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Sampling-Based Path Planning on
Configuration-Space Costmaps

Léonard Jaillet, Juan Cortés, and Thierry Siméon

Abstract—This paper addresses path planning to consider a cost
function defined over the configuration space. The proposed plan-
ner computes low-cost paths that follow valleys and saddle points
of the configuration-space costmap. It combines the exploratory
strength of the Rapidly exploring Random Tree (RRT) algorithm
with transition tests used in stochastic optimization methods to ac-
cept or to reject new potential states. The planner is analyzed and
shown to compute low-cost solutions with respect to a path-quality
criterion based on the notion of mechanical work. A large set of
experimental results is provided to demonstrate the effectiveness
of the method. Current limitations and possible extensions are also
discussed.

Index Terms—Costmap planning, path quality, sampling-based
motion planning.

I. INTRODUCTION

SAMPLING-BASED path planning has proven to be an ef-
fective framework that is suitable for a large class of prob-

lems in domains, such as robotics, manufacturing, computer ani-
mation, and computational biology (see [1] and [2] for a survey).
These techniques handle complex problems in high-dimensional
spaces but usually operate in a binary world, which aims to find
out collision-free solutions rather than the optimal path.

Specific path-planning methods have been developed in field
robotics for outdoor navigation, where the goal is to find optimal
paths according to a cost function, which is usually computed
from a model of the terrain. Classical grid-based methods, such
as A* or D* [3] can be used to compute resolution-optimal
paths over a costmap. However, compared with sampling-based
algorithms, these methods are limited to problems which involve
low-dimensional spaces that can be discretized and searched
using grid-search techniques.

Some recent works [4]–[8] have tried to bridge the gap
between sampling-based planners and grid-based costmap
planners. They mainly rely on the Rapidly exploring Random
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Fig. 1. Transition-based RRT on a 2-D costmap (the elevation corresponds to
the costs). The exploration favors the expansion in valleys and saddle points,
which connect to low-cost regions.

Tree (RRT) algorithm [9] and are generally focused on spe-
cific applications (e.g., real-time problems [7], [10] or statisti-
cal learning of feasible paths [8]) in the context of 2-D robot
navigation problems.

This paper presents a general algorithm, called Transition-
based RRT (T-RRT),1 for path planning on configuration-space
costmaps. The algorithm considers a user-given cost function
defined over the configuration space as an additional input to the
standard path-planning problem, and it produces solution paths
that are not only feasible (e.g., collision free), but also have a
good quality with respect to the input costmap. For instance, the
costmap may correspond in outdoor navigation problems to the
elevation map of the terrain in order to compute motions that
minimize climbing of high-slope regions. In addition, in robotic-
manipulation problems, the cost function may be defined from
distances to be maximized between the robot and some objects,
in order to find high-clearance solution paths. Finally, in compu-
tational biology applications, the costmap can be viewed as the
energy landscape of the conformational space to be considered
for the simulation of low-energy molecular motions.

The proposed algorithm combines the exploratory strength
of RRTs with the efficiency of stochastic-optimization meth-
ods (e.g., Monte Carlo optimization and simulated annealing)
that use transition tests to accept or reject new potential states.
The filtering of the transition test relies on the gradient of cost
function along the local motion to connect a given state to the
RRT tree that results in an expansion biased to follow the val-
leys and the saddle points of the configuration-space costmap
(see Fig. 1). Solution paths computed by T-RRT fulfill a quality

1The T-RRT planner was introduced in a shorter version published in [11].
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property based on the notion of mechanical work, which is also
introduced in this paper as an effective criterion to evaluate path
quality for costmap planning.

This paper is organized as follows. After a brief presentation
of related work (see Section II), we introduce and discuss the
notion of Minimal Work (MW) paths (see Section III). These
paths are optimal according to a new criterion called mechani-
cal work that is used to evaluate path quality. Comparison with
other existing criteria shows the advantage of this criterion that
may be more suitable in many situations, since it yields better
paths following the low-cost valleys of the costmap. Additional
properties of MW are also presented for a deep understanding
of this notion. Section IV describes the T-RRT algorithm and
explains the methods for self-tuning of parameters and for the
expansion-rate control. Section V shows how T-RRT implicitly
computes MW paths and discusses its probabilistic complete-
ness. An experimental validation of the planner is conducted
in Section VI. The overall efficacy of T-RRT is shown on dif-
ferent problems and positively compared with other existing
techniques [4], [6]. Section VI also analyzes the influence of
the intrinsic parameters of the algorithm on the overall perfor-
mance, and results indicate that no specific tuning is actually
needed. Section VII presents some extensions of T-RRT, and
finally, conclusions are outlined in Section VIII.

II. RELATED WORK

Early potential field methods [12], as well as their combina-
tion with strategies to escape local minima, e.g., the randomized
planner described in [13], rely on some numerical field defined
over the configuration space that may be viewed as a specific
kind of costmap. Note, however, that the artificial potential field
of these methods is only defined as a way to plan collision-free
paths, without considering path optimality. Thus, these methods
do not address the problem considered here to compute low-
cost, feasible paths from an arbitrarily complex costmap given
as input to the planner.

Recent sampling-based planners have proven to be very ef-
fective to find feasible solutions that can be locally optimized in
a postprocessing stage. Local path-optimization methods, such
as the shortcut algorithm [14] are generally used to improve path
quality with respect to simple criteria, e.g., path length, clear-
ance, or a combination of both [15]. These smoothing methods
only aim to locally improve a solution path, as opposed to the
global exploration algorithm proposed in this paper. Moreover,
their extension to arbitrary cost functions has not yet been ad-
dressed, and the resulting efficacy of such an extension remains
to be further evaluated.

Only few papers consider sampling-based path planning on
arbitrary cost spaces. An adaptation of the RRT-connect plan-
ner is used to find low-cost paths for rough terrain navigation
in [4]. The idea is to keep new configurations only if their cost
is under a given threshold, first initialized to a low value, and
then iteratively increased during the search. One limitation of
this technique comes from the nondecreasing threshold, which
limits the efficiency of low-cost search to the vicinity of the root
nodes. To overcome this issue, the extension proposed in [5]

considers multiple RRTs grown from randomly sampled root
configurations. However, this solution still expects an appropri-
ate number of initial samples in order to get enough low-cost
seeds among the space. Moreover, it requires a manual tuning of
the parameter that controls the cost threshold-growth rate. This
tuning is highly problem-dependent.

In [6], the heuristically guided RRT (hRRT) biases the search
by using a quality measure based on the integral of the cost along
the path from the root node and an estimation of the optimal
cost to the goal. Such an approach, inspired from graph-search
techniques, can also be found in the context of real-time appli-
cations [7], [10] and statistical learning of feasible paths [8].
However, with these techniques, the estimated cost to goal is
heuristic, and tends to bias the search straight toward the goal
at the expense of lower quality solution paths. Moreover, the
aforementioned methods have only been demonstrated on sim-
ple low-dimensional examples with discrete cost states (invalid,
low cost, and high cost, respectively). Their scalability and per-
formance for problems which involve complex cost spaces in
higher dimensions have yet to be established.

The T-RRT algorithm introduced in the following is inspired
by Monte Carlo optimization techniques. Developed in order
to find global optima in very complex spaces [16], these tech-
niques introduce randomness as a means to avoid local minima
traps. Many variants have been developed (e.g., random walk
and simulated annealing [17]). The basic exploration process
typically relies on successive transition tests using the Metropo-
lis criterion (see Section IV-B). Note also that the probabilistic
conformational roadmap [18] developed to explore molecular-
energy landscapes in computational biology applications inte-
grates a similar transition test in the Probabilistic RoadMap
(PRM) framework [19].

III. MINIMAL WORK PATHS

This section introduces the mechanical work criterion to mea-
sure path quality in a space that is mapped by a given cost
function. Paths that are optimal according to this criterion are
called Minimal Work (MW) paths. The T-RRT algorithm pre-
sented in the next section tends to produce such MW paths,
as shown by the theoretical analysis and the experimental re-
sults in Sections V and VI, respectively. First, we introduce the
notion of MW paths and illustrate how this criterion generally
yields more natural solution paths (i.e., paths following well the
low-cost valleys of the costmap) compared with other existing
path-quality measures.

A. Notation

Let us consider a system with a configuration space C, pos-
sibly constrained by “binary” obstacle regions. Let us also con-
sider a cost function c : C → R

∗
+ mapping this space, i.e., a

cost c(q) > 0 can be computed for each q ∈ C. This cost func-
tion c is assumed to be continuous. A path P of length l is
represented by a unit-speed parametric function2 τ : [0, l] → C

2This representation assumes that the parameterized curve that represents the
path is regular, which simplifies the notation.
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with τ(s) = qs ∈ P. Then, we define the parametric cost func-
tion v : [0, l] → R

∗
+ of a path as v(s) = c ◦ τ(s) = c(qs).

B. Classical Path-Quality Measures

Several criteria have been proposed to evaluate the quality of
a path from its parametric cost function, e.g., maximal cost [5],
average cost [5]–[7], or costs sum over discrete path configura-
tions [5], [8] (as a way to approximate the integral of the cost
along the path). The maximal cost criterion is the most limited
one, since it only relies on a point value of the parameterized
cost function. The average cost can also be misleading, since it
does not account for path length (a path that involves many de-
tours inside a low-cost region will have an average cost smaller
than a path that goes straight through this region). Thus, the
integral of the cost along a path appears to be a more reliable
criterion. It is mathematically defined as follows:

S(P) =
∫ l

0
v(s)ds.

A discrete approximation of the integral leads to

S(P) ∼ l

n

n−1∑
k=0

v(sk ), with sk =
(

k

n − 1

)
l.

In what follows, optimal paths according to the Integral of the
Cost criterion are called IC paths. The next section introduces
an alternative way to measure path quality based on the notion
of mechanical work. This alternative technique will then be
compared with IC criterion in Section III-D.

C. Mechanical Work of a Path

The key idea is that positive variations of the parametric
cost function can be seen as forces acting against motion, and
thus, producing mechanical work. We propose to use this loss
of “energy” induced by the mechanical work to measure the
quality of a path. In the case of negative variation of costs, the
system loses no energy. Then, a small penalty proportional to
the distance is added in order to favor shortest paths of equal
mechanical energy. Based on this principle, the mechanical work
of a path is defined as follows:

W (P) =
∫
P

+

∂v

∂s
ds + ε

∫
P

ds (1)

where P+ represents the portions of path with positive slopes
(i.e., where the parametric cost function is strictly increasing),
and ε is assumed to be very low compared with cost values.

The continuous expression of W in (1) can be transformed
into a discrete formulation expressed from the local extrema
values along the path:

W (P) =
∑

i

(v(βi) − v(αi)) + εl

=
∑

i

∆v+
i + εl (2)

where αi and βi are consecutive minima and maxima of the
costs along the paths, and ∆v+

i = v(βi) − v(αi) are the positive

Fig. 2. Decomposition of a path into portions of monotonic cost variation. αi

and βi correspond to local minima and maxima, respectively. (Right) Mechan-
ical work is the sum of positive cost variations between consecutive extrema
plus a small value εl proportional to the path length.

Fig. 3. MW solution paths. (a) Paths are computed by using the A∗ algorithm
within a 2-D grid discretizing the space. The examples illustrate (b) down-to-
down, (c) top-to-top, and (d) top-to-down queries, respectively.

variations between two consecutive extrema (see Fig. 2). The
mechanical work of a path is simply obtained by summing up the
positive differences between extrema of its parameterized cost
function and adding εl in order to favor shortest paths among the
ones having equally positive cost variations. Paths that minimize
the mechanical work for a given query are called MW paths.

Fig. 3 shows examples of MW paths for several queries on a
2-D hilly costmap. The paths were computed by using a standard
A∗ search performed on a grid discretizing the 2-D landscape.
As one can see, the shapes of the MW paths appear to be suitable
in the sense that they follow as much as possible the low-cost
regions of the space. In order to better state the pertinence of
the mechanical work criterion, we first compare it with the IC
criterion discussed in the next section. Then, we state some
interesting properties of the MW criterion in Section III-E.

D. Minimal Work versus Integral of the Cost

This section compares the optimal solutions for the integral
of the cost S (IC paths) and for the mechanical work W (MW
paths) on representative cost spaces.
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Fig. 4. Straight-line MW path (blue) and two different IC paths for two dif-
ferent inclinations of the plane that represent the cost function.

Fig. 5. High-cost barrier problem. (a) MW path. (b) IC path.

1) Constant Slope: Let us first consider the example of a
planar landscape with a constant slope. In this simple case,
IC solutions can be numerically characterized from calculus of
variations. As shown in Fig. 4, the solutions obtained for two
different slopes show that IC paths (in black) are not intuitive
and, moreover, depend on the plane inclination. In contrast, in
both cases, the MW path is the trivial straight-line path (in blue).
Indeed, the cost of MW paths is always lower bounded by the
cost variation between the initial and final configurations. In
situations for which the query configurations can be connected
through a set of paths having a monotonic cost variation (as for
the specific case of a constant slope landscape), the MW path
will be the shortest one among the set of minimal cost variation
paths. This yields a straight-line solution for the planar slope
example.

2) High-Cost Barrier: This example corresponds to a flat
cost surface with a high-cost barrier that should be preferably
avoided (see Fig. 5). In this case, the MW path is the shortest path
to get around the barrier [see Fig. 5(a)], while the IC solution is a
direct path that crosses the barrier [see Fig. 5(b)]. This example
highlights another possibly negative feature of the integral of
the cost criterion that may favor undesirable paths with short
high-cost portions.

3) Hilly Costmap: In this more complex example, solution
paths have to go through a saddle point to link the query config-
urations located at two opposite corners of the hilly landscape
(see Fig. 6). The MW path makes necessary detours to follow
low-cost valleys of the space. In contrast, the IC solution prefers
shortest paths at the expense of local high costs [circled in blue
in Fig. 6(b)]. As can be seen in the parameterized cost functions
of the two kinds of optimal paths (see Fig. 7), the cost profile
of the IC path (red) is globally much higher than the one of the

Fig. 6. Hilly costmap problem. (a) MW path. (b) IC path.

Fig. 7. Parameterized cost functions of the MW path (green) and the IC path
(red) shown in Fig. 6(a) and (b).

TABLE I
MW AND IC OPTIMAL PATHS OF FIG. 6 COMPARED WITH

A REFERENCE STRAIGHT-LINE SOLUTION

MW path (green). This observation is particularly true when the
IC path goes through the high-cost region avoided by the MW
path.

Finally, Table I compares the costs of the two solutions with
respect to various path-quality measures. It shows that both the
average and maximum costs are better for the MW path than for
the IC path. Indeed, the IC path characteristics are intermediate
between the ones of the MW path and of a simple straight-line
path, not biased to avoid high-cost regions.

These results highlight some interesting features of the MW
criterion. Compared with IC paths, MW paths avoid steep vari-
ations of the cost function. This may be particularly important
in applications, such as outdoor navigation (to avoid high-slope
motions), or computational biology (to minimize the crossing
of high-energy barriers). Besides, in the presented cases, MW
paths look more natural. In the next section, we present some
additional properties of MW paths for a deep understanding of
the mechanical work criterion.
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E. Minimal Work Path Properties

1) Negative Slopes Minimization: Section III-C states that to
minimize the mechanical work means to minimize the amount
of positive cost variations. A first property is that, between two
given configurations, it also leads to minimize the negative cost
variations. Indeed, the total amount of cost variations along the
path can be expressed as follows:

v(l) − v(0) =
∑

i

∆v+
i +

∑
j

∆v−
j

where ∆v+
i and ∆v−

j are the intervals of positive and negative
cost variation, respectively. Using (2), we obtain

W (P) = v(l) − v(0) + εl +
∑

j

|∆v−
j |. (3)

Because v(l) and v(0) are constants and εl is small relative
to cost values, (3) states that to minimize W is equivalent to
minimize the last term in the right-hand side of the equation,
that is, the total amount of negative cost variations.

2) Cost Variations Minimization: Since the MW path P min-
imizes both positive and negative cost variations, P is indeed
the path that minimizes any cost variation between two given
configurations. Let V (P) be a function that sums positive and
negative variations

V (P) =
∑

i

∆v+
i +

∑
j

|∆v−
j |.

Using (2) and (3), we get

V (P) = 2W (P) − (v(l) − v(0) + 2εl). (4)

Thus, the ordering of the paths remains the same regardless
of the criterion (V or W ), which, indeed, means that they are
equivalent. However, we will keep the formulation of MW path,
since this notion facilitates the analysis of the T-RRT algorithm.

3) Reversibility of Minimal Work Paths: Let −1P be the re-
verse path of P. Since the parametric cost functions v and −1v
have opposed variations, i.e., ∆−1v+ = |∆v−|, we have

W (−1P) =
∑

j

|∆v−
j | + εl

and using (3), we get

W (−1P) = W (P) + v(0) − v(l). (5)

Consequently, the mechanical work of a path is equal to the me-
chanical work of its inverse, except for a constant. This property
allows us to speak about the MW path between two configura-
tions with no need to orient the path.

IV. TRANSITION-BASED RAPIDLY EXPLORING RANDOM TREE

A. Main Algorithm

The T-RRT algorithm combines the advantages of two meth-
ods. First, it benefits from the exploratory strength of RRT-like
algorithms, which result from their expansion bias toward large
Voronoi regions of the space. Additionally, it integrates features
of stochastic optimization methods developed to compute global

minima in complex spaces: It uses transition tests to accept or
reject potential states.

Algorithm 1 shows the pseudocode of the T-RRT planner.
Similar to the Extend version of the basic RRT algorithm [20],
a randomly sampled configuration qrand is used to determine
both the nearest tree node qnear to be extended and the exten-
sion direction. The extension from qnear is performed toward
qrand with an increment step δ. In the case of T-RRT, δ has
to be small enough to avoid cost picks to be missed by the
linear interpolation between qnear and qnew . This stage also
integrates collision detections in the presence of “binary obsta-
cles.” Thus, if the new portion of path leads to a collision, a
null configuration is returned and the extension fails, indepen-
dently of the associated costs. This extension process ensures
the bias toward unexplored free regions of the space. The goal
of the second stage is to filter irrelevant configurations regard-
ing the search of low-cost paths before inserting qnew in the
tree. Such filtering is performed by the TransitionTest
function. It relies on the Metropolis criterion commonly used
in stochastic-optimization methods. This test integrates a self-
tuning technique in order to automatically control its filtering
strength and, thus, to ensure continuous growth of the tree. Fi-
nally, the MinExpandControl function forces the planner to
maintain a minimal rate of expansion toward unexplored regions
of the space and avoids possible blocking situations during the
search. The following sections detail the TransitionTest
and MinExpandControl functions.

B. Transition Test

The TransitionTest function is presented in Algo-
rithm 2. First, configurations with a higher cost than the maxi-
mum cost threshold cmax are filtered. The probability of accep-
tance of a new configuration is defined by comparing its cost
cj relatively to the cost ci of its parent in the tree. This test is
based on the Metropolis criterion initially introduced in statisti-
cal physics and molecular modeling. The transition probability
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pij is defined as follows:

pij =




exp

(
−∆cij

KT

)
, if ∆cij > 0

1, otherwise

(6)

where we have the following:
1) ∆cij = (cj − ci)/dij is the slope of the cost, i.e., the cost

variation divided by the distances between the configura-
tions.3

2) K is a constant value used to normalize the expression. It
is based on the order of magnitude of the considered costs.
K is taken as the average cost of the query configurations,
since they are the only cost values known at the beginning
of the search process.

3) T is a parameter called temperature that is used to control
the difficulty level of transition tests, as further explained
in the following. Note that the term temperature is em-
ployed in analogy with methods in statistical physics, but
in our case, it does not have any physical meaning.

Using this transition probability, downhill transitions are au-
tomatically accepted, whereas for uphill transitions, the chance
of acceptance decreases exponentially with the cost increment.

1) Temperature Parameter: T is a key parameter of the al-
gorithm, since it defines the level of difficulty of a transition for
a given cost increment. Low temperatures limit the expansion to
slightly positive slopes. In contrast, higher temperatures enable
to climb the steeper slopes. Within methods that involve the
Metropolis criterion, the temperature is usually kept constant
(e.g., Monte Carlo search) or decreases gradually as the search
progresses (e.g., simulated annealing). In our algorithm, this
parameter is dynamically tuned according to the information
acquired during the exploration.

2) Adaptive Tuning: The TransitionTest function per-
forms an adaptive tuning of the temperature during the search

3Contrarily to classical Monte Carlo methods, the cost variation is normalized
by the distance to the previous state, since this distance is not necessarily
constant.

Fig. 8. Frontier nodes (in white regions) have a Voronoi region bounded by
the space limits. On the contrary, the Voronoi region of nonfrontier nodes is
bounded by the Voronoi region of other nodes (in brown/gray regions).

process (second stage of Algorithm 2). At the initialization, T
is set to a very low value (e.g., 10−6) in order to only autho-
rize very easy positive slopes (and negative ones). Then, during
the exploration, the number nFail of consecutive times the
Metropolis criterion discards a configuration is recorded and
used for temperature tuning. When the T-RRT search reaches
a maximal number of rejections nFailmax , the temperature is
multiplied by a given factor α. Each time an uphill transition test
succeeds, the temperature is divided by the same factor α. Thus,
the temperature automatically adapts itself, such that an exten-
sion that corresponds to a positive cost variation is performed
in average every nFailmax times. The influence of parameters
α and nFailmax is analyzed in Section VI.

C. Minimal Expansion Control

The adaptive temperature tuning introduced earlier ensures a
given success rate of positive slope transitions. A possible side
effect may appear when the tree expansion toward unexplored
regions remains slow, and the new nodes contribute only to
refine already explored regions. We discuss in the following
this issue and explain how the MinExpandControl function
overcomes this problem.

1) Exploration Versus Refinement: The behavior of the RRT
expansion can be explained by distinguishing two types of
nodes [21]. Frontier nodes are the external nodes of the tree
with a Voronoi region bounded by the space limits, whereas
nonfrontier nodes are the internal ones, whose Voronoi region is
entirely bounded by the Voronoi region of the other nodes (see
Fig. 8). Thus, the extension of a frontier node tends to explore
new regions of the space, and the extension of a nonfrontier node
only refines the existing tree. The problem of unbalanced refine-
ment and exploration modes was addressed in [21] and [22] for
standard RRTs. However, for T-RRT, the interaction between
these two kinds of extensions is more subtle than for the basic
RRT. Indeed, situations occur where the temperature is stabi-
lized by new nonfrontier nodes, which refine the tree in easier
regions of the space; however, the expansion toward new regions
requires the development of frontier nodes. Fig. 9(a) illustrates
this issue with an example of a tree, whose expansion has been
slowed down by the too-frequent insertion of nonfrontier nodes.
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Fig. 9. Impact of the minimal expansion control on the T-RRT algorithm.
(a) Without control, the insertion of nonfrontier nodes tends to slow down the
exploration by decreasing the temperature. (b) With control, the planner is forced
to keep to explore new regions of the space.

Fig. 9(b) shows the tree obtained by using the minimal expan-
sion control detailed in the following.

2) Minimal Exploration Rate: The proposed solution is to
force the planner to explore new regions by controlling the ratio
between exploration and refinement steps. Note that as long as
the tree coverage remains limited compared with the size of the
space, nonfrontier nodes have a Voronoi region that is much
smaller than the one of frontier nodes. Hence, extension steps
can be estimated as refinements or expansions, which depend on
the distance between qnear and qrand . For a large distance value,
qnear has greater chances to be a frontier node, whereas a small
distance value corresponds most probably to the case of a non-
frontier node extension. The control of minimal exploration rate
is performed by the MinExpandControl function presented
in Algorithm 3. If the distance qnear − qrand is greater than the
expansion step δ, qnew is considered to participate in the tree
expansion, and it is inserted in the data structure. Otherwise,
qnew is considered to participate in the tree refinement. The
configuration is not inserted in the tree if it makes the ratio of
nonfrontier nodes be greater than a given maximal value ρ. The
influence of this parameter is further discussed in Section VI.

V. THEORETICAL ANALYSIS OF T-RRT

A. T-RRT and Minimal Work Path

This section analyzes the relationship between T-RRT and
the notion of MW path introduced in Section III. An important
property is obtained first for the simplified case of a discrete

Fig. 10. Case of n equal-length paths. With T-RRT, the branches with the
lowest mechanical work have the highest chances to reach the goal first.

search process. Then, we discuss the extension of this result to
the general case of the T-RRT search.

1) Simplified Case: Let us consider a path search within a
discrete set of n equal length possible paths, each one defined by
a sequence of m edges and m + 1 nodes (see Fig. 10). Using a
T-RRT scheme, each expansion of a given path requires the path
to be selected and the associated transition test to succeed. Thus,
the probability Pk of a given path Pk to be entirely developed
in m iterations is equal to

Pk =
∏

i∈[1,m ]

epk
i =

∏
i∈[1,m ]

(spk
i )(tpk

i )

where ep denotes the probability for a given node to be extended,
sp is the probability to be selected, and tp is the probability to
have an accepted transition. In addition, we assume that the
paths have equal chances of being extended at each step (i.e.,
the node-selection process is not biased by Voronoi regions),
i.e.,

Pk =
1

nm

∏
i∈[1,m ]

tpk
i .

If the transition probability depends only on the transition tests
(i.e., the MinExpandControl is omitted), we get

Pk =
1

nm

∏
j

e(−∆vk +
j

)/K Tj .

Moreover, if we assume that the temperature remains constant
during the expansion, we have

Pk =
1

nm
e1/K T e

−
∑

j
∆vk +

j

where ∆vk+
j are summed over the positive variations of cost

along the path k. Finally, since εl is negligible in the mechanical
work expression, we get

Pk =
1

nm
e1/K T e−W (Pk ) . (7)

Since (1/nm )e1/K T is the same for all the paths, we obtain an
important property for this simplified version: The paths with the
lowest mechanical work have the highest probability of reaching
the goal first.

2) General Case: One first assumption made in the analysis
earlier is that each branch has an equal chance of being chosen
for the expansion. In practice, the various paths developed by
the T-RRT algorithm (from the root node to each leaf) are not
spatially independent. Each branch expansion tends to increase
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its global Voronoi region and, thus, increases the chance for its
nodes to be selected at the next iteration. This process reinforces
the extension of the paths with the most favorable mechanical
work and increases the convergence of the planner toward lower
cost solutions.

The simplified version also assumed that the temperature is
constant. This parameter affects each path in the same way.
Thus, we can argue that the property remains valid, even when
T varies during the search.

Finally, whereas the aforementioned property is established
for the discrete case of equal-length solution paths, T-RRT
search is performed among an infinite number of variable-length
paths. Since shortest paths require less expansion steps to con-
nect the queries, it is not possible to guarantee that paths of
lower cost have always better chances to reach the goal first.
However, as one can see from (7), the mechanical work of a
path affects exponentially its chances of success. This reveals
how strongly the T-RRT exploration is implicitly biased toward
solution paths of low mechanical work.

B. Probabilistic Completeness

The T-RRT algorithm is a probabilistically complete plan-
ner [19]. This property is directly inherited from the probabilistic
completeness of the RRT planner (see [9, Sec. IV]). The only
difference is that in the present case, the extension steps can
be rejected because of the transition tests, even in the case of a
convex, open, n-dimensional subset of an n-dimensional config-
uration space. However, we argue that the success probability of
the transitions is always strictly positive, since the cost function
takes finite values in this subset, and thus, the cost variations are
bounded. As a result, the planner converges eventually toward
an entire coverage of the considered subset, and the transition
tests affect only the convergence rate of the algorithm.

VI. EXPERIMENTAL RESULTS

A large set of experiments has been conducted to evaluate
the performance of the planner. First, the general behavior of
the method is presented on various problems. Second, its perfor-
mance is compared with that of the existing methods to highlight
the good quality of the T-RRT solutions. Finally, we investigate
the influence of some intrinsic parameters on the overall efficacy
of the method. All the algorithms have been implemented within
the path-planning software Move3D [23]. The performance re-
sults summarized in the tables are values averaged over ten runs.

A. General Performance

A variety of problems are proposed to illustrate the generality
of the method. The examples vary not only in the geometrical
complexity and the configuration space dimensionality but in
the nature of the cost function as well. Two settings of T-RRT
are considered: A greedy version of the planner referred to as T-
RRTg that takes nFailmax = 10, and a tempered version, which
is referred to as T-RRTt , with nFailmax = 100. The latter leads
to higher quality solution paths but is more computationally ex-
pensive. We used α = 2 in all the examples. The results obtained

Fig. 11. (a) and (b) Construction process of the transition-based RRT planner.
The solution path (c) is close to the optimal one (d) computed from a space
discretization.

TABLE II
COMPARATIVE RESULTS FOR THE COSTMAP PROBLEM

with the basic RRT planner are given as references. The tables
also present comparative results with two existing cost-based
methods that will be discussed latter.

The first set of experiments is performed on the 2-D cost
space shown in Fig. 1. In this example, the solution paths have
to go through a saddle point to link the query configurations
located at two opposite corners of the landscape. Fig. 11 shows
snapshots of the exploration tree and the solution path found [see
Fig. 11(c)], which is close to the optimal one [see Fig. 11(d)].
Table II presents the characteristics of the paths obtained with
each planner.4 It also provides values for the MW and IC optimal
paths (computed with an A∗ search within a 128 × 128 grid
discretizing the landscape).

The mechanical work of solutions obtained by the differ-
ent methods is reported in the W column. The numbers in
parentheses integrate the effect of some local smoothing of the
solution path with a simple procedure based on the shortcut al-
gorithm [14]. As one can see from Table II, the mechanical work
of the reference RRT path is almost three times higher than for
the optimal MW solution, and smoothing does not successfully
get close to the optimal value (36.9 versus 15.9). In comparison,
the mechanical work of the path obtained with the tempered ver-
sion of T-RRT is only 45% higher than for the MW path, and it

4In the case of RRT, since there is no obstacle in the scene, connection
attempts to the goal are only performed when d(qnew , qgoal ) < 15δ to avoid
getting a trivial straight-line solution.
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Fig. 12. Stick-extraction problem. A 6-DOF manipulator arm has to extract
a stick from a hole. The T-RRT solution path keeps the stick horizontal to
maximize its distance to the obstacles.

TABLE III
COMPARATIVE RESULTS FOR THE STICK-EXTRACTION PROBLEM

becomes only 6% higher than the optimal value after smoothing.
Most important, the overall shape of the T-RRT solution is very
close to the optimal-MW path and follows the same low-cost
regions. In addition, note that the relatively slight loss of path
quality of the greedy version is compensated by a much smaller
computing time (0.9 s versus 11.0 s). Comparative results ob-
tained with other existing costmap planners (Thresh. and hRRT
rows in Table II) are discussed in Section VI-B.

In the next experiment, a six-degrees-of-freedom (DOF) ma-
nipulator arm is carrying a stick in a 3-D workspace with ob-
stacles (see Fig. 12). Here, the goal is to extract the stick from
a hole, while keeping the stick as far as possible from the ob-
stacles. Thus, the cost function considered here is the inverse
of the distance between the stick and the obstacles. Results are
presented in Table III.

The costs of the T-RRT solution paths are considerably lower
than the ones of RRT. This shows the effectiveness of the planner
to find low-MW paths in higher dimensional spaces. T-RRT
solutions tend to keep the stick horizontal during its extraction
from the hole in order to remain as far as possible from the
obstacles, whereas the basic RRT planner produces erratic paths.
Once again, the slight loss of path quality of the greedy version
of the T-RRT (1.9 versus 1.1) is compensated by a significant
speed up (7.4 s versus 32.8 s).

The third scenario involves the same manipulator arm that
carries a sensor with a spherical extremity for the inspection of
the surface of a car part. The goal here is to keep the sensor
close to the surface of the car part during the motion, in order
to satisfy the requirements for the surface following task (see
Fig. 13 and Table IV). Note that for such a scenario, where the
robot is subject to task-space constraints, specific path-planning
schemes also exist (e.g., [24]).

As to be expected, the T-RRT computing time is higher than
the one of RRT because to compute a collision-free path with

Fig. 13. Car-part-inspection problem. The path for a 6-DOF arm that manipu-
lates a sensor (black sphere), which needs to remain close to the surface during
the inspection task is shown.

TABLE IV
COMPARATIVE RESULTS FOR THE CAR-PART-INSPECTION PROBLEM

RRT and with no cost consideration is a much easier problem
than to obtain a solution that minimizes the distance to the
inspected surface. However, with regard to paths quality, the
mechanical work of T-RRTg and T-RRTt are 3.6 times and 7.7
times lower than the one of RRT, respectively. The average and
maximal costs reported in Table IV are interesting indicators to
get a better idea of the quality of the results, since they corre-
spond directly to the average and maximal distances between
the sensor and the part, respectively. For a distance reference,
the diameter of the black sphere at the extremity of the sensor
is 40 mm. For T-RRTg , the maximal cost corresponds approxi-
mately to twice this value, whereas the average distance is close
to the sensor radius. In the case of T-RRT, solution paths follow
the surface of the part so well that the maximal distance never
exceeds the size of the sphere and the average one is about one
tenth of this diameter.

Finally, the last scenario corresponds to a molecular model
shown in Fig. 14. The task is to compute the pathway to ex-
tract the ligand (small molecule in red/dark) from the active site
located inside a protein. This problem can be seen as a me-
chanical disassembly path-planning problem for the free-flying
ligand [25]. Energetic constraints are translated into geomet-
ric ones by considering a steric model of the molecule, and a
collision-detection algorithm [26] is applied as a geometric filter
that rejects conformations with prohibitively high van der Waals
(VdW) energy. The cost function considered for this problem
is the inverse of the distance between the ligand and the pro-
tein. The interest of this molecular model is to provide a simple
way to quantify the quality of the computed solution path. The
ligand-free space can be simply dilated by shrinking the atoms
radii. The results reported in Table V correspond to both RRT
and T-RRT algorithms applied on the shrunk model shown in
Fig. 14(b) (25% of VdW radii).
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Fig. 14. Two representations of the same ligand–protein “disassembly” prob-
lem, with different VdW radii. (a) Maximal radius. (b) Shrunk radius. The goal
is to compute paths that maximize the clearance and, thus, remain valid for large
VdW radii.

TABLE V
COMPARATIVE RESULTS FOR THE LIGAND–PROTEIN PROBLEM

The T-RRT solution paths have a much lower cost compared
with the one computed by RRT. The higher clearance of the
T-RRTs solutions are also quantified by the maximal VdW ratio
indicated in the last row of the table. This maximal ratio was
obtained by testing solution paths by increasing the VdW radii
until a collision was detected between the ligand and the protein.
While no growing is possible for the RRT solution, the T-RRT
paths (computed with a 25% ratio) remain valid up to 65% and
69% growing, depending on the variant. These values are close
to the maximal radius that allows the ligand to exit (80%). The
high clearance of T-RRT paths reflects their good quality with
respect to the considered distance-based cost.

B. T-RRT versus Existing Methods

T-RRT has been compared with two existing cost-based plan-
ners: the maximal Threshold technique proposed by Ettlin and
Bleuler [4] and the hRRT of Urmson and Simmons [6]. Results
obtained for the set of experiments with these planners are re-
ported in the last two rows of Tables II–V. In the case of the
threshold method, results are highly sensitive to the threshold-
growing speed, and thus, reported data correspond to the ex-
tremal values obtained when varying this parameter in the range
(1–100).

With regard to the mechanical work criterion, results show
that T-RRTt provides significantly better solutions than exist-
ing methods in all tests. Remarkably, T-RRT solutions are also
better with respect to the IC criterion in the three more difficult
problems, which involve a 6-D cost space.

The overall bad performance of the hRRT method is due to the
strong bias introduced by the heuristic that steers the exploration
toward the goal, resulting in a poor exploratory ability, which
makes it unable to circumvent high-cost regions and find higher
quality paths. Comparatively, the threshold technique can pro-

TABLE VI
INFLUENCE OF THE α AND nF ailm ax PARAMETERS

TABLE VII
INFLUENCE OF THE ρ PARAMETER

vide solution paths whose quality is close to the one of T-RRTg ,
but its performance is highly sensitive to the parameter that reg-
ulates the variation speed of the threshold. Depending on the
value of this parameter, the running time increases up to 1000
times for the costmap problem, the mechanical work increases
up to 47-fold for the stick-extraction problem, and both the
running time and the mechanical work are notably affected by
the threshold-speed value for the car-part-inspection problem.
Furthermore, this sensitive parameter is problem-dependent and
has to be tuned for each application, whereas T-RRT parameters
remain robust to problem changes, as shown next.

C. Influence of Intrinsic Parameters

We now analyze the influence of the main parameters of the
T-RRT algorithm. Experiments are performed on three prob-
lems that correspond to three different types of cost functions:
the hilly costmap (see Fig. 11), the stick-extraction problem
(see Fig. 12), and the car-part-inspection problem (see Fig. 13).
The results are presented in Tables VI and VII. Bold values
are the default settings used in previous tests.

1) Temperature Variation Control: nFailmax and α are the
two parameters that control the derivative of the temperature,
and hence, the selectivity of the transition test (as explained in
Section IV-B).

Table VI shows that nFailmax is an important parameter
that determines the appropriate balance between time perfor-
mance and solution-path quality. In the costmap problem, when
nFailmax is increased by a factor of ten, the running time
also increases 9–13-fold. Its influence on the runtime perfor-
mance is less direct on the two manipulator problems (due to the
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additional cost of collision checking), even though the tendency
is the same. Finally, note that higher values of nFailmax im-
prove path quality but only up to a point: The quality increases
when nFailmax varies from 10 to 100 but remains approxi-
mately constant from 100 to 1000.

With regard to the α parameter, results show that it affects
only slightly the behavior of the algorithm, even if higher values
tend to increase the time performance, while decreasing the path
quality. Overall, values nFailmax = 100 and α = 2 provide the
best results for the three examples and are used as default setting
for all tests.

2) Expansion Versus Refinement Control: Table VII presents
result for various values of the ρ parameter used in the
MinExpandControl function to set the maximal ratio of
refinement nodes.

In the first line of the table, ρ = 1 means that the
MinExpandControl function is inactive. The results for
the 2-D hilly costmap highlight the importance of this func-
tion, the computing time being much higher when ρ = 1. This
example illustrates cases in which the refinement process slows
down the exploration by decreasing the temperature. This ef-
fect is less visible in the two other examples, where refinement
steps are less likely to happen because of the large size of the
space. Results for the other settings (i.e., ρ �= 1) are quite sim-
ilar, which means that ρ does not require to be tuned precisely.
In all experiments, the default setting ρ = 1/10 appears to be a
good compromise between computing time and path quality.

VII. EXTENSIONS

A. Bidirectional T-RRT

Similar to the bidirectional version of the RRT planner [9],
a bidirectional T-RRT can be envisaged. However, a naive ap-
proach that would use the same transition test for both trees
would lead to poor quality solutions. It would tend to create paths
with consecutive downhill and uphill cost variations, which cor-
respond to branches expanded from the init-tree and goal-tree,
respectively, and may fail to find a more flat solution path of
lower MW cost. A better alternative, using the property of Sec-
tion III-E2, which states that the MW paths minimize any cost
variations, is to modify transition tests in order to filter both pos-
itive and negative cost variations when expanding the two trees.
This can be achieved easily by replacing the transition probabil-
ity pij of (6) by the expression pij = exp(−(|∆cij |)/KT ). Pre-
liminary results show that this approach performs well in prob-
lems where positive and negative cost variations for the best cost
paths are globally of the same amplitude. However, in problems
where the profile of the cost between query nodes is asymmetric,
it turns out to reject too many configurations during the transi-
tion test, which degrades the performance. In this case, a method
based on a more sophisticated transition test should be designed.

B. Toward a Greedy Anytime T-RRT

In this section, we discuss a possible extension of T-RRT for
performance improvement in tricky situations, such as the one
illustrated in Fig. 15. In this example, the large low-cost region
has to be fully explored 1) for determining the need to cross

Fig. 15. Tricky problem for T-RRT. A large low-cost region has to be explored
before deciding to cross the high-cost barrier. (a) Useless in or (b) leading to a
better solution.

Fig. 16. (a) Initial tree built using a greedy T-RRT version. (b) Addition of
cycles (in red) leads to higher quality paths.

the higher cost barrier or 2) to discover the low-cost passage
that yields a better solution. In both cases, the greedy T-RRTg

version may rapidly cross the barrier and, thus, speed up the
computation compared with the tempered T-RRTt . However, it
may miss the preferred detour path in problem 2) for which
a longer exploration is needed to find the passage. To keep
the performance of an aggressive exploration, while avoiding
this issue, we propose to combine the greedy version of the
planner with a cycle-addition mechanism. The idea is to create
cycles in the tree when good paths initially missed during the
search are discovered afterward. The idea has been tested by
using the technique described in [27] for cycle addition. Fig. 16
shows an initial tree built using a greedy version of T-RRT
that goes through a medium cost region [circled in blue on
Fig. 16(a)] that could have been avoided. The addition of cycles
provides alternative paths and yields higher quality solutions
[see Fig. 16(b)].

VIII. CONCLUSION AND FUTURE WORK

We have presented a sampling-based algorithm to compute
paths in problems which involve high-dimensional cost spaces.
The proposed method combines the exploratory strength of
RRTs, with the efficiency of stochastic-optimization methods.
It integrates an adaptive mechanism that helps to ensure a good
performance for a large set of problems.

The notion of MW path has been proposed to quantify the
quality of solution paths. By design, the proposed T-RRT algo-
rithm computes paths that tend to satisfy such a quality property.
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A large set of experiments were performed to show the efficacy
of the T-RRT planner.

Experimental results have shown that the planner is general
enough to be applied, at least, to 6-D spaces constrained by ob-
stacles. Future work concerns the application of T-RRT to new
classes of problems, such as the integration of human–robot in-
teraction constraints within path planning or the exploration of
energy landscapes in computational biology problems. Exten-
sions discussed in the previous section also need to be further
explored for performance improvement. Furthermore, another
direction is to incorporate in the planner other methods inspired
by Monte Carlo optimization techniques, such as stochastic tun-
neling [28] or parallel tempering [29]. Finally, it would be in-
teresting to test our approach on benchmark problems of the
stochastic optimization community, since T-RRT could be used
as a generic optimization tool and, in principle, applied to any
metric cost space.
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algorithm for self-collision and distance computation between highly ar-
ticulated molecular models,” in Robotics: Science and Systems, S. T. and
G. Sukhatme, S. Schaal, and O. Brock, Eds. Cambridge, MA: MIT
Press, 2005, pp. 6–11.

[27] D. Nieuwenhuisen and M. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp. 446–
452.

[28] K. Hamacher and W. Wenzel, “Scaling behavior of stochastic minimiza-
tion algorithms in a perfect funnel landscape,” Phys. Rev. E, vol. 59, no. 1,
pp. 938–941, Jan. 1999.

[29] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications,
and new perspectives,” Phys. Chem. Chem. Phys., vol. 7, pp. 3910–3916,
2005.

Léonard Jaillet received the engineering degree in
mechanical engineering from the Institut Supérieur
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