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Abstract. Group signature schemes allow a user, belonging to a specific
group of users, to sign a message in an anonymous way on behalf of the
group. In general, these schemes need the collaboration of a Trusted
Third Party which, in case of a dispute, can reveal the identity of the
real signer. A new group signature scheme is presented whose security is
based on the Integer Factorization Problem (IFP) and on the Subgroup
Discrete Logarithm Problem (SDLP).
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1 Introduction

As it is well-known, there are different protocols to determine digital signatures.
In general, these protocols are based on public key cryptosystems [1–3]. The
main characteristic of this signature schemes is that each signer has one public
key and one private key.

Moreover, the procedures of digital signatures are made more efficient if hash
functions are used [4]. The hash functions are public and they allow to sign a
digest or hash of the message.

Group signature schemes were proposed by Chaum and van Heyst in 1991
[5]. These schemes permit a signer group to sign a given message such that only
a member of the group computes the signature on behalf of the whole group. A
Trusted Third Party (T ) collaborates in the generation of the keys and is able
to reveal the identity of the user who signed the message, if a dispute arises.

The main characteristics defining the group signatures are the following:

1. Only a member of the signer group signs the message.
2. The receiver of the message can verify that the signature of the message was

generated by a member of the signer group, but he cannot determine which
member of the group was the signer.

3. If a dispute arises, it is possible to open the signature in order to determine
who was the actual signer of the message.
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Group signatures can be understood as an extension of credential authentica-
tion and membership authentication schemes. In the first schemes, a user proves
that he belongs to a specific group [6]; whereas in the second ones, a member of
a group can convince a verifier that he belongs to that group without revealing
him his identity [7, 8].

There exist several proposals for group signatures, which use a number of
cryptographic primitives. Some of these proposals need a Trusted Third Party
(TTP), T , at least for the initialization process. Other schemes, however, allow
any user to create the group he chooses to belong to.

As a general rule, group signatures make use of schemes whose security is
based on computationally-intractable mathematical problems [9–11]. Typically,
such problems are the Integer Factorization Problem (IFP) and the Discrete
Logarithm Problem (DLP).

Nevertheless, most of these protocols show some limitations. For example,
the schemes described in [12–14] have a security problem [15]. Moreover, the
security of the schemes presented in [16, 17] is tested under artificial and unlikely
conditions [18].

The proposed group signature scheme presented here guarantees that a true
group signature is generated for a given message. Moreover, the scheme improves
existing protocols in terms of user friendliness, computational efficiency, time and
band-width saving. Moreover, this proposal verifies the properties required for
group signature schemes: Only a group member can validly sign a document or
message. The signed-message receiver is able to verify that the signature is a
valid group signature, i.e., it has been carried out by one legitimate member of
the group. However, the receiver will not be able to determine which particular
group member actually signed the message. Finally, if required (in case of a
dispute, for example) it is possible to disclose the signer, i.e., to reveal which
user actually signed the message.

The rest of this paper is organized as follows: In section 2 a group signature
scheme based on the Integer Factorization and Subgroup Discrete Logarithm
Problems is proposed. In section 3, the main properties of the new scheme are
shown. The security analysis of the proposal is performed in section 4, and finally,
the conclusions are presented in section 5.

2 A group signature scheme based on IFP and SDLP

In this section we propose a group signature scheme for which a randomly chosen
member of a given group signs a document, on behalf of the whole group, making
use of his private key. The verifier of the signature checks whether or not the
signature corresponds to one of them, using the public key that all the members
of the group share. Moreover, the verifier will not be able to decide who was the
original signer.

Let G = {U1, U2, . . . , Ut} be the signer group and let T be the Trusted Third
Party.



A group signature scheme... 3

2.1 Setup phase

In this phase, T generates its pre-key, the public key shared by the group, as
well as helps the members of G to generate their private keys [19].

Pre-key generation T generates its pre-key as follows:

1. T chooses two large primes p and q, such that

p = u1 ⋅ r ⋅ p1 + 1,

q = u2 ⋅ r ⋅ q1 + 1,

where r, p1, q1 are prime numbers, u1, u2 ∈ ℤ with gcd(u1, u2) = 2, that is,
u1 = 2v1, u2 = 2v2, and gcd(v1, v2) = 1.

In order to guarantee the security of the scheme, the bitlength of r is selected
so that the Subgroup Discrete Logarithm Problem (SDLP) of order r in ℤ∗

n

be computationally infeasible.

2. T computes

n = p ⋅ q,
�(n) = (p− 1)(q − 1) = u1 ⋅ u2 ⋅ r2 ⋅ p1 ⋅ q1,

�(n) = lcm(p− 1, q − 1) =
�(n)

gcd(p− 1, q − 1)
= 2v1 ⋅ v2 ⋅ r ⋅ p1 ⋅ q1,

where �(n) is the Euler function, �(n) is the Carmichael function, and lcm
represents the least common multiple.

Then, T selects an element � ∈ ℤ∗
n with multiplicative order r modulo n,

such that

gcd(�, �(n)) = gcd(�, u1 ⋅ u2 ⋅ r2 ⋅ p1 ⋅ q1) = 1.

Note that this element, �, can be efficiently computed as T knows the fac-
torization of n and consequently it knows �(n) and �(n) [19, Lemma 3.1].

We denote by Sr the subgroup of ℤ∗
n generated by �.

3. T generates a secret random number s ∈ ℤ∗
r and determines

� = �s (mod n). (1)

4. T publishes the values (�, r, �, n); whereas it keeps secret the values of
(p, q, s).

With the previous hypothesis, the security of T ’s secret, s, is based on the
Integer Factorization Problem (IFP) and on the Subgroup Discrete Logarithm
Problem (SDLP).
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Key generation In order to determine the private keys of the members of G,
T computes its private key and the public key which will be shared by all the
signers of G.

To do this, T generates four random numbers a0, b0, c0, d0 ∈ ℤ∗
r as its private

key and determines the shared public key for G by computing

P = �a0 ⋅ �b0 (mod n)
Q = �c0 ⋅ �d0 (mod n)

}
(2)

From (2), we have

P ≡ �a0(�s)b0 (mod n) ≡ �a0+s⋅b0 (mod n),

Q ≡ (�s)c0�d0 (mod n) ≡ �s⋅c0+d0 (mod n).

Hence, P,Q ∈ Sr, that is, there exist integers ℎ, k ∈ ℤr such that

ℎ = (a0 + s ⋅ b0) (mod r)
k = (s ⋅ c0 + d0) (mod r)

}
(3)

In order to guarantee that T cannot impersonate any user of G, an interactive
session between each user Ui and T is necessary to determine the private key of
Ui, 1 ≤ i ≤ t. Hence, the following interactive protocol is developed:

1. Ui generates two secret integers bi, di ∈ ℤr at random and sends to T the
values of �bi , �di , in a secure way for protecting both secret integers.

2. T computes

Ai = �ℎ ⋅ (�bi)−s (mod n) = �ai ,

Ci = �k ⋅ (�di)−1 (mod n) = �ci .

From (3), T can compute Ai, Ci since it knows ℎ, k, �bi , and �di , but it
cannot compute ai, ci because it cannot solve the SDLP. Then T sends to
Ui the values of Ai, Ci by using a secure channel.

3. The private key of Ui is the set (bi, di, Ai, Ci). Note that for Ui is also im-
possible to compute the values of ai, ci.

Remark. Note that T knows two values of the Ui’s private, Ai, Ci, but it is
impossible for it to know the rest of that key. Moreover, for both Ui and T it is
impossible to compute the values ai, ci because they are protected by the SDLP.

Key verification For verifying the pre-key of T , each members of the signer
group, Ui, 1 ≤ i ≤ t, must check

� ∕≡ 1 (mod n),

�r ≡ 1 (mod n).
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Moreover, each signer, Ui, 1 ≤ i ≤ t, must verify that his private key corre-
sponds to the shared public key, i.e., must check if it holds:

P ≡ Ai ⋅ �bi (mod n), (4)

Q ≡ Ci ⋅ �di (mod n). (5)

In fact:

Ai ⋅ �bi (mod n) ≡ �ai ⋅ �bi = �ai+s⋅bi = �ℎ = P,

Ci ⋅ �di (mod n) ≡ �ci ⋅ �di = �s⋅ci+di = �k = Q.

2.2 Group signature generation

Let M be the message to be signed by a member of G. We can assume that after
computing its hash value (by using, for example, a public hash function from
the SHA-2 family), we have h(M) = m. For signing M on behalf of the group
G, a random and anonymous member of G is chosen, for example, Ui. Next, Ui
does the following.

1. Ui generates a secret integer �i ∈ ℤr at random. This value must be gener-
ated each time a message is signed.

2. Ui determines his signature, (Fi, Gi, Hi), for M , computing the following
values:

Fi = Ai ⋅ Cmi ⋅ ��i (mod n)
Gi = �bi ⋅ (�di)m ⋅ �−�i (mod n)
Hi = h(��i)

⎫⎬⎭ (6)

3. Finally, T publishes the group signature for the message M : (F,G,H) =
(Fi, Gi, Hi).

Remark. Nobody can impersonate the user Ui because he is the only one know-
ing the values bi, di, and �i.

2.3 Group signature verification

Let (F,G,H) be a group signature of G for the message M . In order to verify
this signature, any verifier knowing the public key of the group G, (P,Q), can
check that

P ⋅Qm ≡ F ⋅G (mod n). (7)

The equation (7) can be immediately justified from expressions (4)-(6) as
follows:

F ⋅G (mod n) ≡ Ai ⋅ Cmi ⋅ ��i ⋅ �bi ⋅ �m⋅di ⋅ �−�i (mod n)

= Ai ⋅ �bi ⋅ Cmi ⋅ �m⋅di

= P ⋅Qm.
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3 Properties of the new scheme

The proposed scheme has the following properties:

1. All the operations involved in the different phases described in the previous
paragraphs can be efficiently computed in polynomial time.

2. Despite T knows part of Ui’s private key, it cannot forge the signature de-
termined by Ui as the signer has generated at random the value: �i. Never-
theless, it can generate a valid group signature.

3. The verifier is only able to test whether the signature was generated by a
member of the signer group and it is not able to ascertain the identity of the
actual signer.

4. In case of dispute, T can disclose the signer since it knows part of the private
key of each member of G.
In fact, as T knows the values of Ai and Ci of the signer Ui, by using the
equations in (6) defining the group signature, it can compute

F

Ai ⋅ Cmi
(mod n) ≡ Ai ⋅ Cmi ⋅ ��i

Ai ⋅ Cmi
= ��i .

Then, T can prove, without the collaboration of Ui, that

h

(
F

Ai ⋅ Cmi
(mod n)

)
= h(��i) = Hi.

4 Security analysis

Moreover, the scheme is secure as no member of G, say Ui, knowing only his
own private key, (bi, di, Ai, Ci), and the shared public key, (P = �a0+s⋅b0 , Q =
�s⋅c0+d0), can determine neither the secret value s of T , nor its private key
(a0, b0, c0, d0).

In fact, determining s from � and � ≡ �s (mod n), see formula (1), means
solving the discrete logarithm problem in the subgroup Sr, of order r generated
by �, which is impossible as the size of r was chosen such that the SDLP was
unfeasible to solve, and moreover, the factorization of n is infeasible as well.

Moreover, the private key of T was generated at random and it is only known
that it verifies the equation (2), but computing any of the values of this key
implies solving the DLP in ℤ∗

n.
It is also impossible for any Ui to determine the values of ℎ = ai + s ⋅ bi, and

k = s ⋅ ci + di, as he only knows bi, di, �
ai , �ci . In all cases, it is necessary to

solve a discrete logarithm problem.
Furthermore, two members of G, say Ui and Uj , could conspire and try to

compute any of the secret values of T : s, ℎ, k, a0, b0, c0, d0, or generate a false
signature for the group. To carry out any of these attacks, both could generate
their signatures for a message, say (Fi, Gi, Hi) and (Fj , Gj , Hj), respectively.
Then, from the verification identity (7), they have

Fi ⋅Gi (mod n) ≡ Fj ⋅Gj = P ⋅Qm.
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Hence, they obtain

Ai ⋅ Cmi ⋅ �bi ⋅ �m⋅di ≡ Aj ⋅ Cmj ⋅ �bj ⋅ �m⋅dj (mod n),

or equivalently,

�ai ⋅ �m⋅ci ⋅ �bi ⋅ �m⋅di ≡ �aj ⋅ �m⋅cj ⋅ �bj ⋅ �m⋅dj (mod n),

and as � has order r modulo n, it results

(ai +m ⋅ di) + s(bi +m ⋅ ci) ≡ (aj +m ⋅ dj) + s(bj +m ⋅ cj) (mod r).

that is, they could obtain

s ≡ (ai − aj +m(di − dj)) ⋅ (bj − bi +m(cj − ci))−1 (mod r).

Nevertheless, none of them know the values of ai, aj , ci, cj , so they cannot com-
pute s.

Finally, nobody is able to forge a group signature for the message M without
this fact being detected and proved by T . In fact, a forger could know the public
key, (P,Q), the message, M , its hash, m, and the values (�, r, �, n). From these

data, the forger can choose an element G̃ ∈ Sr, determine the value

F̃ = P ⋅Qm ⋅ G̃−1 (mod n),

and publish the set (F̃ , G̃, H̃), for a hash value H̃, as a group signature for the
message M , that passes the verification equation (7).

Nevertheless, T can prove that this group signature is a forgery by computing

Hi = h

(
F̃

Ai ⋅ Cmi
(mod n)

)
, 1 ≤ i ≤ t,

and showing that Hi ∕= H̃, ∀i.

5 Conclusions

A new group signature scheme has been proposed. The security of the scheme is
based on two difficult problems from Number Theory: Integer factorization and
subgroup discrete logarithms (and the DLP in the key generation).

The scheme verifies the properties required for general group signature schemes.
Any single member of the signer group is able to sign the message. The receiver
of the message can verify that the signature of the message was generated by a
actual member of the signer group, but he cannot determine which member of
the group was the signer. If a dispute arises, a Trusted Third Party can open
the signature and determine who was the signer of the message.

The group signature scheme is efficient since the computations only require
polynomial time and moreover it is secure against conspiracy attacks and against
forgery.
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