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ABSTRACT 1 

BACKGROUND: Metribuzin is a widely used herbicide that has been identified as a 2 

groundwater contaminant. In this study, slow release formulations of metribuzin were 3 

designed by encapsulating the active ingredient in phosphatidylcholine (PC) vesicles 4 

and adsorbing the vesicles onto montmorillonite.  5 

RESULTS: The maximum active ingredient content in the slow release formulations 6 

was 24.6% (w:w). Infrared spectroscopy results revealed that the hydrophobic 7 

interactions between metribuzin and the alkyl chains on PC were necessary for 8 

encapsulation. In addition, water bridges connecting the herbicide and the PC 9 

headgroup enhanced the solubility of metribuzin in PC. Adsorption experiments in soils 10 

were performed to evaluate the relationship between sorption and leaching. Funnel 11 

experiments in a sandy soil revealed that the herbicide was not irreversibly retained in 12 

the formulation matrix. In soil column experiments, PC-clay formulations enhanced 13 

herbicide accumulation and biological activity in the top soil layer relative to a 14 

commercial formulation. PC-clay formulations also reduced the dissipation of 15 

metribuzin by a factor of 1.6-2.5.  16 

CONCLUSION: A reduction in the recommended dose of metribuzin can be achieved 17 

by employing PC-clay formulations, which reduces the environmental risk associated 18 

with herbicide applications. Moreover, PC and montmorillonite are non-toxic and do 19 

not negatively affect the environment.  20 

 21 

 22 
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Introduction 1 

Surfactants are widely used in agricultural formulations of herbicides to improve the 2 

physical properties of the formulations. Surfactants act as a spreader, sticker, 3 

antifoamer, and compatibility agents. Thus, surfactants enhance the performance of the 4 

herbicide by facilitating penetration into the cuticle or by achieving a uniform soil 5 

application. Specifically, soil applications are improved by introducing water repellent 6 

surfactants into the formulation. 
1,2

 7 

Research on surfactants has been focused on slow release formulations of herbicides. In 8 

general, the immediate release of herbicides from conventional formulations results in 9 

the loss of the active ingredient by transfer and degradation processes, which decreases 10 

the effectiveness of herbicide. On the contrary, slow release formulations are aimed at 11 

reducing active ingredient losses and avoiding repetitive applications or larger dosages. 12 

Thus, slow release formulations reduce the risk of water and soil pollution while 13 

maintaining the desired effect.  14 

A new approach in the design of slow release formulations has been recently developed. 15 

These novel formulations consist of an anionic herbicide in a cationic micelle or vesicle, 16 

which is formed in solution by the surfactant and adsorbed onto a negatively charged 17 

clay mineral. 
3-6

 Due to the toxicity of some cationic surfactants, current research is 18 

focused on the use of more environmentally friendly substances. 
7,8

 In the current study, 19 

the non-toxic surfactant PC was used in combination with montmorillonite for the 20 

preparation of slow release formulations of metribuzin. These formulants are EPA 21 

approved substances with low toxicological risk.  22 

In a previous study, we optimized the adsorption of PC on montmorillonite for the 23 

preparation of slow release herbicide formulations. 
9
 This system was proved to be very 24 

effective at reducing the leaching of poorly water soluble herbicides such as atrazine 25 
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and alachlor. 
10

 In this study, a similar approach was evaluated with metribuzin, a highly 1 

water soluble herbicide. We expected that metribuzin would be poorly encapsulated in 2 

PC vesicles due to its high water solubility. However, the presence of polar groups on 3 

the herbicide can interact with the PC headgroup, which enhances the solubility of the 4 

herbicide in the vesicles and increases the concentration of the active ingredient in the 5 

formulation.  6 

Metribuzin (4-amino-6-ter-butyl-3-methylthio-1,2,4-triazin-5(4H)-one) is a herbicide 7 

used to control weeds in soybeans, potatoes, tomatoes and other crops. Due to its high 8 

water solubility (1050 mg L
-1

), metribuzin has been detected in surface and ground 9 

waters. 
11,12

 Dissipation is rapid, and the half-life of metribuzin ranges from 11 to 46 10 

days in laboratory and field studies. 
13

 Polymer-based 
14,15

 and clay-gel based 11 

formulations 
16,17

 have been designed to obtain slow release formulations of metribuzin. 12 

PC-clay formulations of metribuzin were prepared by inclusion of the active ingredient 13 

into PC vesicles and adsorbing the vesicles onto montmorillonite. Adsorbed and 14 

encapsulated metribuzin was characterised by infrared spectroscopy to determine the 15 

mechanisms of retention in the PC-clay matrix. Furthermore, the leaching and 16 

dissipation of PC-clay formulations were evaluated in soils with different physical-17 

chemical properties, and the results were compared to those of commercial 18 

formulations. Previously, soil adsorption-desorption experiments were conducted to 19 

determine the factors that affect the behavior of metribuzin in soils and to relate the 20 

efficiency of the formulations to natural soil processes.  21 

 22 

1. Materials and methods 23 

1.1. Materials 24 
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Wyoming Na-montmorillonite (SWy-2) was obtained from the Source Clays Repository 1 

of The Clay Minerals Society (Columbia, MO) (cation exchange capacity 0.8 mmol/g). 2 

Phosphatidylcholine (SPC-3) (74% distearoyl-PC and 26% 1-palmitoyl-2stearoyl-PC) 3 

was supplied by Lipoid GmbH (Ludwigshafen, Germany). HPLC grade–methanol was 4 

purchased from Sigma-Aldrich (Sigma Chemical Co., St Louis, MO), and HPLC grade 5 

-acetonitrile was obtained from Teknokroma S.A. (Barcelona, Spain). Metribuzin was 6 

purchased from Sigma-Aldrich Co. The commercial formulation of metribuzin (Eclipse 7 

70, 70% w:w) was supplied by Comercial Química Masso (Barcelona, Spain). Figure 1 8 

shows the structural formulas of PC and metribuzin. 9 

All soil samples were obtained from the soil surface (0-20 cm) and passed through a 2 10 

mm sieve before use. The soils were classified as Aquic Haploxeralfs (P44 soil), 11 

Chromic Haploxererts (TM soil), Alfic Dystrict Eutrochrepts (LM soil) and Typic 12 

Xeropsamments (AR soil). Soils were analysed for their physical-chemical and 13 

microbiological properties (Table 1) according to the methods described by Undabeytia 14 

et al. 
18

 and Sopeña et al. 
19

. A semiquantitative estimation of the clay mineralogy was 15 

performed using the methodology proposed by Stokke & Carson 
20

 (Table 2). 16 

 17 

2.2 Preparation of herbicide-PC-clay formulations 18 

PC formulations of metribuzin were prepared by dissolving the herbicide in a solution 19 

of 6 mM PC via sonication and further addition to montmorillonite. The added 20 

concentration of the herbicide was 19 mM whereas the clay concentrations were 1.6 and 21 

5 g/L. After shaking for 24 h the suspensions were centrifuged at 20000 g for 10 min, 22 

and the supernatant was analysed for the remaining herbicide. Moreover, the pellet 23 

obtained from centrifugation was freeze-dried. A nomenclature for PC-clay 24 

formulations was introduced, where the first letters indicated the herbicide (MTZ), the 25 
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first number denoted the initial herbicide concentration and the second number 1 

represented the clay concentration. The concentration of active ingredient in MTZ19/5 2 

and MTZ19/1.6 were 16.6 and 24.8%, respectively (w: w). 3 

 4 

2.3 Herbicide analysis 5 

Metribuzin was analyzed by HPLC (Shimadzu Model 10A) equipped with a PDA 6 

detector. The reverse phase column was a 15 cm Kromasil 100 C18. The flow rate was 7 

1.0 mL min
-1

. The mobile phase was 60% acetonitrile and 40%: water. The wavelength 8 

was set at 230 nm, and the retention time of metribuzin was 7.5 min. 9 

 10 

2.4. Fourier Transform Infrared spectroscopy 11 

Fourier Transform Infrared (FTIR) spectra of the herbicide, PC-clay complex and 12 

herbicide formulations were recorded in KBr pellets (2 wt.% sample) using a Nicolet 13 

spectrometer (20SXB) with a DTGS detector, in the range of 4000-400 cm
-1

. Resolution 14 

was of 2 cm
-1

. 300 scans were accumulated for improving the signal to noise ratio in the 15 

spectra.  16 

 17 

2.5. Adsorption-desorption of metribuzin 18 

Metribuzin sorption experiments were performed in triplicate by mixing 10 g of the 19 

soils with 10 mL of herbicide solutions ranging up to 15 mg/L. Preliminary kinetic 20 

studies indicated that sorption reached equilibrium after 24 h; thus, the suspensions 21 

were shaken for 24 h at 20ºC. Subsequently, the suspensions were centrifuged and three 22 
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successive desorption steps were performed by replacing half of the supernatant with 1 

water, re-equilibrating for 24 h and repeating the same procedure twice. The 2 

concentration of herbicide in all of the supernatants was analysed.  3 

Sorption-desorption isotherms were fitted to the logarithmic form of the Freundlich 4 

equation: 5 

log Cs = log Kf + n log Ce 6 

were Cs (µmol kg
-1

) is the amount of adsorbed herbicide, Ce (µmol L
-1

) is the 7 

equilibrium concentration of herbicide (µmol L
-1

), and Kf and n are constants that 8 

characterise the relative sorption capacity and sorption intensity, respectively. The 9 

normalised distribution coefficient (Koc) of organic carbon (OC) was calculated from the 10 

Kf values (Koc=Kf/OC*100). The hysteresis coefficients (H) for the sorption-desorption 11 

isotherms were calculated according to the following equation: 12 

H = na/nd 13 

where na and nd are the Freundlich n constants obtained from the sorption and 14 

desorption isotherms, respectively.  15 

 16 

2.6. Release of herbicide 17 

The release of the herbicide from PC-clay and commercial formulations was conducted 18 

in triplicate by using a Büchner funnels. In this procedure 98.9 g of the AR soil was 19 

added to a Büchner funnel (9.5 cm internal diameter) that had a paper filter on the 20 

bottom. The soil layer was homogeneized to a 0.5 cm height. The soil surface was 21 

uniformly sprayed with the different herbicide formulations at a rate of 1 kg ha
-1

. The 22 

soil layer in each funnel was irrigated 45 times with 15 mL, each washing 23 

corresponding to 2.12 mm rain at 20 minutes intervals. The volume eluted after each 24 
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irrigation was collected, and the concentration of herbicide in the eluent was 1 

determined.  2 

 3 

2.7. Soil columns experiments 4 

Metacrylate tubes with a diameter of 3.0 cm were cut into 4- and 8-cm sections, and 5 

three units of 4 cm were glued together with a 8 cm unit at one end to construct a 20 cm 6 

column. The column was covered at the end opposite to the 8 cm unit with 1 mm nylon 7 

screen padded with a thin layer of glass wool (0.5 g) to hold the soil firmly in the 8 

column. AR (0.160 kg) or P44 (0.164 kg) soils were packed from the top of the column 9 

to create a 16 cm soil column that could be readily separated into 4 cm segments. The 10 

pore volume of AR and P44 was 38 and 44 mL, respectively. 11 

Suspensions of commercial and PC-clay formulations (3 mL) were sprayed uniformly 12 

with a proper design syringe onto the soil surface at a rate of 1 kg a.i. ha
-1

, and each soil 13 

column experiment was performed in triplicate. Distilled water equivalent to 70 mm of 14 

rain (50 mL) was added to the top of the column in two portions, and the soil was 15 

allowed to equilibrate for 24 h after each addition. The leachates were collected, and the 16 

concentration of the herbicide in the eluent was analysed. 17 

Each soil column was separated into 4 segments. The amount of herbicide remaining in 18 

each segment was extracted in triplicate by shaking 5 g of soil with 15 mL of methanol 19 

for 24 h. The suspensions were centrifuged and the herbicide was analysed by HPLC. 20 

A bioassay was used to calculate the residual activity of the herbicides throughout the 21 

first two upper rings of the soil column. Six beakers containing 15 g of soil of each 22 

segment for each formulation were planted with 7 seeds of Setaria viridis and were 23 
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irrigated daily for 2 weeks. The bioactivity of the formulations was determined by 1 

measuring the reduction in fresh weight per shoot of S. Viridis with respect to a control. 2 

 3 

2.8. Dissipation studies 4 

200 g of each soil was incubated in triplicate at a rate of 1 kg a.i. ha
-1

 with the 5 

commercial formulation and MTZ19/1.6. Water was periodically added to the pots to 6 

achieve a moisture content that was 66% of field capacity, and the temperature was 7 

maintained at 20ºC. 5 g of soil was sampled from each pot at several time intervals, 8 

extracted with methanol and analysed by HPLC. The dissipation of herbicide in the 9 

soils was fitted to a first-order equation, and the time required for 50% dissipation 10 

(DT50) was calculated.  11 

 12 

2.9. Data analysis 13 

One-way ANOVA was used to analyse the differences in leaching and herbicidal 14 

activity between formulations and soil depths. The means were compared by conducting 15 

a Student´s t-test (α=0.05), in SAS software (SAS Institute, 2008).  16 

 17 

2. Results and discussion 18 

2.1. Characterization of the formulations 19 

The formulations were examined through infrared spectroscopy to elucidate the 20 

interactions between metribuzin and the matrix, which may affect the release rate of the 21 

herbicide.  22 
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As shown in Fig. 2a, the infrared spectrum of PC adsorbed onto clay showed absorption 1 

bands at 1737 and 1643 cm
-1

 , which were attributed to the stretching of nonhydrogen- 2 

and hydrogen-bonded C=O groups, respectively. The band at 3437 cm
-1

 was assigned to 3 

the OH stretching vibration of water bound to the PC headgroup, whereas the band at 4 

1245 cm
-1

 was assigned to the asymmetric stretching vibration of PO2
-
. Moreover, the 5 

band at 1473 cm
-1

 was attributed to CH2 scissoring, and the bands at 2850 and 2920 cm
-

6 

1
 were attributed to symmetric and asymmetric CH2 stretching vibrations, respectively.

10
  7 

The IR spectra of metribuzin adsorbed onto the PC-clay complex revealed new features 8 

(Fig. 2b). The intensity of both absorption bands at 2920 and 2850 cm
-1

 notably 9 

decreased whereas the absorption due to CH2 scissoring was lowered by 6 cm
-1

 , which 10 

indicated that the herbicide interacts strongly with the hydrophobic chains of PC.  11 

In the spectra of adsorbed metribuzin, the band at 1676 cm
-1

 that corresponded to the 12 

carbonyl (amide) of the herbicide appeared as well as a small shoulder assigned to the 13 

NH2 deformation band at 1632 cm
-1

, which was shifted from its original value (1617 14 

cm
-1

 ) in pristine metribuzin (Fig. 2c). This shift indicated involvement of NH2 groups 15 

in hydrogen bonding, so that the frequency for its resonance increased. The band at 16 

1245 cm
-1

 in the PC-clay complex is very sensitive to the hydration of PC. 
21

 In the 17 

spectra of adsorbed metribuzin, a decrease in this band was observed, indicating that 18 

this functional group interacted with the herbicide (5 cm
-1

). A similar phenomenon was 19 

also observed for the band at 3437 cm
-1

 in the PC-clay complex. Therefore, the 20 

incorporation of the herbicide perturbs the PC-clay system by replacing a fraction of 21 

water bound to the PC headgroup with metribuzin, which can form water bridges with 22 

the PC headgroup. 23 

 24 

2.2. Adsorption-desorption of metribuzin 25 
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Metribuzin sorption on soils was greatest on LM soil, followed by TM, ≈P44 and AR 1 

(Fig. 3). The Koc values of the soils were not related to the general trend in metribuzin 2 

sorption (Table 3). Daniel et al. 
22

 conducted a multiple regression analysis and found 3 

that sorption of metribuzin was related to the organic carbon content of the soil. Due to 4 

its sandy texture, potential sorption sites of AR soil are exclusively in organic matter. 5 

Alternatively, the high degree of sorption and the low value of Koc in other soils ( 6 

relative to the Koc of AR soil) indicated that the clay mineral fraction controls 7 

metribuzin sorption. This result is in agreement with previous studies, which have 8 

shown that the mineral phase of soil plays an important role in the sorption of triazine 9 

herbicides at high clay/organic carbon ratios. 
23-25

 Herbicides belonging to the triazine 10 

family are adsorbed onto clay minerals through hydrophobic interactions with the 11 

siloxane surface. These interactions are favourable in swelling minerals when the 12 

interlayer space is saturated with common soil elements such as K, whereas adsorbed 13 

Ca and Mg decrease herbicide-clay interactions. This is due to the lower hydration of 14 

the cation to which the herbicide is complexed 
26

 or to the higher partial dehydration of 15 

the herbicide molecules 
25

; therefore increasing the contacts of the herbicide in the 16 

interlayer space with the two clay layers. Nevertheless, triazines are readily adsorbed on 17 

montmorillonites saturated with Ca. 
27

 On the contrary, the affinity of metribuzin is 18 

notably lower on kaolinite than on montmorillonite.
28

 Thus, metribuzin sorption on P44, 19 

LM and TM soils is related to the content and type of clay mineral present in the soil 20 

(Table 2). This information is frequently omitted when correlating and predicting 21 

metribuzin sorption, and can explain discrepancies in these types of studies. For 22 

example, Harper 
29

 and Kah and Brown 
30

 determined that metribuzin adsorption was 23 

related to the pH and the concentration of organic matter, and clay. Barriuso & Calvet 
31

 24 

concluded that the clay content was the best predictor for the sorption of metribuzin. 25 
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However, Peek and Appleby 
32

 did not found any correlation between the soil properties 1 

and metribuzin sorption. 2 

The highest adsorption of metribuzin was observed on LM soil. This herbicide shows 3 

larger sorption kinetics and higher affinity for amorphous oxides of iron and aluminum 4 

than clay minerals, even when the latter are saturated with monovalent cations. 
28

 5 

Therefore, the high content of iron and aluminum oxides in LM soil could be 6 

responsible for the high metribuzin sorption. 7 

Metribuzin desorption isotherms obtained from the soils (not shown) showed significant 8 

hysteresis. The hysteresis coefficients and desorption of the soils are listed in Table 4. 9 

In general, the desorption percentage and hysteresis coefficient of each soil was similar 10 

and independent of the initial concentration. The desorption percentage was higher in 11 

AR and P44 soils, where values ranged from 54 to 65%. The hysteresis coefficients in 12 

these soils were close to one, indicating a quasi-reversible desorption. On the contrary, 13 

the desorption percentage was significantly lower in LM and TM soils, and high H 14 

values were observed. Moreover, a relationship between the H of metribuzin and the 15 

porosity of the soil could be traced. Soils with a higher porosity as reflected in the 16 

higher SBET values, led to greater intramolecular diffusion of the herbicide. The increase 17 

in intramolecular diffusion, improved the contact between the herbicide and the soil 18 

matrix and reduced the rate of desorption.  19 

 20 

2.3. Release studies: funnel experiments 21 

Fig. 4 shows the elution curves of the commercial formulation as well as those of the 22 

PC-clay complexes in AR soil. The shape of the curve from the commercial formulation 23 

is highly symmetric, indicating little retention of the herbicide. AR soil displayed a low 24 

sorption capacity for metribuzin and limited hysteresis. PC-clay formulations yielded 25 
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broader peaks with extended tails, and elution peaks were observed at a greater number 1 

of irrigations than that of the commercial, which suggested a slower and more gradual 2 

release of the active ingredient. In the elution profile of the commercial formulation, the 3 

cumulative amount of released metribuzin was 74.2 ± 8.0% after 6 irrigations, whereas 4 

33.1 ± 0.5 and 20.0 ± 1.9% of metribuzin was released with MTZ19/1.6 and MTZ19/5, 5 

respectively. Thus, the amount of metribuzin released from the soil with MTZ19/1.6 6 

and MTZ19/5 was reduced by 56 and 73%.  7 

The herbicide was completely released from the commercial formulation after 23 8 

irrigations, whereas formulations based on PC-clay complexes were fully removed after 9 

39 irrigations. The total amount of metribuzin released from the soils was 100.1 ± 11.1 10 

for the commercial formulation, 100.3 ± 14.4% for MTZ19/1.6 and 100.2 ± 7.2% for 11 

MTZ19/5, indicating that the herbicide was not irreversibly trapped inside the PC-clay 12 

matrix, which would decrease the effective amount of the active ingredient in the 13 

formulation. 14 

 15 

2.4. Leaching studies: Soil column experiments 16 

In the previous experiments, the funnels were excessively irrigated to determine the 17 

availability of the active ingredient in PC-clay formulations, and to compare the amount 18 

of herbicide released from the PC-clay matrix to that of the commercial formulation. 19 

The objective of soil column experiments was to follow the mobility and bioactivity 20 

along soil columns under conditions similar to those found in Mediterranean regions. 21 

Soil column experiments employed soils with a lower affinity for the herbicide (AR and 22 

P44 soils) and higher vulnerability for metribuzin loss. 23 

As shown in Fig. 5, the leaching pattern of the herbicide was different in AR and P44 24 

due to the sorption capacity of the soils. For the commercial formulation, the greatest 25 
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accumulation of metribuzin was observed at a depth of 8-12 cm of AR soil, whereas the 1 

greatest accumulation was observed at 4-8 cm of P44.  2 

When the commercial formulation was applied to AR soil (Fig. 5a), 19.5 ± 0.2 and 25.8 3 

± 1.0% of the herbicide was retained on the first two segments of the soil column, 4 

whereas 33.0 ± 4.5 and 32.4 ± 2.9% of metribuzin was retained upon application of 5 

MTZ19/5. Furthermore, when MTZ19/1.6 was applied to AR soil, 30.1 ± 1.7 and 40.2 ± 6 

4.8% of the herbicide was adsorbed. Thus, PC-clay formulations decreased the amount 7 

of metribuzin leached from the soil profile by an average of 38% in the first 4 cm of the 8 

column, and 19% in the following 4 cm. On the other hand, the commercial formulation 9 

resulted in 38% more metribuzin adsorbed at a depth of 8-12 cm compared to PC-clay 10 

formulations.  11 

The results of bioactivity assays revealed that inhibition was 6 times greater with the 12 

PC-clay formulations in the upper segment of the soil column. However, differences in 13 

the following layer were not readily apparent with the exception of MTZ19/1.6, which 14 

is consistent with the results of the soil column experiments (Fig. 6a).  15 

In P44 soil (Fig. 5b), 45.3 ± 2.2% and 45.7 ± 0.2% of metribuzin was extracted from the 16 

first segment of the column when MTZ19/5 and MTZ19/1.6 were applied, respectively. 17 

On the other hand, the amount of metribuzin extracted from the upper layer of soil was 18 

27.3 ± 6.1% for the commercial formulation; thus, PC-clay formulations displayed 40% 19 

less leaching compared to the commercial formulation. In the following segment, the 20 

difference in leaching potential was greater due to the larger accumulation of metribuzin 21 

with the commercial formulation and the lower accumulation of herbicide with the PC-22 

clay formulations. In lower segments, the amount of adsorbed metribuzin was not 23 

significantly different between the formulations, which concurs with the results 24 
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obtained from bioactivity assays (Fig. 6b). The assay results indicated that the inhibition 1 

percent with PC-clay formulations was approximately 1.6-fold greater than the 2 

inhibition percent of the commercial formulation in the first segment. In the following 3 

segment, there was no statistical difference in the herbicidal activity between the 4 

commercial and the PC-clay formulations. 5 

 6 

2.5. Dissipation studies. 7 

The aim of the dissipation study was to determine whether or not the PC-clay 8 

formulations could increase the residence time of the active ingredient in the soil and 9 

prolong herbicidal activity. 10 

The dissipation of metribuzin on the four soils was fitted to a first-order kinetics model 11 

(R
2
>0.94), and the half-life time (DT50) of the herbicide in each soil was calculated 12 

(Table 5). The results indicated that the dissipation of metribuzin was greater in AR 13 

soil, which possessed a sandy texture. The greatest DT50 value was observed in LM 14 

soil, followed by P44, TM and AR. However, the difference in the DT50 of P44 and 15 

TM was minor.  16 

Metribuzin dissipation occurs by abiotic and microbial degradation and by 17 

incorporation of the herbicide into the soil matrix in a form that is unavailable to the 18 

microbial population. 
33, 34

 Henriksen et al. 
33

observed a significant loss of the parent 19 

compound (up to 40% of the initial amount) in sterilised soils. Part of the abiotic loss is 20 

due to interaction between metribuzin and humic substances in the soil. Specifically, the 21 

amine group of the herbicide is eliminated upon reaction with alcohols and carboxylic 22 

groups of organic matter. 
35

 On the other hand, positive correlations were observed 23 

between metribuzin dissipation and soil properties such as pH, organic carbon content 24 

and bioactivity. 
36, 37

 These parameters are also correlated to each other, as an increase 25 
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in the organic carbon content usually parallels soil bioactivity. Moreover, enzymatic 1 

activity is optimal at a pH between 7.0 and 8.5. Consequently, metribuzin dissipation in 2 

soils by abiotic and microbial processes is strongly dependent on the organic carbon 3 

content. 
38

 In Table 5, the observed trend in DT50 values does not follow the inverse 4 

order of the organic carbon content. Specifically, TM soil possessed the largest organic 5 

content, but metribuzin dissipation in TM soil was lower than that of AR, which 6 

possessed an organic matter content that was nearly one-half of the organic matter 7 

content of TM. The observed trend in DT50 among soils cannot be fully explained by 8 

microbiological parameters (Table 1). AR soil led to the greatest amount of dissipation, 9 

and possessed a relatively high concentration of microbial biomass carbon, whereas LM 10 

soil led to the least amount of dissipation and possessed a low level of microbial 11 

biomass carbon. However, despite identical microbial biomass content, dissipation 12 

kinetics in TM soil were slower than in AR soil. Some authors have suggested that the 13 

activity of the dehydrogenase enzyme is a better indicator of soil bioactivity. 
19, 37

 14 

However, according to dehydrogenase activity, dissipation should be fast in TM soil 15 

and slow in AR and LM soils.  16 

Juhler et al. 
39

 studied metribuzin dissipation in 24 soil profiles, and observed a positive 17 

correlation between the organic carbon content and herbicide, as noted previously. To 18 

identify factors that affect compound disappearance, a partial least square regression 19 

was applied to the experimental data. The results indicated that inorganic (amorphous 20 

Al, CEC, base saturation percent, pH) and microbiological soil properties were 21 

responsible for metribuzin dissipation. Thus, the DT50 values displayed in Table 5 22 

cannot be fully explained by microbiological parameters. The concentration of 23 

amorphous Al oxides and the value of DT50 are inversely proportional; thus, the higher 24 

concentration of Al oxides in TM soil leads to slower dissipation kinetics than in AR 25 
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soil, despite the fact that the microbial C content of both soils is similar or that the 1 

dehydrogenase activity is larger in TM soil. The slow dissipation kinetics on TM soil 2 

due to the sorption of the herbicide on high affinity sites located on amorphous Al 3 

oxides, where desorption is limited. Alternatively, LM soil displayed the lowest amount 4 

of dissipation due to its low bioactivity, high aluminum amorphous oxides content, and 5 

high H values, which limit the accessibility of the herbicide to microbial flora. 6 

As shown in Table 5, dissipation was significantly lower with PC-clay formulation than 7 

the commercial formulation. In AR soil, the DT50 value of PC-clay formulation was 1.6 8 

times greater than the DT50 of the commercial formulation, and larger differences were 9 

observed in other soils (2.2-2.5). Maqueda et al. 
40

 found that slow-release formulations 10 

of metribuzin based on sepiolite gels increased herbicide, increasing the microbial 11 

activity of the local environment surrounding the formulation. However, in in vitro 12 

experiments, these formulations provided a very slow release of the herbicide. The 13 

observed trend in DT50 values for PC-clay formulation was also observed with the 14 

commercial formulation, indicating that the differences in herbicide dissipation on the 15 

four soils was due to a slower release of the active ingredient from the formulation 16 

matrix, which does not alter the microbiological and/or chemical properties of the soils. 17 

In general, slow release formulations should reduce leaching and maximise herbicidal 18 

activity in the top layer of the soil. PC-clay formulations of metribuzin showed a 19 

significant reduction in leaching and a higher bioactivity in the top soil layers, which are 20 

of the greatest interest for weed control. The reduction in leaching and increased 21 

bioefficacy was dependent on the physical-chemical properties of the soils. Moreover, 22 

these formulations were able to prolong the herbicidal activity of metribuzin by 23 

decreasing dissipation losses. Consequently, a reduction in the recommended dose of 24 
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metribuzin can be achieved with the use of PC-clay formulations, which reduces the 1 

environmental risk associated with herbicide applications. 2 

Moreover, the main auxiliary components of these formulations (PC and 3 

montmorillonite) are non-toxic and do not negatively affect the environment.  4 
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Table 1. Properties of the studied soils. 1 

 AR P44 LM TM 

OM (g kg
-1

) 7.9 14.0 14.1 17.6 

CEC (cmolc kg
-1

) 4.8 7.8 12.4 39.0 

Carbonate (g kg
-1

) 69.0 <0.1 <0.1 241.0 

pH 8.0 5.5 6.0 8.0 

Sand (%) 87.6 49.8 16.7 2.7 

Silt (%) 4.0 34.5 58.6 31.5 

Clay (%) 8.4 15.7 24.7 65.9 

Total Fe2O3  (g kg
-1

) 11.4 46.1 356.8 43.9 

Amorphous Fe2O3  (g kg
-1

) 0.4 1.9 8.43 0.8 

Total Al2O3 (g kg
-1

) 53.2 111.8 148.2 116.4 

Amorphous Al2O3 (g kg
-1

) 0.2 1.0 8.5 3.5 

Total MnO (g kg
-1

) <0.1 0.6 21.9 0.7 

Amorphous MnO (g kg
-1

) <0.1 0.1 9.8 0.2 

SBET (m
2
/g) 1.5 7.2 42.6 69.8 

Microbial biomass C  

(g C kg
-1

 soil) 

737 

(±28) 

470  

(±24) 

277  

(±60) 

686  

(±37) 

Dehydrogenase activity (mg 

1,3,5-triphenyltetrazolium 

formazane kg
-1

 soil) 

9.51 

(±1.11) 

22.76 

(±4.43) 

6.72 

(±1.17) 

32.08 

(±1.87) 

2 
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Table 2. Mineralogy of the clay fraction of each soil.
†
 1 

Soil S% I% K% V% Cl% 

AR - 25 52 - - 

P44 - 58 42 - - 

LM - 45 30 25 - 

TM 70 15 15 - - 

† S: smectite, I: illite, K: kaolinite, V: vermiculite, Cl: chlorite. 
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Table 3. Parameters of the Freundlich adsorption isotherms and Koc values of 1 

metribuzin adsorption.  2 

 Kf (µmol
1-n

 

L
n
 kg

-1
) 

n R
2
 Koc (µmol

1-n
 L

n
 

kg
-1

 g
-1

) 

AR 0.563±0.039
†
 0.74±0.04 0.989 71.34±4.93 

P44 0.506±0.013 0.88±0.02 0.996 36.14±0.93 

LM 0.737±0.025 0.88±0.06 0.915 52.26±2.6 

TM 0.607±0.021 0.90±0.03 0.993 34.54±1.19 

†. Means +/- standard errors. 3 

 4 

5 
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Table 4. Percentage of desorbed metribuzin (%D) and hysteresis coefficients (H) as a 1 

function of initial concentration. 
†
 2 

Metribuzin 

(µM) 

AR P44 LM TM 

%D H %D H %D H %D H 

14.1 61.34 

(±2.35) 

1.17 

(±0.04) 

57.30 

(±0.72) 

2.33 

(±1.13) 

22.02 

(±5.75) 

4.12 

(±0.39) 

39.13 

(±1.99) 

2.93 

(±0.28) 

23.5 59.32 

(±2.86) 

0.87 

(±0.15) 

59.04 

(±1.85) 

1.47 

(±0.21) 

28.19 

(±3.30) 

4.31 

(±0.56) 

37.12 

(±5.62) 

2.97 

(±0.65) 

32.9 68.58 

(±2.04) 

1.08 

(±0.04) 

55.04 

(±3.65) 

1.78 

(±0.39) 

28.11 

(±9.14) 

4.44 

(±0.19) 

38.52 

(±3.54) 

2.38 

(±1.05) 

47.0 65.21 

(±5.60) 

1.23 

(±0.15) 

58.63 

(±0.81) 

1.54 

(±0.11) 

32.34 

(±10.33) 

3.76 

(±0.49) 

37.65 

(±4.37) 

3.05 

(±0.31) 

70.5 64.85 

(±2.70) 

1.03 

(±0.05) 

54.70 

(±8.72) 

1.69 

(±0.12) 

30.89 

(±2.10) 

3.73 

(±0.49) 

39.48 

(±1.37) 

3.22 

(±0.91) 

†
. 
Numbers in parentheses are the standard errors. 3 

4 
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Table 5. DT50 (days) of metribuzin with the comercial formulation and MTZ19/5.  1 

Soils Commercial MTZ19/5 

LM 32.1±0.5
†
 71.3±1.2 

TM 21.3±0.3 53.3±0.5 

P44 25.8±0.2 57.8±0.6 

AR 14.3±0.1 22.7±0.8 

†. Means +/- standard errors. 2 

 3 

4 
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Figure captions. 1 

Figure 1. Structural formula of metribuzin and PC. 2 

 3 

Figure 2. Infrared spectra of (a) the PC-clay complex (6 mM PC: 5 g L-1), (b) MTZ19/5 4 

and (c) pristine metribuzin.  5 

 6 

Figure 3. Adsorption isotherms of metribuzin in soils. 7 

 8 

Figure 4. The amount of metribuzin released from commercial and PC-clay 9 

formulations. 10 

 11 

Figure 5. Percents retained of metribuzin in soil column experiments employing AR (a) 12 

and P44 (b) soils. Means followed by the same letter indicate that the formulation, depth 13 

and soil type were not significantly different according to Student´s multiple range test 14 

at P=0.05. Vertical bars indicate the standard errors. 15 

 16 

Figure 6. Herbicidal activity in the upper segments of AR (a) and P44 (b) soil columns 17 

with different metribuzin formulations. Means followed by the same letter indicate that 18 

the formulation depth and soil type were not significantly different according to 19 

Student´s multiple range test at P=0.05. Vertical bars indicate standard errors. 20 

21 
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