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Replicative DNA polymerases (DNAPs) move along tem-

plate DNA in a processive manner. The structural basis of

the mechanism of translocation has been better studied in

the A-family of polymerases than in the B-family of repli-

cative polymerases. To address this issue, we have deter-

mined the X-ray crystal structures of phi29 DNAP, a

member of the protein-primed subgroup of the B-family

of polymerases, complexed with primer-template DNA in

the presence or absence of the incoming nucleoside triphos-

phate, the pre- and post-translocated states, respectively.

Comparison of these structures reveals a mechanism of

translocation that appears to be facilitated by the coordi-

nated movement of two conserved tyrosine residues into

the insertion site. This differs from the mechanism em-

ployed by the A-family polymerases, in which a conserved

tyrosine moves into the templating and insertion sites

during the translocation step. Polymerases from the two

families also interact with downstream single-stranded

template DNA in very different ways.
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Introduction

Single-subunit replicative polymerases contain a polymerase

domain divided into functional subdomains arranged in a

gross common architecture likened to a right hand

(Kohlstaedt et al, 1992). The thumb and fingers subdomains

form the sides of a ‘U’-shaped cleft, at the bottom of which is

the catalytic palm subdomain that utilizes a two-metal ion

mechanism for catalyzing phosphodiester bond formation

(Steitz et al, 1993). The thumb subdomain stabilizes the

primer-template duplex product and the fingers subdomain

contains basic residues that bind the triphosphate moiety of

the incoming nucleotide and the pyrophosphate product of

the phosphoryl transfer reaction (Beese et al, 1993; Doublié

et al, 1998).

The coordinated movements of these subdomains have

been extensively studied in polymerase families, including

family A (bacterial repair polymerases, most bacteriophage

replicative polymerases, and T7 RNA polymerase (RNAP))

and family B (viral and eukaryotic genome replicating en-

zymes) (Rothwell and Waksman, 2005). Structural studies

have led to the suggestion that after binding a primer-

template DNA substrate, A-family polymerases bind an in-

coming nucleoside triphosphate at a pre-insertion site located

near the fingers subdomain before escorting it into the

insertion site (Beese et al, 1993; Li et al, 1998a; Temiakov

et al, 2004), whereas it has been proposed from biochemical

studies that B-family polymerases bind the incoming nucleo-

side triphosphate directly in the insertion site at the base of

the fingers (Yang et al, 2002b). Structural studies of A-family

polymerases have also proposed a pre-insertion site for the

templating base in the replication cycle of this family

(Johnson et al, 2003; Temiakov et al, 2004; Yin and Steitz,

2004); no evidence for a templating pre-insertion site in the B-

family exists. Following the phosphoryl transfer reaction, the

newly incorporated nucleotide moves from the insertion site

to the priming site, allowing the next incoming nucleotide to

bind. This last step, known as translocation, facilitates pro-

cessive movement of a polymerase along template DNA and

is therefore a critical feature of the nucleotide addition cycle

of replicative polymerases (Figure 1).

Polymerases are molecular machines that convert chemi-

cal energy into mechanical energy, and two models, the

power stroke and Brownian-ratchet mechanisms, have been

used to explain the energetics of translocation (Hanson and

Huxley, 1955; Simon et al, 1992). In the context of the

polymerization cycle, the power stroke mechanism derives

the energy for translocation from the dissociation of the

pyrophosphate product of the nucleotidyl transfer reaction,

whereas the Brownian-ratchet mechanism utilizes the kinetic

energy of primer-template diffusion to facilitate the unidirec-

tional movement of the polymerase along the template strand

(Guajardo and Sousa, 1997). Each model has testable predic-

tions, and it is possible that a combination of the two occurs.

Despite a wealth of studies on processive RNAPs and

bacterial DNA polymerases (DNAPs), little is known about

the translocation step in eukaryotic-like replicative DNAPs.

The B-family DNAP of Bacillus subtilis bacteriophage phi29 is

an appealing system in which to study the structural biology
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of B-family replication, because it is small and biochemically

well characterized (Blanco and Salas, 1996). In addition to

the general features of polymerase and exonuclease activities

shared by B-family polymerases, phi29 DNAP has a strand

displacement capacity and high processivity. It can also

initiate replication from a protein primer, terminal protein

(TP), a characteristic that is shared by polymerases from

several pathogenic viruses, such as adenovirus, poliovirus,

and hepatitis virus (Salas, 1991).

Initial structural studies provided insights into the intrinsic

strand displacement, processivity, and protein priming activ-

ities of phi29 DNAP. The structure of the apo phi29 DNAP

exhibited two globular domains, an N-terminal exonuclease

domain and a C-terminal polymerase domain. This structure

contains three tunnels, one of which is formed by the

exonuclease domain and the palm and TP-interacting region

2 (TPR2) subdomains of the polymerase domain. Homology

modeling of a substrate complex using the primer-template

DNA and incoming nucleotide substrates from the ternary

complex of the B-family DNAP from bacteriophage RB69

(Franklin et al, 2001) identified this tunnel at the location

where phi29 DNAP would bind the downstream 50 region of

single-stranded template DNA and suggested mechanisms for

processivity and strand displacement (Kamtekar et al, 2004);

truncation of the TPR2 subdomain reduced processivity and

strand displacement, consistent with the proposed mechan-

ism (Rodrı́guez et al, 2005). These structures also showed

that the two subdomains, TPR1 and TPR2, which are only

present in protein-primed polymerases, interact with the

intermediate and priming domains of TP, respectively

(Kamtekar et al, 2006).

Here, we present four crystal structures of complexes of

phi29 DNAP with substrates. These include the structure of

polymerase bound to a primer-template substrate (binary

complex) in the post-translocated state, before the next

incoming nucleotide binds the polymerase, as well as the

structures of complexes of polymerase bound to two different

primer-templates and their complementary incoming nucleo-

tides (ternary complexes). Finally, we describe the structure

of polymerase bound to single-stranded DNA (ssDNA)

(ssDNA complex). Comparison of the structures of these

complexes allows us to understand ssDNA and double-

stranded DNA binding in B-family DNAPs and to propose a

mechanism of translocation in this family.

Results

Four views of substrate binding: binary, ternary,

exonuclease, and ssDNA template complexes

The structures described here represent different stages of the

replication cycle. One of them contains a molecule of poly-

merase bound to ssDNA in a tunnel that lies downstream of

the active site, a complex that is relevant to understanding

protein-primed initiation. This structure also contains ssDNA

bound at the exonuclease active site. The binary complex

structure contains polymerase bound to a primer-template

DNA substrate that is in the post-translocated position. The

two ternary complexes contain primer-template DNA and an
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Figure 1 The polymerization cycle. Polymerase (pale blue circle) binds a primer-template substrate (blue and red) and then the incoming
dNTP (green). In some polymerases, the incoming dNTP binds a pre-insertion site before binding the insertion site (yellow) opposite the
templating nucleotide. The polymerase then catalyzes the incorporation of the dNTP into the primer strand, resulting in a primer extended by
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incoming nucleotide (dNTP) that is complementary to the

templating base (0 position) (Figure 1). The sequences of the

substrates differ at several positions in these ternary com-

plexes, facilitating sequence-specific comparisons (Table I).

Although the exonuclease and polymerase domains move

slightly with respect to each other, the global structures of the

polymerases complexed with substrate remain largely un-

changed when compared to the apo structures of polymerase

(PDBID 1XI1 and 1XHX). The root mean squared deviations

(RMSD) calculated over all pairs of polymerases in the apo

and complex structures range from 0.7 to 2.8 Å over 572 Ca.
The catalytic palm subdomains (residues 190–260 and 427–

530) of all of these copies of polymerase are very similar, with

an RMSD range of 0.3–1.0 Å over 173 Ca.

Substrate binding

Single-stranded DNA complex. Phi29 DNAP bound to ssDNA

crystallizes in space group P21 and diffracts to better than

1.6 Å resolution (Table I). The two non-crystallographically

related copies in the asymmetric unit are very well ordered,

except for amino acid residues 305–311 in copy A and

residues 305–313 in copy B. These residues are part of a

mobile loop in TPR1 that is only well ordered in the presence

of TP (Kamtekar et al, 2006) or duplex DNA product. The two

copies of polymerase are very similar, with an RMSD of 0.8 Å

over the 561 Ca atoms, but exhibit significant differences in

exonuclease residues 140–145 and at residue Y165 that may

have functional implications for exonuclease activity

(Supplementary Figure S1). Each copy of polymerase in this

crystal form binds the 30 end of one ssDNA emerging from the

downstream template tunnel at the polymerase active site,

and the 30 end of another ssDNA at the exonuclease active

site. One copy of polymerase binds a third ssDNA in a

biologically non-relevant location (Supplementary Figure

S3c).

Binary complex. The crystals of the binary complex diffract

to 2.6 Å resolution and contain four copies of polymerase per

asymmetric unit related by pseudo-222 non-crystallographic

symmetry (Table I). Two of the copies were modeled with a

primer-template substrate (Supplementary Figure S3a). The

other two copies of polymerase in this crystal form have

density for a single-stranded 50 template overhang in the

Table I Data collection and refinement statistics for phi29 DNAP-substrate complexes

Ternary1 Ternary2 Binary ssDNA complex

Substrates
Primera 50-GACTGCTTACAT 50-GACTGCTTACG 50-GACTGCTTAC
Templateb 30-CTGACGAATGTACA 30-CTGACGAATGCACA 30-CTGACGAATGCACAATC
ssDNA 50GGACTTT

Data collection
Resolution limit (Å) 50.0–2.2 (2.28–2.20) 50.0–2.03 (2.10–2.03) 50.0–2.6 (2.69–2.6) 50.0–1.6 (1.66–1.6)
Space group P212121 P21 C2 P21

Copies in the AU
Protein 1 2 4 2
DNA 1 3 2/2c 5

Cell parameters
a, b, c (Å) 58.9, 78.2, 157.8 72.8, 114.7, 104.8 216.6, 146.3, 115.1 54.2, 200.2, 67.0
a, b, g (deg) 90, 90, 90 90, 94.1, 90 90, 117.9, 90 90, 109.4, 90
Unique reflections 36 737 107 450 95 762 172 311
I/s(I) 8.9 (1.2) 16.3 (2.4) 5.8 (1.0) 49.9 (3.7)
Redundancy 4.8 (2.5) 3.5 (2.3) 2.1 (1.9) 6.9 (5.5)
Completeness (%) 97 (83.7) 98 (83.9) 98.4 (95.1) 97.8 (92.2)
Rmerge 0.166 (0.85) 0.076 (0.353) 0.152 (0.773) 0.045 (0.44)

Refinement statistics
Data range 40–2.20 (2.26–2.20) 40–2.03 (2.09–2.03) 50–2.6 (2.67–2.60) 50–1.6 (1.64–1.60)
Rwork/Rfree 19.5/25.4 (26.8/34.0) 18.7/23.4 (23.5/32.3) 21.9/27.3 (36.6/39.7) 16.1/19.4 (22.2/27.5)

RMSD
Bond lengths (Å) 0.010 0.009 0.009 0.011
Bond angles (deg) 1.3 1.3 1.2 1.4

Number of atoms
Protein 4680 9367 18 488 9267
Nucleic acid 534 1493 1207 553
Ions 2 4 0 0
Water 357 969 89 1494

Average B-factors (Å2)
Protein 32.9 22.1 27.3 20.7
Nucleic acid 39.7 23.6 29.3 23.9

PDBID 2PYL 2PYJ 2PZS 2PY5

aThe incoming dNTP of each ternary complex is indicated in bold.
bThe 0 position on the template strand is underlined.
cIn the binary crystal form, there are two copies of primer-template substrate and two copies of single-stranded template.
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downstream template tunnel, but are missing amino acids

306–314 and the duplex region of the primer-template due to

disorder. Averaged electron density maps indicated the pre-

sence of one of the two missing primer-template duplex

regions, but the quality of this density was poor and it was

therefore not included in the final model.

The binary complex is representative of a post-transloca-

tion state (Figure 1), as the primer terminus occupies the

priming site. The phosphate moiety of the priming nucleotide

interacts with the invariant Y500 in motif KxY as predicted

(Figure 2D) (Blasco et al, 1995). Two residues, Y254 and

Y390, occupy the insertion site. The former (Y254) is called

the steric gate residue, because its location in the active site

would lead to a steric clash with the 20-hydroxyl of a

ribonucleotide (Gao et al, 1997; Franklin et al, 2001), thereby

preventing the incorporation of ribonucleotides into the

primer strand (Bonnin et al, 1999). The latter amino acid,

Y390, is from a B-family conserved sequence motif at the

base of the fingers subdomain. Neither of the catalytic metal

ions is observed in this complex, and, similar to the binary

complexes from the A-family (Li et al, 1998b; Johnson et al,

2003), one of the catalytic aspartates (D249) is not properly

oriented for catalysis (Figure 2A and C).

Ternary complexes. The ternary1 and ternary2 complexes

crystallize in space groups P212121 and P21, and diffract to
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2.2 and 2.0 Å resolution, respectively (Table I). The orthor-

hombic crystal form contains one copy of polymerase bound

to primer-template DNA and incoming nucleotide per asym-

metric unit. The monoclinic crystal form contains two ternary

complexes and a third copy of primer-template DNA bound in

a biologically non-relevant manner (Supplementary Figure

S3b). The RMSDs over the 173 Ca in the catalytic palm

subdomain among the three copies of ternary complex

range from 0.6–0.8 Å. We have chosen copy A of the ternary2

complex, except where noted, as a representative ternary

complex in all of the following discussion, because it is well

ordered in electron density maps (Figure 2B).

In the ternary complexes, the dNTP is bound at the

insertion site, poised for catalysis (Figure 1) and the primer

terminus occupies the priming site. The priming nucleotide in

each of the ternary complexes interacts with Y500 of motif

KxY (Figure 2D) (Blasco et al, 1995). In each complex, the

base moiety of the dNTP forms a Watson–Crick base pair

with the templating nucleotide and its deoxyribose ring

stacks on the phenolic side chain of the steric gate residue,

Y254. This steric gate side chain occupies a less favorable

rotameric state, which is also observed in other ternary

complexes (Huang et al, 1998; Franklin et al, 2001), suggest-

ing that the stacking interaction with a sugar moiety of a

nucleotide stabilizes its unusual conformation. Along with

Y254, the side chain of the tyrosine from conserved sequence

motif 2a (Y390) forms part of the nascent base pair-binding

pocket. Y390 also interacts with the hydroxyl of Y226 through

a hydrogen bond. Both aspartates that bind the catalytic

magnesium ions participate in the active site (Figure 2B

and C).

The phosphates of the incoming dNTP interact with the

basic side chains of residues K371 and K383 from the fingers

subdomain. Consistent with mutational data, the conserved

sequence motif B residue K383 (Saturno et al, 1997) interacts

with the a- and g-phosphates of the incoming dNTP, and the

pre-B motif residue K371 (Truniger et al, 2002) interacts with

the g-phosphate (Figure 2B). It is possible that these residues

comprise part of a pre-insertion-binding site for the nucleo-

tide, as, in the apo structure, they were observed to interact

with sulfate ions which are sterically and electrostatically

similar to the phosphate groups of a nucleotide (PDBID:

1XHX) (Kamtekar et al, 2004), although kinetics experiments

with the B-family DNAP from bacteriophage RB69 have been

interpreted to indicate the absence of a pre-insertion site in

that system (Yang et al, 2002b). Biochemical experiments

(Truniger et al, 2004) and sequence alignments with a con-

served arginine from the A-family (Doublié et al, 1998) have

implicated a third lysine residue, K379, in dNTP binding. The

structure shows that K379 interacts with the g-phosphate
indirectly through a network of water molecules.

The ternary complex structure contains both metal ions, A

and B, which have respectively been assigned as a magne-

sium ion and a manganese ion in the ternary2 complex based

on an anomalous difference Fourier map (Figure 2C). The

a- and g-phosphates of the incoming dNTP, the catalytic

aspartate residues (D249 and D458), and the carbonyl of

V250 of the palm subdomain coordinate the catalytic metals.

A 20, 30-dideoxynucleotide was incorporated at the primer

terminus to facilitate the formation of a ternary complex, and

the absence of the 30 hydroxyl results in a slightly skewed

coordination geometry of metal ion A.

While the structure of this ternary complex confirms the

general substrate positioning in phi29 DNAP that was pre-

dicted from our previous homology modeling using the

ternary complex of RB69 DNAP, some features are clearly

different. The presence of the TPR2 subdomain in phi29

DNAP that is absent in RB69 DNAP results in a slight shift

in the position of the DNA from its homology model place-

ment (Franklin et al, 2001; Kamtekar et al, 2004). As pre-

dicted, the upstream duplex is topologically encircled by the

thumb and TPR2 subdomains, but the base pairs distal to the

active site interact with subdomain TPR2, resulting in their

displacement ofB5 Å off the active site relative to the DNA in

the homology-modeled complex. The structure also resolves

the minor clashes between the thumb and the upstream

duplex observed in the modeling. Likewise, the single-

stranded downstream template enters the active site through

the downstream template tunnel formed from the exonu-

clease domain and the TPR2, palm, and fingers subdomains,

as predicted, but the interactions within the tunnel were

unpredicted, and have implications for sequence-indepen-

dent recognition of template DNA as well as for the mechan-

ism of translocation.

Comparison of the pre-translocation ternary and post-translo-

cation binary complexes. The binding of the incoming dNTP

triggers a 141 rotation of the fingers subdomain toward the

polymerase active site (Figure 2), corresponding to a B7 Å

movement of the tip of the fingers. As in other polymerases,

the triphosphate moiety of the incoming nucleotide acts as an

electrostatic crosslink between conserved residues of the

fingers and the catalytic metal ions chelated to the conserved

carboxylates, thereby keeping the fingers closed (Doublié et al,

1998; Huang et al, 1998; Li et al, 1998b; Franklin et al, 2001;

Yin and Steitz, 2004). Once closed, the fingers complete the

nascent base pair-binding pocket (Figure 2B and C).

The structure of the duplex DNA in the binary complex is

distorted compared to its structure in the ternary complex.

The nucleotide bases in the binary structure are substantially

displaced, with the entire nucleotide at the –1 position of the

template strand lifted almost 2 Å off the active site, whereas

the positions of the phosphate backbones shift with an RMSD

of less than 1 Å. The distortion of the duplex DNA appears to

be a consequence of the position of the templating nucleo-

tide. When the fingers are closed, the nascent base pair-

binding pocket holds the templating nucleotide in position

and the upstream bases of the template strand stack accord-

ingly. However, in the binary complex, where the fingers are

opened, the residues completing the nascent base pair bind-

ing pocket are too far away to stabilize the nucleotide in the

templating position. This results in the displacement of the

templating nucleotide by B1.5 Å upstream from its position

in the ternary complex; the stacking of the upstream nucleo-

tides follows, slightly distorting the duplex (Figure 2D).

Similar systematic shifts are observed in comparing the

binary and ternary complexes of the A-family polymerases

from B. stearothermophilus (Johnson et al, 2003) and

Thermus aquaticus (Li et al, 1998b), and the X-family poly-

merase b from rat (Pelletier et al, 1994, 1996), suggesting that

this could be the more stable DNA conformation in the

absence of an incoming dNTP.

Despite these shifts in the binary and ternary complexes,

an extensive water network mediating most of the protein–
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nucleic acid interactions is conserved among different com-

plexes. In both the binary and ternary complexes, the poly-

merase makes contacts with the sugar-phosphate backbone

of duplex DNA through a few direct interactions and through

multiple water-mediated hydrogen bonds (Figure 3 and

Supplementary Figure S2). The only direct side chain contact

with the minor groove of the duplex product is made by a

highly conserved lysine (K498) that interacts with the N3 of a

purine or the O2 of a pyrimidine at the primer strand –2

position (Figure 3). More than thirty ordered water molecules

facilitate hydrogen bonds between conserved and noncon-

served amino acids and the DNA duplex in each of the

ternary complexes and in the binary complex to maintain

flexibility in duplex binding (Figure 3 and Supplementary

Figure S2). Several of these water molecules are also present

in the apo polymerase structures. These water molecules thus

act as surrogate side chains, as the entropic penalty for their

immobilization is independent of the binding of DNA duplex.

The opening of the fingers that occurs in the transition

from the ternary complex to the binary complex is accom-

panied by several mechanistically significant changes. When

the fingers open, the side chain of Y390 from conserved

sequence motif 2a moves into the insertion site, such that

the newly incorporated nucleotide can no longer reside there.

This observation is consistent with biochemical data suggest-

ing that Y390 interacts either directly or indirectly with the

incoming dNTP (Blasco et al, 1992). If no nucleotide occupies

the insertion site, the steric gate residue (Y254) can flip to its

most favorable rotamer. This rotamer places the phenolic ring

of the steric gate residue directly in the insertion site, stacking

on the conserved tyrosine at the base of the fingers (Y390),

one of the most energetically stable tyrosine–tyrosine inter-

actions (Chelli et al, 2002) (Figure 2A and C). The positions of

both of these tyrosine residues in the insertion site preclude

the primer terminus from binding at the insertion site while

the fingers are opened. Therefore, the primer terminus must

move to the priming site, resulting in translocation of the

DNA by one nucleotide.

The rotation of Y390 breaks its hydrogen bond with Y226

(Figure 2C), a residue in the conserved B-family I/YxGG/A

sequence motif that has been proposed to be involved in

template binding at the active site and in protein priming

(Truniger et al, 1996, 1999; Brenkman et al, 2001). In the

structures of these complexes, this motif stabilizes the nu-

cleotides in the –1 and –2 positions of the template strand

by van der Waals and hydrogen-bonding interactions

(Figure 4A), as predicted by mutagenesis studies in B-family

polymerases (Truniger et al, 1999; Brenkman et al, 2001).

K498

Y315

Y390

G229

−−2 Template strand
position

A:T

Ternary2

K498

Y315

Y390

G229

−2 Template strand
positionC:G

Ternary1

T231T231

Figure 3 Water-mediated interactions maintain sequence nonspecific binding. The C:G base pair is from the ternary1 complex, and the A:T
base pair is from the ternary2 complex. Red spheres are water molecules and black dashes are hydrogen bonds. Amino acids are colored by
subdomain as in Kamtekar et al (2004).
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ssDNA (A,B)
Binary (A,B,C,D)
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Figure 4 The I/YxGG/A motif. (A) The primer and template strands from the ternary complex are shown as yellow and gray sticks,
respectively. The template strand and the residues of the I/YxGG/A motif are shown as spheres. (B) The two distinct populations of Y226 are
shown in sticks based on a superposition of the palm subdomain. The residues are colored by crystal structure.
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However, in the absence of DNA, such as in the apo poly-

merase (PDBID 1XHX and 1XI1) or the polymerase–TP com-

plex (PDBID 2EX3), Y226 assumes a position that would

sterically clash with the path of template DNA emerging

from the downstream template tunnel into the active site.

These two distinct populations are consistent among 20

of the 21 crystallographically independent copies of phi29

DNAP available (Figure 4B), and may provide insight into

the role of this residue in protein-primed initiation of

replication.

Downstream template. As expected for a processive replica-

tive polymerase, phi29 DNAP interacts with ssDNA in a

sequence nonspecific manner (Figure 5). In all complexes

containing ssDNA, residues in the downstream template

tunnel interact with the two nucleotides that lie immediately

downstream (þ 1 and þ 2) of the templating nucleotide (0).

The base of the þ 1 nucleotide on the template strand is

unstacked from the bases of adjacent nucleotides of the

single-stranded 50 template overhang (Figure 5A). The base

of this unstacked nucleotide fits into a pocket formed by

residues V399 and K422 (TPR2 subdomain) and I93 (exonu-

clease domain) and completed by the nucleotide 50 to the

unstacked nucleotide, whereas the sugar stacks on the side

chain of Y101 (Figure 5C and D). The downstream template

tunnel does not pack tightly around the unstacked pyrimidine

base (Figure 5B) and is large enough to accommodate a

purine base, suggesting that during processive synthesis,

the size of the downstream template tunnel may remain

constant. The þ 2 nucleotide sits on a hydrophobic surface

formed by exonuclease residues M102, I93, and M188.

Presumably, the large number of hydrophobic interactions

with the bases in the downstream template tunnel compen-

sates for the energy lost by unstacking the þ 1 nucleotide.

Several hydrophilic residues at the edges of the down-

stream template tunnel stabilize the polar groups of the

nucleotides. Residues Y101, T189, S192, K392, and N396

interact with the backbone through water-mediated and

direct hydrogen bonds. The þ 2 nucleotide interacts through

water-mediated hydrogen bonds with D104 and N91. Finally,

within the downstream template tunnel, the functional group

at the C6 position of a þ 1 purine interacts with the phos-

phate of the þ 2 nucleotide (Figure 5C); no interaction

between this phosphate and a þ 1 pyrimidine is observed

(Figure 5D).

Discussion

Those DNAPs that processively replicate long stretches of

DNA must maintain intimate, but sequence nonspecific inter-

actions with their substrates. The crystal structures with

ssDNA and double-stranded DNA presented here illuminate

Incoming dNTPIncoming dNTP

Primer

TemplateTemplate

+1 Nucleotide+1 Nucleotide

I93

Y101

V399
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Templating
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polpol
activeactive
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Figure 5 ssDNA in the downstream template tunnel. (A) A space filling representation of polymerase sliced through a plane showing the
primer-template substrate and the single-stranded 50 template overhang in the downstream template tunnel. The þ 1 nucleotide is shown in
yellow, the incoming nucleotide in magenta, the primer strand in green and the template strand in blue. (B–D) The ssDNA substrate is gray, the
þ 1 nucleotide is yellow. Polymerase residues are colored by domain and subdomain as in Kamtekar et al (2004). (B) An overlay of the
substrates from the ternary1 (light yellow and light gray) and ternary2 (dark yellow and dark gray) crystal forms. The polymerase shown is a
space filling representation from the ternary1 crystal form. The purine base has no clashes with the protein from the complex containing an
unstacked pyrimidine, indicating that the downstream template tunnel does not constrict around pyrimidine bases. (C) A purine base in the
unstacked position interacts with residues from the exonuclease domain and the TPR2 subdomain in the ternary2 crystal form. The van der
Waals radii of the residues are indicated by dots. (D) A pyrimidine base in the þ 1 template position in the ternary1 crystal form.
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how this is achieved by phi29 DNAP. In addition, the struc-

tures of the binary and ternary complexes provide insight into

the mechanism of translocation in the B-family of poly-

merases.

Downstream template binding/pre-insertion site

Polymerases universally possess a binding pocket for the

nascent base pair that contains a flat interface with which

to check for planarity inherent in a correct Watson–Crick

nascent base pair (Blasco et al, 1993; Freisinger et al, 2004).

Consequently, the base of the þ 1 nucleotide is unstacked

from the templating nucleotide in polymerase families A, B,

X, and Y, reverse transcriptases, and eukaryotic RNAPs

(Pelletier et al, 1994; Doublié et al, 1998; Huang et al, 1998;

Li et al, 1998b; Franklin et al, 2001; Gnatt et al, 2001). In

phi29 DNAP, this is accomplished by a kinking of the

template strand that is necessary for it to avoid steric clashes

with the C-terminal a-helix of the exonuclease domain and to

allow conserved residues from the fingers subdomain (N387

and S388 in phi29), shown to interact with the primer-

template and affect polymerization activity (Blasco et al,

1993), to stack on the nascent base pair when the fingers

close (Figure 2B–D). Comparisons of the structures of phi29

DNAP and other polymerases show that the way in which

they interact with þ 1 nucleotides varies greatly among

polymerase families and even within them, although they

may all share a common theme of compensating for the loss

of base–base stacking energy through van der Waals interac-

tions between the polymerase and this base.

These differences in the interactions between polymerase

and the unstacked nucleotide can be illustrated by comparing

examples of A- and B-family polymerases. In the A-family,

when the fingers are opened, a tyrosine from the fingers

subdomain occupies the templating and insertion sites, pre-

cluding the next templating nucleotide from stacking on the

upstream duplex (Li et al, 1998b; Johnson et al, 2003; Yin and

Steitz, 2004). The polymerase accommodates the unstacked

nucleotide in a hydrophobic pre-insertion site that is a

relatively flat surface in T7 RNAP, and a pocket in B.

stearothermophilus DNAP (Kiefer et al, 1998; Johnson et al,

2003; Yin and Steitz, 2004). When the fingers close, the

unstacked nucleotide moves into templating position as the

tyrosine moves out, and residues from the fingers domain

move in to collapse the pre-insertion pocket (Figure 6B).

These structural observations are consistent with fluores-

cence studies suggesting the dramatic movement of the
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stearothermophilus DNAPs are from 1L3S (binary) and 1LV5 (ternary). For consistency, all numbers refer to the templating positions before
nucleotide addition. In all panels, the template nucleotide of the nascent base pair is shown in orange (�1), the next templating nucleotide in
pink (0), and the one 50 to it in yellow (þ 1). All residues are shown as spheres, except for the conserved A-family tyrosine (714 in
B. stearothermophilus DNAP), which is shown as sticks inside spheres to emphasize its movement, and Y101 from phi29 DNAP shown as sticks
inside spheres for clarity. (A) When the fingers are opened in a B-family DNAP, the þ 1 nucleotide is stabilized by nonconserved hydrophobic
interactions, and the templating site is occupied by the templating nucleotide from the last round of incorporation. When the fingers close, no
significant movements within the DNA occur. (B) A superposition of the DNA from the binary and ternary complexes of phi29 DNAP. The DNA
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templating base from the pre-insertion site into the templat-

ing site on nucleotide binding by the Klenow fragment of

DNAP I (Purohit et al, 2003). In contrast, the movements in

the B-family are much more subtle and the dislocated base is

not stabilized within a pre-insertion site that collapses on

fingers closing. Because B-family DNAPs have no residue

homologous to the A-family tyrosine that blocks the templat-

ing site, the next templating base always occupies the tem-

plating site (Figure 6A).

The different interactions that A- and B-family polymerases

make with the single-stranded downstream template over-

hang lead to distinct structural mechanisms of translocation.

Both of these mechanisms are based on the steric exclusion of

the nascent base pair. In the A-family, the conserved tyrosine

responsible for translocation occupies both the insertion and

the templating sites; in the B-family, the conserved tyrosine

residues involved in translocation occupy only the insertion

site. Therefore, it appears that translocation in the B-family

originates from the movement of the primer strand and the

concomitant movement of the interacting template strand,

whereas this movement in the A-family is centered at the

nascent base pair.

Conformational equilibrium of the fingers subdomain

and the mechanism of translocation

The fingers subdomains of replicative polymerases exist in

opened and closed states, with the opened conformation

dominating the equilibrium in the absence of incoming

nucleotide substrate or pyrophosphate product. A plausible

hypothesis for the ability of an incoming nucleotide to shift

the equilibrium from the opened to closed conformation is

that favorable interactions with both the basic residues in the

fingers and the catalytic metal ions chelated by conserved

residues of the palm subdomain are possible in the closed

conformation, thereby enabling the phosphates of the nucleo-

tide to electrostatically crosslink these two subdomains. After

the chemistry step of the polymerization cycle, the dissocia-

tion of the pyrophosphate product releases the electrostatic

crosslink stabilizing the closed conformation.

In both the A- and B-family polymerases, the conforma-

tional change of the fingers subdomain from opened to closed

is necessary for the binding of the incoming nucleotide in the

insertion site. In the B-family, as seen in the structures we

have described above, the closing of the fingers subdomain

moves the two conserved tyrosine side chains out of the

insertion site into their positions in the nascent base pair-

binding pocket. This contrasts with polymerases such as T7

RNAP, where the closing of the fingers moves a tyrosine

conserved only within the A-family out of the insertion and

templating sites, allowing the templating base to move into

templating position and the incoming nucleotide to bind the

insertion site.

Structural studies of T7 RNAP indicate that the active site

residues and substrate remain in virtually the same positions

in the post-insertion pre-translocation and post-chemistry

pre-translocation states (Yin and Steitz, 2004). On pyropho-

sphate dissociation, the fingers subdomain opens, moving

the aforementioned conserved tyrosine of the fingers subdo-

main 3.4 Å into the insertion and templating sites. The net

consequence is the translocation of the nascent base pair out

of the nascent base pair binding pocket into the –1 position

(Yin and Steitz, 2004). From these studies, Yin and Steitz

(2004) predicted a similar mechanism for all polymerases

that undergo a conformational change in response to nucleo-

tide binding.

Assuming, as mutational data indicate, that the chemical

step does not drastically alter the conformations of amino

acids at the active site of B-family polymerases (Truniger

et al, 2002), our structures of the binary and ternary com-

plexes of phi29 DNAP provide a basis for proposing a

structural mechanism of translocation for the B-family of

polymerases. In this mechanism, in phi29 DNAP, as in T7

RNAP, the dissociation of the pyrophosphate product breaks

the electrostatic link between the catalytic magnesium ions

and the basic residues of the fingers subdomain that stabi-

lizes and maintains the closed conformation of the fingers

subdomain. When the fingers pivot to the opened position,

the two conserved tyrosine residues, Y390 and Y254, enter

the insertion site (Figure 2). Thus, in the opened conforma-

tion, the primer terminus can only be positioned in the post-

translocation priming site, as the pre-translocation position is

sterically inaccessible (Supplementary Movie). These obser-

vations are consistent with the biochemical data obtained

with mutants at both tyrosine residues suggesting a direct or

indirect interaction with the incoming dNTP (Blasco et al,

1992).

Whereas the principle of promoting translocation out of

the nascent base pair-binding pocket by the steric exclusion

of the nascent base pair seems to be a common theme among

replicative polymerases of known structure, the residues

involved are only conserved within polymerase families

and not among different families. The residues involved in

B-family polymerase translocation from sequence motifs 1

and 2a, Y254 and Y390, respectively, in phi29 DNAP, have

previously been implicated in maintaining processive

replication and in the binding of an incoming dNTP

opposite a template base in B-family DNAPs from phi29

and RB69 (Blasco et al, 1992; Bonnin et al, 1999; Truniger

et al, 1999; Yang et al, 1999, 2002a, 2005). Residue Y390 has

no structural homolog in the A-family, whereas Y254, the

steric gate residue, is an invariant glutamate in A-family

polymerases (Astatke et al, 1998). The steric gate residue

is not thought to play a role in translocation in the A-family

(Yin and Steitz, 2004). Therefore, this study assigns

an additional role for the steric gate residue in B-family

polymerase translocation.

Although the structures of these binary and ternary sub-

strate complexes with phi29 DNAP provide a structural basis

for understanding the mechanism of translocation in B-family

polymerases, they cannot, by themselves, address the thermo-

dynamic and kinetic aspects of the translocation process. The

structures are consistent with at least two possible kinetic

schemes. If, for example, the diffusion of the primer terminus

between the pre- and post-translocated positions is slower

than the conformational change of the fingers subdomain,

then a power stroke mechanism will dominate. However,

if the diffusion of the DNA is faster than the conformational

change of the fingers (including the changes in the tyrosine

positions), a Brownian-ratchet model would better describe

the translocation process. Whereas energetic conclusions

drawn on the basis of disorder in crystal structures can be

unreliable, the observation that two of the copies of primer-

template DNA in the binary complex are ordered

(Supplementary Figure S3a) and two are disordered is consis-
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tent with the possibility that the primer-template diffuses

along the helical axis.

Implications for protein priming

The sequence nonspecific interactions of phi29 DNAP with

the ssDNA in the downstream template tunnel suggest that it

alone cannot establish register of the template. In the context

of protein priming, where the polymerase adds the first

nucleotide to S232 of TP by pairing it with the second

nucleotide from the 30 end of the template (Méndez et al,

1992), the priming domain of TP must position the template

in the active site by sterically excluding it from the upstream

duplex binding region of polymerase. This implies that steric

exclusion and end recognition are responsible for the origin

specificity.

Following incorporation of the first nucleotide, phi29

DNAP exhibits a sliding back motion (Méndez et al, 1992).

In subsequent rounds of incorporation, this sliding back

motion is exchanged for the typical processive, unidirectional

movement of replicative polymerases. As described above,

the position of Y226 in the apo structures clashes with

the position of the –2 nucleotide of the template strand

in the ternary complex. This supports mutational data

implicating this residue in stable duplex binding at the

active site (Truniger et al, 1996, 1999; Brenkman et al,

2001). These observations suggest that the rotameric

change of Y226 may be important in the switch from an

initially retrograde motion to the typical movement seen

in processive DNAPs.

In summary, the structures presented here demonstrate

how phi29 DNAP maintains sequence-nonspecific interac-

tions with ssDNA and double-stranded DNA. They also

allow us to define how DNA moves through the active

site of a B-family DNAP. This mechanism of translocation

is conceptually similar, but structurally distinct from that

proposed for A-family polymerases. It assigns additional,

unpredicted roles for the steric gate residue and a conserved

tyrosine from the fingers subdomain in translocation, and

has implications for the mechanism of protein-primed

initiation.

Materials and methods

Proteins and oligonucleotides
Exonuclease-deficient phi29 DNAP (D12A/D66A) and phi29 TP
were expressed and purified as described previously (Prieto
et al, 1984; Lázaro et al, 1995) and stored at �801C as ammonium
sulfate pellets. The pellets were resuspended to B15–18mg/ml
(polymerase) or B8–10mg/ml (TP) in 250mM NaCl, 50mM
Tris–HCl (pH 7.5), 20mM ammonium sulfate, and 10mM MgCl2
or 10mM MnCl2.

The oligonucleotides used are indicated in Table I. The
primer:template substrates were annealed by incubation at 801C
(3mM of each oligonucleotide in 20mM Tris–HCl (pH 7.5), 10mM
NaCl) for 5min followed by slow cooling for 2–12h.

Sample preparation, crystallization, and stabilization
To form the binary complex, polymerase (12mg/ml) and pre-
annealed primer-template (0.6mM) were incubated at 41C for
30min before stepwise dialysis from 250 to 25mM NaCl in the
presence of 10mM MgCl2. The mixture was then diluted to 10mg/
ml polymerase þ 0.5mM primer:template with buffer. Crystals
were grown by vapor diffusion at 201C by mixing equal parts of the

diluted incubation mixture and well solution. The binary crystals
grew from a well solution of 100mM Tris–HCl (pH 8.5), 20% PEG
10 000, 200mM MgCl2, were stabilized in the presence of 0.5mM
pre-annealed primer-template in 22% PEG 10 000, and cryopro-
tected by increasing the concentration of ethylene glycol to 20%
before freezing in liquid propane.

To obtain the ternary complexes, polymerase and pre-annealed
primer:template were incubated at 1.2X(12mg/ml polymerase,
0.6mM primer-template) for 30min at 41C before the stepwise
dialysis down to 50mM NaCl in the presence of 10mMMnCl2. After
dialysis, the incubation mixtures were diluted to 1X(10mg/ml
polymerase, 0.5mM primer-template).

For the ternary1 complex crystals, the 1X mixture of polymerase
and primer:template was incubated with 5mM ddATP for 90min,
followed by a 15min incubation with 1mM dTTP. These crystals
grew from a well solution of 100mM CHES (pH 9.5), 15–20% PEG
8000. Typically, 2ml of the incubation reaction was mixed with an
equal volume of well solution. They were stabilized in the presence
of 1mM dTTP in 22% PEG 8000, and cryoprotected by increasing
the concentration of ethylene glycol in a stepwise manner to 30%
before freezing in liquid propane.

To grow the ternary2 complex crystals, a 1X solution of
polymerase and primer:template was incubated with 5mM
ddCTP for 90min, followed by a 15-min incubation with 1mM
dGTP. These crystals grew from a well solution of 100mM
sodium acetate (pH 4.6), 200mM ammonium acetate, 15%
PEG 4000. Typically, 2 ml of the incubation reaction was mixed
with an equal volume of well solution. The ternary2 crystals were
stabilized in the presence of 1mM dGTP in 22% PEG 4000, and
cryoprotected in steps up to 25% ethylene glycol before freezing in
liquid propane.

To obtain the ssDNA complex form, an equimolar ratio of
polymerase (B8mg/ml) and TP (B4mg/ml) was dialyzed in buffer
containing manganese down to 50mM NaCl. This protein stock was
diluted to 8.5mg/ml final concentration of total protein and
incubated with 1mM template, 1mM dATP, 1mM dGTP, 5mM
ddTTP, 10mM magnesium acetate, in a buffer of 20mM Tris–HCl
(pH 7.5), 20mM ammonium acetate, 1mM DTT, and 50mM NaCl.
These crystals grew from a 1:1 mixture of reaction incubation and
well solution consisting of 0.1M MES (pH 6.5), 12% PEG 20K. The
high-resolution polymerase crystal was stabilized in 18% PEG 20K,
and cryoprotected in steps up to 22.5% ethylene glycol before
freezing in liquid propane.

Structure determination, refinement, and analysis
Diffraction data were integrated and scaled using the HKL software
suite (Otwinowski and Minor, 1997). The structures of all
complexes were solved by molecular replacement using the
apo polymerase model (Kamtekar et al, 2004) without the
fingers subdomain as the search model in the program PHASER
(McCoy et al, 2005). The models were built using the programs
O (Jones et al, 1991) and Coot (Emsley and Cowtan, 2004),
and refined with the program REFMAC (Murshudov et al,
1997). Simulated annealing omit maps were calculated using
CNS (Brunger et al, 1998). Structure superposition by least square
fitting was performed in LSQKAB (Kabsch et al, 1976) or in
LSQMAN (Kleywegt, 1999). Figures were made using Pymol
(DeLano, 2002).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Doublié S, Tabor S, Long AM, Richardson CC, Ellenberger T (1998)
Crystal structure of a bacteriophage T7 DNA replication complex
at 2.2 A resolution. Nature 391: 251–258

Emsley P, Cowtan K (2004) Coot: model-building tools for molecu-
lar graphics. Acta Crystallogr D 60: 2126–2132

Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating
complex of a pol alpha family DNA polymerase. Cell 105: 657–667

Freisinger E, Grollman AP, Miller H, Kisker C (2004) Lesion (in)-
tolerance reveals insights into DNA replication fidelity. EMBO J
23: 1494–1505

Gao G, Orlova M, Georgiadis MM, Hendrickson WA, Goff SP (1997)
Conferring RNA polymerase activity to a DNA polymerase: a
single residue in reverse transcriptase controls substrate selec-
tion. Proc Natl Acad Sci USA 94: 407–411

Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001)
Structural basis of transcription: an RNA polymerase II elonga-
tion complex at 3.3 A resolution. Science 292: 1876–1882

Guajardo R, Sousa R (1997) A model for the mechanism of poly-
merase translocation. J Mol Biol 265: 8–19

Hanson J, Huxley HE (1955) The structural basis of contraction in
striated muscle. Symp Soc Exp Biol 9: 228–264

Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure
of a covalently trapped catalytic complex of HIV-1 reverse
transcriptase: implications for drug resistance. Science 282:
1669–1675

Johnson SJ, Taylor JS, Beese LS (2003) Processive DNA synthesis
observed in a polymerase crystal suggests a mechanism for the
prevention of frameshift mutations. Proc Natl Acad Sci USA 100:
3895–3900

Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved
methods for building protein models in electron density maps
and the location of errors in these models. Acta Crystallogr A 47
(Part 2): 110–119

Kabsch W, Kabsch H, Eisenberg D (1976) Packing in a new crystal-
line form of glutamine synthetase from Escherichia coli. J Mol Biol
100: 283–291

Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M,
Blanco L, Salas M, Steitz TA (2004) Insights into strand displace-
ment and processivity from the crystal structure of the protein-
primed DNA polymerase of bacteriophage phi29. Mol Cell 16:
609–618

Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L,
Salas M, Steitz TA (2006) The phi29 DNA polymerase:protein-
primer structure suggests a model for the initiation to elongation
transition. EMBO J 25: 1335–1343

Kiefer JR, Mao C, Braman JC, Beese LS (1998) Visualizing DNA
replication in a catalytically active Bacillus DNA polymerase
crystal. Nature 391: 304–307

Kleywegt GJ (1999) Experimental assessment of differences be-
tween related protein crystal structures. Acta Crystallogr D 55:
1878–1884

Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992)
Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase
complexed with an inhibitor. Science 256: 1783–1790

Lázaro JM, Blanco L, Salas M (1995) Purification of bacteriophage
phi 29 DNA polymerase. Methods Enzymol 262: 42–49

Li Y, Kong Y, Korolev S, Waksman G (1998a) Crystal structures of
the Klenow fragment of Thermus aquaticus DNA polymerase I
complexed with deoxyribonucleoside triphosphates. Protein Sci 7:
1116–1123

Li Y, Korolev S, Waksman G (1998b) Crystal structures of open and
closed forms of binary and ternary complexes of the large
fragment of Thermus aquaticus DNA polymerase I: structural
basis for nucleotide incorporation. EMBO J 17: 7514–7525

McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005)
Likelihood-enhanced fast translation functions. Acta Crystallogr
D 61: 458–464

Méndez J, Blanco L, Esteban JA, Bernad A, Salas M (1992) Initiation
of phi 29 DNA replication occurs at the second 30 nucleotide of
the linear template: a sliding-back mechanism for protein-primed
DNA replication. Proc Natl Acad Sci USA 89: 9579–9583

Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macro-
molecular structures by the maximum-likelihood method. Acta
Crystallogr D 53: 240–255

Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data
collected in oscillation mode. Methods Enzymol 276: 307–326

Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J (1994)
Structures of ternary complexes of rat DNA polymerase beta, a
DNA template-primer, and ddCTP. Science 264: 1891–1903

Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J (1996)
Crystal structures of human DNA polymerase beta complexed
with DNA: implications for catalytic mechanism, processivity,
and fidelity. Biochemistry 35: 12742–12761

Prieto I, Lázaro JM, Garcia JA, Hermoso JM, Salas M (1984)
Purification in a functional form of the terminal protein
of Bacillus subtilis phage phi 29. Proc Natl Acad Sci USA 81:
1639–1643

Purohit V, Grindley ND, Joyce CM (2003) Use of 2-aminopurine
fluorescence to examine conformational changes during nucleo-
tide incorporation by DNA polymerase I (Klenow fragment).
Biochemistry 42: 10200–10211

Rodrı́guez I, Lázaro JM, Blanco L, Kamtekar S, Berman AJ,
Wang J, Steitz TA, Salas M, de Vega M (2005) A specific
subdomain in phi29 DNA polymerase confers both processivity
and strand-displacement capacity. Proc Natl Acad Sci U S A 102:
6407–6412

Rothwell PJ, Waksman G (2005) Structure and mechanism of DNA
polymerases. Adv Protein Chem 71: 401–440

Salas M (1991) Protein-priming of DNA replication. Annu Rev
Biochem 60: 39–71

Saturno J, Lázaro JM, Esteban FJ, Blanco L, Salas M (1997) o29
DNA polymerase residue Lys383, invariant at motif B of DNA-
dependent polymerases, is involved in dNTP binding. J Mol Biol
269: 313–325

Simon SM, Peskin CS, Oster GF (1992) What drives the transloca-
tion of proteins? Proc Natl Acad Sci USA 89: 3770–3774

Steitz TA, Smerdon S, Jager J, Wang J, Kohlstaedt LA, Friedman JM,
Beese LS, Rice PA (1993) Two DNA polymerases: HIV reverse
transcriptase and the Klenow fragment of Escherichia coli
DNA polymerase I. Cold Spring Harb Symp Quant Biol 58:
495–504

Translocation in B-family DNA polymerases
AJ Berman et al

The EMBO Journal VOL 26 | NO 14 | 2007 &2007 European Molecular Biology Organization3504



Temiakov D, Patlan V, Anikin M, McAllister WT, Yokoyama S,
Vassylyev DG (2004) Structural basis for substrate selection by
t7 RNA polymerase. Cell 116: 381–391

Truniger V, Blanco L, Salas M (1999) Role of the ‘YxGG/A’ motif of
Phi29 DNA polymerase in protein-primed replication. J Mol Biol
286: 57–69

Truniger V, Lázaro JM, Esteban FJ, Blanco L, Salas M (2002) A
positively charged residue of phi29 DNA polymerase, highly con-
served in DNA polymerases from families A and B, is involved in
binding the incoming nucleotide. Nucleic Acids Res 30: 1483–1492

Truniger V, Lázaro JM, Salas M (2004) Two positively charged
residues of phi29 DNA polymerase, conserved in protein-primed
DNA polymerases, are involved in stabilisation of the incoming
nucleotide. J Mol Biol 335: 481–494

Truniger V, Lázaro JM, Salas M, Blanco L (1996) A DNA binding
motif coordinating synthesis and degradation in proofreading
DNA polymerases. EMBO J 15: 3430–3441

Yang G, Franklin M, Li J, Lin TC, Konigsberg W (2002a) A conserved
Tyr residue is required for sugar selectivity in a Pol alpha DNA
polymerase. Biochemistry 41: 10256–10261

Yang G, Franklin M, Li J, Lin TC, Konigsberg W (2002b)
Correlation of the kinetics of finger domain mutants in
RB69 DNA polymerase with its structure. Biochemistry 41:
2526–2534

Yang G, Lin T, Karam J, Konigsberg WH (1999) Steady-state kinetic
characterization of RB69 DNA polymerase mutants that affect
dNTP incorporation. Biochemistry 38: 8094–8101

Yang G, Wang J, Konigsberg W (2005) Base selectivity is
impaired by mutants that perturb hydrogen bonding networks
in the RB69 DNA polymerase active site. Biochemistry 44:
3338–3346

Yin YW, Steitz TA (2004) The structural mechanism of trans-
location and helicase activity in T7 RNA polymerase. Cell 116:
393–404

Translocation in B-family DNA polymerases
AJ Berman et al

&2007 European Molecular Biology Organization The EMBO Journal VOL 26 | NO 14 | 2007 3505


