                                                                         (6) 22 
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where yi represents the number of recruits in plot i, pz represents a constant probability across the 1 

dataset of getting zero recruits (structural or supplementary zeros), and λ is the mean of the 2 

Poisson distribution (modelled here as a function of climatic, density, and distance effects). Zero-3 

inflated distributions have been recommended for the modelling of processes that, like tree 4 

recruitment, are often characterized by an excess number of zero counts that cannot be 5 

accommodated by traditional discrete probability distributions (i.e., Poisson distribution; 6 

Lambert  1992, Rathbun and Fei 2006, Fortin and DeBlois 2007). For species richness, we 7 

assumed a Poisson error structure (since the low number of zeros did not require the use of zero-8 

inflated models). H’ index values were modelled using a normal error distribution. 9 

We used simulated annealing, a global optimisation procedure, to determine the most 10 

likely parameters (i.e., the parameters that maximize the log-likelihood) given our observed data 11 

(Goffe et al. 1994). The R2 of the regression (1 – SSE/SST) of observed vs. predicted values was 12 

used as a measure of goodness of fit (SSE, sum of squares error; SST, sum of squares total). We 13 

used asymptotic two-unit support intervals to assess the strength of evidence for individual 14 

maximum likelihood parameter estimates (Edwards 1992). A support interval is defined as the 15 

range of the parameter value that results in less than a two-unit difference in AIC. It is roughly 16 

equivalent to a 95% support limit defined using a likelihood ratio test (Hilborn and Mangel 17 

1997). All analyses were performed using R v 2.5.0 (R Development Core Team 2006) and the 18 

likelihood package v 1.1 (available at http://www.ecostudies.org/lme_R_code_tutorials.html). 19 

 20 

RESULTS 21 

Regeneration 22 

The comparison of the mean models (i.e., null models) for pine plantations and natural 23 
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stands indicates that the probability of finding no regeneration was higher in plantation plots (pz 1 

= 0.54 for seedlings, pz = 0.89 for saplings) than in Q. ilex and deciduous plots (pz ~ 0.2 for 2 

seedlings, pz ~ 0.5-0.6 for saplings; Appendix B). Seedling density in plantations was on average 3 

four times lower (PotReg = 20.96 seedlings per 5-m radius plot [i.e., 0.27 seedlings/m2]; 4 

Appendix A) than in natural Q. ilex (PotReg = 81.34, 1.03 seedlings/m2) and deciduous forests 5 

(PotReg = 77.92, 1.01 seedlings/m2), whereas sapling density was half (PotReg = 6.13 saplings 6 

per 5-m radius plot [i.e., 0.08 saplings/m2]; Appendix B) that of native Q. ilex forests (PotReg = 7 

12.97, 0.16 saplings/m2) but similar to deciduous forests (PotReg = 4.83, 0.06 saplings/m2). 8 

However, seedling density values varied strongly among plantation plots along axes of altitude, 9 

radiation, stand density and, in the case of Q. ilex, also distance to seed sources, as indicated by 10 

the best models of each of the 5 species tested (wi > 0.9 for the full models; Table 1).  11 

All species showed the expected Gaussian curve in response to altitude (Fig. 2a). The 12 

lack of overlap among species in the value of the mode of the curve (parameter XA0 in Appendix 13 

C) indicates a clear segregation along this gradient (from lower to higher altitude): P. halepensis 14 

< P. pinaster < Q. ilex seedlings < Q. ilex saplings < P. nigra < P. sylvestris.  Most species also 15 

showed a Gaussian response along the radiation gradient (Fig. 2b). Only for Q. ilex did our data 16 

fail to support a radiation effect on seedling abundance. Along this abiotic gradient, however, the 17 

mode of the curve often overlapped among species, maximum densities occurring in most cases 18 

at intermediate radiation levels (XR0 ~ 4.5-5.5 GJ/m2; Appendix C).  19 

Seedling species also segregated along a gradient of stand density: P. halepensis reached 20 

maximum seedling densities at low values of pine density (0-100 pines/ha), tending to null 21 

regeneration within 1000-1500 pines/ha (Fig. 2c; Appendix C). The three remaining pine species 22 

and Q. ilex saplings had recruitment peaks (XD0 parameter) at densities between 400-900 23 
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pines/ha, tending to null regeneration within 1500-2000 pines/ha. Finally, Q. ilex seedling 1 

abundance peaked at 1100-1300 pines/ha, some seedlings recruiting at even 3000 pines/ha. 2 

Moreover, for three of the five tree species, our data supported a model in which the mode of the 3 

density effect was allowed to vary as a function of the climatic conditions of the plot (Table 1). 4 

Thus, for Q. ilex seedlings and saplings, the maximum seedling abundance occurred at lower 5 

pine densities with decreasing altitude (i.e., decreasing precipitation and increasing temperature, 6 

positive values of the γ parameter; Fig. 3a,b and Appendix C). For P. nigra and P. sylvestris, the 7 

maximum seedling abundance occurred at lower pine densities with increasing annual radiation 8 

(negative values of the γ parameter; Fig. 3c,d). 9 

In the case of Q. ilex, seedling and sapling abundance also depended heavily on the 10 

distance to the nearest seed source (i.e., natural Q. ilex forest), as indicated by the large decrease 11 

in AIC when distance effects were added to a model of climatic and density effects (Table 1). 12 

Quercus ilex recruitment in plantation plots decreased exponentially with distance to the nearest 13 

Q. ilex forest (Fig. 2d). The rate of decrease was much slower for Q. ilex seedlings than for Q. 14 

ilex saplings. Thus, whereas the predicted probability of finding a Q. ilex seedlings tended to 15 

zero within 4 km from the nearest seed source, for Q. ilex saplings it tended to zero within half 16 

the distance (2 km). 17 

 Altogether, the effects of climate, stand density, and dispersal distance determined that 18 

plantations at low (~ 1300 m a.s.l.) and middle altitudes (~ 1700 m a.s.l.) and with moderate 19 

stand densities (500-1000 pines/ha) had the highest seedling and sapling abundance, mainly of Q. 20 

ilex, but also of the four pine species (Fig. 4a,b). At these altitudinal levels, even the densest 21 

plantations had some regeneration thanks to the capacity of Q. ilex to recruit at even 3000 22 

pines/ha. On the contrary, high-altitude plantations (~ 2100 m a.s.l.) had much lower recruitment, 23 
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the seedling bank being largely dominated by P. sylvestris (Fig. 4c). At this altitude, plantations 1 

with > 2000 pines/ha were totally devoid of regeneration.  2 

 3 

Diversity 4 

The comparison of the mean models (i.e., null models) for plantations and natural stands 5 

indicated that plantations had on average lower species richness (PotRich = 13.09 in the mean 6 

model; Appendix B) than native Q. ilex (PotRich = 14.92) and deciduous forests (PotRich = 7 

17.55). However, this lower richness was due mainly to a lower number or herbaceous species, 8 

whereas the number of woody species (both fleshy-fruited and dry-fruited) was sometimes even 9 

higher in plantations than in natural forests (Appendix B). Plantations had also a lower H’ index 10 

(PotH’ = 1.47) than Q. ilex (PotH’ = 1.77) and deciduous forests (PotH’ = 1.81). However, this 11 

lower value was again due primarily to a lower H’ index of herbaceous species, whereas the H’ 12 

index for woody species (both fleshy-fruited and dry-fruited) was similar in the three forest 13 

formations (support intervals overlapped among forest formations for PotH’WFleshy and PotH’WDry; 14 

Appendix B). 15 

Our data clearly supported a strong climatic and stand density effect on species richness 16 

(wi > 0.9 for the full models; Table 2). Total species richness peaked at middle altitudes (Fig. 5a). 17 

The altitudinal effect was stronger for the subgroup of fleshy-fruited woody species, as indicated 18 

by a smaller breadth (XAb parameter) of the Gaussian curve (Appendix D). Fleshy-fruited woody 19 

species was also the only subgroup that responded to radiation, their richness decreasing roughly 20 

linearly with increasing radiation (Fig. 5b). Stand density had a strong negative effect on species 21 

richness of all groups. However, whereas the response curves of dry-fruited woody and 22 

herbaceous species peaked at zero density values, maximum richness of fleshy-fruited woody 23 



                                                                                                                   Gómez-Aparicio et al. -  
 

19

species occurred at a greater density (XD0=455.78 pines/ha; Appendix D) and decreased at a 1 

slower rate (larger XDb parameter) with increasing density (Fig. 5c).  2 

We found strong empirical support for an effect of both climate (only altitude) and stand 3 

density on the H’ index of all species together and of dry-fruited woody species (Table 2). On the 4 

contrary, the most parsimonious models for fleshy-fruited woody and herbaceous species 5 

included only a climatic effect of both altitude and annual radiation (Table 2). The response of 6 

the H’ indices to altitude was similar to that of richness estimators, with a peak at intermediate 7 

altitude and a stronger effect on the fleshy-fruited woody species subgroup (Fig. 5d). The effect 8 

of radiation on the H’ index differed for fleshy-fruited and herbaceous species: whereas fleshy-9 

fruited woody species decreased monotonically with increasing radiation (as occurred for 10 

richness), the H’ index of herbaceous species peaked at intermediate radiation (Fig. 5e). Stand 11 

density had, as for richness, a strong negative effect on the H’ index for all species grouped (Fig. 12 

5f). However, this effect was owed mainly to the effect on dry-fruited woody species, the only 13 

subgroup for which data supported a stand density effect. Our data did not support models in 14 

which the peak of maximum richness or H’ index varied depending on the climatic conditions of 15 

the site (i.e., AIC did not improve with the addition of the γ term to the model; Table 2).  16 

Altogether, the effects of climate and stand density determined that plantations at middle 17 

altitudinal levels and low tree densities (<500 pines/ha) had the highest values of richness and H’ 18 

index (Fig. 6).   19 

 20 

DISCUSSION 21 

Our results indicate that pine plantations in Mediterranean mountain landscapes had, on 22 

average, less active regeneration and lower plant species diversity than natural broadleaf forests. 23 
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However, this general negative effect of plantations needs to be qualified, since it varied strongly 1 

depending on local climatic conditions, stand density, and distance to seed sources, as well as 2 

among plant species with different life-history traits.  3 

 4 

Effects of pine plantations on tree regeneration 5 

We developed models that relate the seedling and sapling density of the most common 6 

tree species in plantation understoreys with the abiotic (climate, distance to seed sources) and 7 

biotic (stand density) characteristics of the plantation plots. For the five species tested, we found 8 

strong empirical support (wi > 0.9) for the full model that included all these factors as predictors 9 

of regeneration. Tree seedling density varied along the 3 gradients from virtually zero to values 10 

close to those found in natural forests of Sierra Nevada (~1 seedling/m2; Fig. 3). Therefore, 11 

regeneration dynamics in a particular plantation were highly dependent on the specific 12 

characteristics of the plot. 13 

Plantations at low-mid altitudes had a more diverse and abundant seedling and sapling 14 

bank than high-altitude plantations (Fig. 4). The former showed a seedling bank dominated by Q. 15 

ilex and accompanied by several pine species (P. halapensis, P. pinaster, P. nigra), whereas the 16 

latter showed a virtually monospecific seedling bank of P. sylvestris. The fact that P. sylvestris 17 

had maximum seedling density at higher altitude than the other tree species is consistent with its 18 

domination of the treeline in Sierra Nevada, where extremely low temperatures and high 19 

radiation can limit the establishment of other pine and Quercus species. Based on the species 20 

composition of the seedling bank, high-mountain plantations could be expected to exhibit 21 

autosuccessional dynamics and perpetuate as monospecific P. sylvestris plantations. On the 22 

contrary, low-medium altitude plantations could be expected to follow a successional trajectory 23 
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towards the replacement of pine forests by oak or mixed pine-oak forests, as suggested by the 1 

much larger seedling numbers of Q. ilex than of any pine species. This pine-oak replacement is 2 

in agreement with previous studies conducted in Mediterranean areas (Retana et al. 1999, 3 

Lookingbill and Zavala 2000) and other parts of the world where pines and oaks are also major 4 

structural components of forest ecosystems (Zavala et al. 2007).  5 

Stand density had a striking effect on regeneration throughout the whole altitudinal 6 

gradient. Seedling and sapling density of all 5 species peaked in the first half of the density 7 

gradient (<1500 pines/ha), tending quickly to zero above this level (Fig. 2c and 4). Only Q. ilex 8 

was able to recruit some seedlings in high-density plantations, probably as a result of its much 9 

higher shade-tolerance than pine species (Retana et al. 1999, Gómez-Aparicio et al. 2006, 10 

Niinemets and Valladares 2006). However, the transition of these seedlings to the sapling stage 11 

seems inhibited at such high densities, probably as a result of increasing light requirements with 12 

ontogeny not met in dense stands (Espelta et al. 1995). Densities over 1500 pines/ha clearly 13 

represented a biotic constraint to the recruitment process in the understorey of pine plantations. 14 

On the other extreme of the density gradient, we found that moderate plantation densities (500-15 

1000 pines/ha) promoted recruitment of most species in comparison to low or null canopy cover. 16 

This finding suggests the existence of facilitative interactions in which tree seedlings benefit 17 

from the special abiotic conditions inside the forest stand (e.g., protection from excessive 18 

evapotranspiration, extreme temperatures, high radiation or strong winds, improved soil 19 

conditions). In fact, facilitation of plant establishment by a moderate canopy cover seems to be a 20 

common process in Mediterranean forests and shrublands (Gómez-Aparicio et al. 2004, Padilla 21 

and Pugnaire 2006, Gómez-Aparicio 2008). Pinus halepensis was the only tree species that did 22 

not benefit from a moderate pine density. This result agrees with the fact that this species is 23 
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considered the most drought-tolerant pine in the Mediterranean basin (Barberó et al. 1998), and 1 

that facilitation by neighbors is usually more common in stress-intolerant than in stress-tolerant 2 

species (Liancourt et al. 2005, Michalet et al. 2006, Gómez-Aparicio et al. 2008). Overall, our 3 

analyses reveal regeneration patterns that are consistent with a shift from facilitation to 4 

competition in the overstorey-understorey interaction along the stand density gradient. Therefore, 5 

the rationale behind the establishment of pine plantations in degraded Mediterranean systems -its 6 

nurse role of native vegetation- applies only over a relatively small fraction (<1000 pines/ha) of 7 

the entire density gradient found at the landscape scale. 8 

It bears noting that we found support for the shift between facilitation and competition 9 

occurring at different stand density thresholds depending on local climate (Fig. 3). Thus, 10 

maximum recruitment of Q. ilex and mountain pines (P. nigra and P. sylvestris) occurred at 11 

lower stand densities with decreasing altitude (i.e., decreasing precipitation and increasing 12 

temperature) or increasing radiation. This result suggests that, under stressful conditions of low 13 

water availability (i.e., low altitude and high radiation) the potential benefits of the pine 14 

overstorey (e.g., amelioration of extreme climatic conditions) are quickly outweighed by the 15 

negative effects of competition for water. In fact, pine plantations have been shown to have a 16 

strong desiccating effect on soils due to high rainfall interception and water uptake (Maestre et al. 17 

2003, Bellot et al. 2004, Farley et al. 2005). However, when water availability increases (i.e., 18 

high altitude and low radiation) competition for water relaxes, the shift from facilitation to 19 

competition occurs at higher stand densities, and net facilitation is found over a larger fraction of 20 

the density gradient. This line of reasoning is also supported by the fact that P. halepensis and P. 21 

pinaster (the two most drought-tolerant pines) were the only seedling species for which optimal 22 

stand density did not vary with climate, probably due to their higher ability to tolerate the 23 
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negative effects of competition for water with canopy trees. The verification of this mechanistic 1 

explanation requires, however, an experimental study that analyse how soil characteristics, 2 

microclimate, and seedling performance vary along gradients of pine densities. 3 

Our study clearly indicates a prominent importance of distance to seed sources for the 4 

colonization of plantations by Q. ilex. Thus, seedling abundance diminished in 50% within the 5 

first 250 m from the nearest Q. ilex forest, and by 80% within 1 km (Fig. 2d). However, some 6 

seedlings were found at distances as far as 4 km from the nearest seed source, likely as a result of 7 

long-distance dispersal events. In fact, 4 km coincides with the maximum flight distance reported 8 

for jays, one of the main dispersers of Quercus sp. in Europe (European jay, Garrulus glandarius) 9 

and North America (blue jay, Cyanocitta cristata L.)(Bossema 1979, Johnson and Adkisson 10 

1985). Yet, the rate of long-distance dispersal events does not seem to be sufficient to maintain a 11 

sapling bank of Q. ilex in such remote patches, since the probability of sapling recruitment 12 

tended to zero within shorter distance (2 km). In heterogeneous Mediterranean landscapes, jays 13 

move acorns nonrandomly, avoiding some patches (e.g., shrublands and grasslands) and moving 14 

most acorns to pine stands, which in turn are high-quality habitats for emergence and survival of 15 

Q. ilex seedlings (Gómez 2003, 2004). This effective directed dispersal, together with the 16 

abundance of Q. ilex forests at the landscape scale (>70% of the 442 plantation plots were at ≤2 17 

km from the nearest Q. ilex fragment), may be crucial for the successional dynamics towards oak 18 

forests that many pine plantations appear to undergo in Sierra Nevada. 19 

 20 

Effects of plantations on the diversity of vascular plants 21 

Pine plantations had on average lower total plant richness and H’ index values than native 22 

stands, especially when compared with deciduous broadleaf forests. However, in a detailed 23 
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analysis, this negative effect appeared only for herbaceous species, and not for woody species. 1 

The negative effect on herbaceous species is probably a result of the much higher tree density of 2 

plantations in comparison to native fragments, which in turn implies lower understorey light 3 

levels usually responsible of low herbaceous richness and cover (Harrington and Edwards 1999, 4 

Thomas et al. 1999). In any case, pine plantations were not “biological deserts”, and several 5 

woody and herbaceous species were able to survive within these forest stands. However, plant 6 

diversity was very heterogeneous among plantation plots, depending on their local climatic and 7 

density characteristics.  8 

Both species richness and H’ index values showed a hump-shaped pattern distribution 9 

along the altitudinal gradient (Fig. 5a,d). This pattern seems to be the most common when entire 10 

altitudinal gradients are sampled (as in this study) due to both higher productivity and lower 11 

human impact at mid-altitudinal habitats (Rahbek 2005, Nogués-Bravo et al. 2008). Radiation 12 

had a more modest effect than altitude on both richness and H’ index values, its effect being 13 

restricted primarily to fleshy-fruited woody species. In fact, this group, much less abundant than 14 

dry-fruited and herbaceous species in all cases, was also the most affected by climatic gradients, 15 

being restricted largely to areas at intermediate altitudes and with low radiation (i.e., north-facing 16 

slopes, valley floors). Therefore, mid-altitude plantations had not only higher species richness 17 

and evenness, but also higher relative abundance of fleshy-fruited woody species, than did 18 

plantations at the two extremes of the altitude gradient.  19 

Stand density had a strong effect on total species richness and evenness, which decreased 20 

monotonically along the density gradient (Fig. 6). The impoverished plant diversity of high-21 

density plantations was presumably due to higher seed and establishment limitation than in low-22 

density plantations. On the one hand, bird abundance and richness is in general negatively 23 
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affected by high canopy densities (especially for jays), thereby reducing the seed flow entering 1 

plantations (Vallauri et al. 2002, De la Montaña et al. 2006). A very dense stand structure is also 2 

probably a direct obstacle to seed dispersal by wind. On the other hand, thinning experiments 3 

have shown species richness to response positively to tree removal due to competition release 4 

and an increased availability of resources (light, water, and nutrients), allowing a greater number 5 

of understorey species to persist (Thomas et al. 1999, Cummings et al. 2007). It is likely that 6 

native species are not adapted to establish in such competitive environments, since natural forests 7 

of the area rarely exceed 1000 trees/ha.  8 

When species subgroups were considered, richness of dry-fruited and herbaceous species 9 

followed a variation pattern along the density gradient similar to that of total species richness - 10 

that is, a monotonically decrease with increasing stand density. On the contrary, richness of 11 

fleshy-fruited bird-dispersed species peaked at a moderate tree density (about 500 pines/ha) and 12 

was less negatively affected by stand density than in the other subgroups (i.e., richness at 13 

maximum stand density reduced only to about 40% of potential, instead of to 20% as in the other 14 

subgroups; Fig. 5b). These among-group differences might be influenced by the relationship 15 

between dispersal mode and successional status (Huston and Smith 1987). A large number of 16 

Mediterranean fleshy-fruited woody species are late-successional shade-tolerant species, whereas 17 

pioneer woody species (e.g., Cistaceae, Labiatae, Leguminosae) usually have dry fruits (Herrera 18 

1995). Therefore, fleshy-fruited species will have a comparatively higher probability of 19 

persisting in the dark understorey of dense plantations than light-demanding dry-fruited woody 20 

and herbaceous species. Because shade-tolerance is negatively correlated with drought-tolerance 21 

(Niinemets and Valladares 2007), fleshy-fruited species will also benefit more than any other 22 

group from the mild microclimate generated by a moderate canopy density.  23 
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 1 

Implications for management of pine plantations in Mediterranean landscapes 2 

In areas such as the Mediterranean Basin, where millions of hectares are covered with 3 

plantations, there is an increasing concern to reconvert them into more natural forests with active 4 

regeneration, high biodiversity levels, and high resilience to disturbances such as pests and fires 5 

(Maestre and Cortina 2004, Lamb et al. 2005, Vallejo et al. 2006). Our study indicates that, 6 

because regeneration dynamics and plant diversity of pine plantations in heterogeneous 7 

Mediterranean mountains varies broadly along abiotic and biotic gradients, plantations at 8 

different points along these gradients will require different management strategies. 9 

Active management will be urgently required in high-density plantations (>1500 pines/ha) 10 

with arrested succession, where excessive pine density causes a net overstorey-understorey 11 

competitive interaction and limits seed inputs from both local (due to a poor understorey) and 12 

external sources. Thinning should be prescribed to allow the entrance of light, seeds, and 13 

dispersers, redirecting plantations towards more natural densities where facilitative interactions 14 

predominate. Densities of 500-1000 pines/ha seem to offer the best compromise between high 15 

seedling and sapling densities of most tree species, and high diversity levels of both woody and 16 

herbaceous species. However, thinning levels should be adjusted to the climatic conditions of the 17 

site. More intense thinning will be necessary under more stressful climatic conditions, but 18 

consistently leaving a residual density (at least 500 pines/ha) that minimizes the costs of negative 19 

interactions while maximizing the benefits of habitat amelioration by canopy trees.  20 

On the other hand, passive management might be recommended for plantations with low 21 

and moderate stand density, since they can be considered transient systems with active 22 

successional dynamics. When at low and mid altitudes, these plantations would be expected to 23 
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change towards oak or pine-oak forests, with the coexistence of these two genera being 1 

determined by the stress level (oak dominance being promoted at mesic sites due to greater 2 

shade-tolerance) and the frequency of disturbance (disturbance promoting pine persistence; 3 

Zavala et al. 2000, Zavala and Zea 2004). When at high altitudes, these plantations would be 4 

expected to persist as pine forests dominated by P. sylvestris, the natural forest formations in the 5 

Sierra Nevada treeline. 6 

Management strategies should also take into account that spontaneous colonization of a 7 

plantation depends heavily on its distance to natural forest fragments that act as seed sources, as 8 

well as on the dispersal ability of the species inhabiting such forests. Thus, among the pool of 9 

native tree species available at the landscape scale in Sierra Nevada, Q. ilex was the only 10 

broadleaf species abundantly found in plantation understoreys. Other species such as Q. 11 

pyrenaica, A. opalus subsp. granatense, or S. aria were basically absent, probably due to seed 12 

limitation derived from their low regional abundance (most plantations being too far from seed 13 

sources of these species) and/or less effective dispersal systems (i.e., wind dispersal in Acer). In 14 

fact, previous studies indicate that, when seeds are available, all these tree species have high 15 

probability of seedling and sapling establishment under moderate shade (as that found in many 16 

pine plantations; Gómez-Aparicio et al. 2005, Puerta-Piñero et al. 2007, Mendoza 2008). 17 

Enrichment planting will therefore be necessary to increase the diversity and abundance of the 18 

seedling bank of pine plantations and recover the mixed natural forests of Sierra Nevada, where 19 

Pinus, Quercus, Acer and Sorbus species coexist. Planting will be especially needed in 20 

plantations farther than 2 km from the nearest Q. ilex forest, where even successful colonization 21 

of Q. ilex is unlikely. Clearly, seed availability is a major limiting factor in most restoration 22 

activities (Young et al. 2001), making seed dispersal a key topic in the theoretical grounds of 23 
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restoration ecology (Howe and Miriti 2004) and enrichment planting a key activity in restoration 1 

practice (e.g., Gardiner et al. 2004, McCament and McCarthy 2005).  2 

Because the ecological characteristics of plantations are strongly heterogeneous at the 3 

landscape scale, their use as restoration tools could fail if we do not incorporate the sources of 4 

such variability into management planning. We are confident that the results presented in this 5 

study will contribute to avoid oversimplification and promote the perception of plantations as 6 

dynamic systems where successional trajectories and diversity levels are determined by abiotic 7 

constraints, complex balances of competitive and facilitative interactions, the spatial 8 

configuration of native seed sources, and species life-history traits (dispersal system, shade and 9 

drought tolerance). 10 
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TABLE 1. Comparison of the alternate models of regeneration (i.e., seedling and sapling density) 

for the 5 most common tree species in plantation understoreys (n = 442 plots). QUILSDL, Q. ilex 

seedlings; QUILSAP, saplings; PIHASDL, P. halepensis seedlings; PIPISDL, P. pinaster seedlings, 

PINISDL, P. nigra seedlings; PISISDL, P. sylvestris seedlings). The best model (lowest AIC, 

ΔAIC=0) is indicated in boldface type.   

 

   Notes: NP is the total number of parameters in the best model; ωi is the Akaike weight for each competing model; and 
R2 = 1 – SSE/SST for the relationship between predicted and observed growth. The Climatic axes column indicates 
whether the best model incorporates terms for effects of altitude (A), annual radiation (R), or both. The γ column 
indicates whether (Y, yes; N, no) the best model also included a term that allows sensitivity to pine density to vary with 
climatic conditions (either altitude [A] or annual radiation [R]). 

Species Model AICc ΔAICc ωi Climatic 
axes 

γ NP R2 

QUILSDL Full 3841.05      0.00   1.00E+00 A Y [A] 11 0.25 
 Density + Climatic 4151.06  310.01   4.81E-68   9  
 Dispersal + Climatic 4074.43  233.38   2.10E-51   8  
 Dispersal + Density 4246.81  405.76   7.77E-89   7  
 Climatic  4257.60  416.55   3.53E-91   6  
 Density 4860.90 1019.85   3.49E-222   4  
 Dispersal 4419.10   578.05   3.01E-126   4  
 Null 5020.09 1179.04   9.43E-257   2  
QUILSAP Full  437.14      0.00 9.04E-01 A, R Y [A] 11 0.20 
 Density + Climatic  444.19       7.05 2.66E-02   9  
 Dispersal + Climatic  442.32       5.18 6.78E-02   8  
 Dispersal + Density  451.02     13.88 8.75E-04   7  
 Climatic  452.16     15.02 4.95E-04   6  
 Density  475.06     37.92 5.27E-09   4  
 Dispersal  454.70     17.56 1.39E-04   4  
 Null  486.74     49.60 1.53E-11   2  
PIHASDL Full  301.54       0.00  1.00E+00 A, R N 8 0.30 
 Climatic  358.68      57.14 3.91E-13   6  
 Density  362.98     61.44 4.55E-14   4  
 Null  394.51     92.97 6.48E-21   2  
PIPISDL Full  963.20       0.00  1.00E+00 A, R N 8 0.37 
 Climatic 1074.45     111.3 6.96E-25   6  
 Density 1136.32     173.1 2.56E-38   4  
 Null 1408.12     444.9 2.44E-97   2  
PINISDL Full  238.45       0.00  1.00E+00 A, R Y [R] 9 0.79 
 Climatic  271.34     32.89 7.21E-08   6  
 Density     343.91   105.46 1.26E-23   4  
 Null     376.41   137.96 1.10E-30   2  
PISISDL Full     808.86       0.00  1.00E+00 A, R Y [R] 9 0.48 
 Climatic     952.97   144.11 5.09E-32   6  
 Density 1068.00   259.14 5.35E-57   4  
 Null 1169.99   361.13 3.82E-79   2  
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TABLE 2. Comparison of the alternate models of species richness and biodiversity (Shannon’s 

index, H’) in plantation understoreys (n = 442 plots). Models were run for all species together 

and separated into three subgroups (fleshy-fruited woody species, dry-fruited woody species, and 

herbaceous species). The best model (lowest AIC, ΔAIC=0) is indicated in boldface type.  

 
 

   Notes: NP is the total number of parameters in the best model; ωi is the Akaike weight for each competing model; 
and R2 = 1 – SSE/SST for the relationship between predicted and observed growth. The Climatic axes column 
indicates whether the best model incorporates terms for effects of altitude (A), annual radiation (R), or both. The γ 
column indicates whether (Y, yes; N, no) the best model also includes a term that allows sensitivity to pine density 
to vary with climatic conditions (either altitude [A] or annual radiation [R]). 

Variable Model AICc ΔAICc ωi Climatic 
axes 

γ NP R2 

RichnessAll Full 2675.23    0.00 1.00E+00 A, R N 7 0.36 
 Climatic 2869.33 194.10 7.11E-43   5  
 Density 2848.58 173.35 2.28E-38   3  
 Null 3091.04 415.81 5.11E-91   1  
RichnessWFleshy Full 1489.24    0.00 9.84E-01 A, R N 7 0.31 
 Climatic 1497.44     8.21 1.63E-02   5  
 Density 1774.51 285.27 1.11E-62   3  
 Null 1810.92 321.68 1.38E-70   1  
RichnessWDry Full 2106.08    0.00 1.00E+00 A N 6 0.31 
 Climatic 2216.58 110.51 1.01E-24   3  
 Density 2178.37   72.29 2.01E-16   3  
 Null 2582.01 475.93  4.50E-104   1  
Richness Herbaceous Full 2071.28    0.00 1.00E+00 A N 6 0.14 
 Climatic 2147.83   76.55 2.38E-17   3  
 Density 2105.16   33.88 4.40E-08   3  
 Null 2176.92 105.64 1.15E-23   1  
H’All Full   437.26     0.00 1.00E+00 A N 6 0.37 
 Climatic   575.97 138.71 7.58E-31   4  
 Density   489.62   52.36 4.27E-12   4  
 Null   623.24 185.98 4.12E-41   2  
H’WFleshy Climatic   380.50     0.00 1.00E+00 A, R  6 0.16 
 Density   423.01   42.51 5.87E-10   4  
 Null   422.19   41.69 8.85E-10   2  
H’WDry Full   467.26     0.00 1.00E+00 A N 6 0.31 
 Climatic   569.08 101.82 7.76E-23   6  
 Density   518.07   50.81 9.26E-12   4  
 Null   625.44 158.19 4.48E-35   2  
H’Herbaceous Climatic   656.79     0.00 1.00E+00 A, R  6 0.08 
 Density   683.94   27.15 1.27E-06   4  
 Null   683.32   26.52 1.73E-06   2  
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FIGURE CAPTIONS 

FIG 1. Maps showing the situation of the study area (the Sierra Nevada mountains in southern 

Spain) and the location of the forest inventory plots (n = 442 for pine plantations, n = 45 for 

natural Quercus ilex forests, n = 26 for natural deciduous forests). All plots where situated within 

the Sierra Nevada National Park (highest level of protection), which is sourrounded by an area of 

similar size (~86000 ha) protected as Natural Park. 

 

FIG 2. Predicted variation in potential regeneration along gradients of a) altitude, b) annual 

radiation, c) stand density, and d) distance to the nearest Quercus ilex forest. See Appendix C for 

the estimated parameters of the corresponding functions. When the most parsimonious model 

allowed the stand density effect to vary as a function of climate, potential regeneration along the 

density gradient is represented at 1700 m a.s.l. of altitude and 5 GJ/m2 of annual radiation (mean 

values for the data set).  

 

FIG 3. Effect of climatic variables (altitude and annual radiation) on optimal stand densities for 

potential regeneration of a) Quercus ilex seedlings, b) Quercus ilex saplings, c) Pinus nigra 

seedlings, and d) Pinus sylvestris seedlings. Only those tree species for which the most 

parsimonious model included such an effect (Table 1) are represented. The arrows indicate the 

direction of displacement of optimal stand densities with increasing abiotic stress (i.e., lower 

altitude and higher radiation). See Appendix C for the estimated parameters of the corresponding 

Gaussian functions. 

 

FIG 4. Effect of stand density on regeneration (seedlings/saplings per m2) at three different 
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altitudes: a) low = 1300 m, b) medium = 1700 m, and c) high = 2100 m. Low and high altitude 

represent the 10 and 90 quartiles of the distribution for all plantation plots. Regeneration values 

are calculated at mean radiation levels (5 GJ/m2) and optimal dispersal distance (i.e., zero m 

from seed sources, the distance effect equals 1).  

 

FIG 5. Predicted variation in potential richness (species number) and Shannon’s (H’) diversity 

index along gradients of altitude, annual radiation, and stand density. See Appendix D for the 

estimated parameters of the corresponding Gaussian functions. 

 

FIG 6. Effect of stand density on richness (species number) and Shannon’s (H’) diversity index 

at different altitudinal levels (low = 1300 m, medium = 1700 m, high = 2100 m). Radiation was 

fixed at 5 GJ/m2. Straight lines denote no effect of stand density on H’ index values, and are 

included only for comparative purposes. 
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FIG 1. 
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FIG 2. 
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FIG 3. 
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FIG 4. 
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FIG 5. 
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FIG 6. 
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