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We present a palaeoclimatic reconstruction of the last glacial cycle in Iberia (ca. 

120,000 – 11,600 cal yrs BP) based on multiproxy reconstructions from lake sediments 

with robust chronologies, and with a particular focus on abrupt climate changes. The 

selected lake sequences provide an integrated approach from northern Iberia exploring 

temperature conditions, humidity variations and land-sea comparisons during the most 

relevant climate transitions of the last glacial period. Thus, we present evidence that 

demonstrates: i) cold but relatively humid conditions during the transition from MIS 5 

to MIS 4, which prevailed until ca. 60,000 cal yrs BP in northern Iberia; ii) a general 

tendency towards greater aridity during MIS 4 and MIS 3 (ca 60,000 to 23,500 cal yrs 

BP) punctuated by abrupt climate changes related to Heinrich Events (HE), iii) a 

complex, highly variable climate during MIS 2 (23,500 to 14,600 cal yrs BP) with the 

“Mystery Interval” (MI: 18,500 to 14,600 cal yrs BP ) and not the global Last Glacial 

Maximum (LGM: 23,000 to 19,000 cal yrs BP) as the coldest and most arid period. The 

last glacial transition starts in synchrony with Greenland ice records at 14,600 cal yrs 

BP but the temperature increase was not so abrupt in the Iberian records and the highest 

humidity was attained during the Allerød (GI-1a to GI-1c) and not during the Bølling 

(GI-1e) period. The Younger Dryas event (GS-1) is discernible in northern Iberian lake 

records as a cold and dry interval, although Iberian vegetation records present a 

geographically variable signal for this interval, perhaps related to vegetation resilience. 
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The last glacial cycle (ca. 120,000 – 11,600 cal yrs BP) was a dynamic period when 

rapid climate changes, called Dansgaard/Oeschger (D/O) cycles and characterized by 

abrupt warming and gradual cooling, occurred with a periodicity of ca. 1450 years 

(Wolff et al., 2010). Understanding the response of different ecosystems to these rapid 

climatic events is of special interest in the context of present-day global warming but, 

unfortunately, the mechanism behind rapid climate oscillations, the teleconnections that 

transfer the signal all around the globe, and the impacts of rapid climate changes on 

terrestrial and marine ecosystems are still far from being totally understood (Broecker, 

2000). In fact, it is known that some of the climate events of the last glacial cycle were 

not synchronous, such as the timing for the maximum glacier advance at different 

latitudes (Clark et al., 2009; Hughes and Woodward, 2008), but the causes remain 

unexplained. In particular, the last glacial-interglacial transition (LGIT, 15,000-9000 cal 

yrs BP) has a special interest since many processes and components of the climate 

system were involved in a total restructuring of the climate at a global scale. That 

transition occurred in several steps, some of them still poorly known in terms of their 

hydrological signal or internal structure, such as the Mystery Interval (MI) (17.5-14.5 

cal kyr BP) (Denton et al., 2006). To address all these questions, it is necessary to assess 

the synchrony or asynchrony between different  records from different archives, and this 

is one of the foci of INTIMATE (INTegration of Ice-core, MArine and TEerrestrial 

records) group (Hoek et al., 2008). 

 

The Iberian Peninsula (IP) constitutes a key location for answering questions related to 

the transference of the climate signal from high- to mid-latitudes. The IP is an especially 

sensitive region to climate changes due to its location at geographical (subpolar versus 



subtropical latitudes) and atmospheric (westerly winds versus north-African influences) 

boundaries (Bout-Roumazeilles et al., 2007; Moreno et al., 2005). In addition, its 

location leads to the expression of some of the “cold northern events” during last glacial 

cycle as “dry southern events”, as inferred from dust accumulation (Moreno et al., 2002) 

and pollen composition in marine cores surrounding the IP (Fletcher et al., in press; 

Sánchez-Goñi et al., 2002). It remains necessary to evaluate the precise spatiotemporal 

nature of terrestrial ecosystem change, as suggested by recent lake (González-Sampériz 

et al., 2006) and speleothem records (Moreno et al., 2010). Understanding the effects of 

past abrupt climate changes may help to predict and minimize the impact of future 

global warming (Costanza et al., 2007) in the IP, one of the most vulnerable areas in the 

context of the Mediterranean region (Solomon et al., 2007). 
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Iberian terrestrial records, supported by the study of terrestrial tracers (pollen) in marine 

cores, have allowed the characterization of the response on land to climate change and 

the discrimination of local or regional signatures, both necessary tasks to complete and 

improve the palaeoclimate reconstructions carried out in Europe during the last glacial 

cycle (e.g., Wohlfarth et al., 2008). Additionally, lakes are systems where changes in 

water availability can be recorded in the sediments in a more direct way than 

temperature variations (e.g., Cohen, 2003). Thus, the integration of several proxies 

(physical properties, sedimentary facies, geochemical composition, diatom and pollen 

assemblages, etc.), can lead to the reconstruction of past lake levels, and thus to the 

estimation of precipitation-evaporation balance (e.g., Morellón et al., 2009a). 

Furthermore, other environmental changes such as vegetation cover and land use can be 

inferred from palynological studies (Morellón et al., in press; Rull et al., in press). Lake 

sediments can often provide continuous, high-resolution records with robust 



chronologies, thus providing detailed and comprehensive palaeoenvironmental 

reconstructions.  
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The study of Iberian Quaternary lake sequences with the aim of reconstructing 

palaeoclimatic or palaeoenvironmental conditions is rooted in the long history of 

sedimentological studies of pre-Quaternary formations (Cabrera and Anadón, 2003; 

Valero-Garcés, 2003). However, only recently and thanks partly to new technical 

improvements (both in the field and laboratory) and to the consolidation of new Spanish 

research groups, has climate reconstruction been tackled using a multiproxy strategy 

and robust chronological frameworks. Thus, the number of palaeoclimate studies from 

lake records in the IP has markedly increased as well as the quality of the records, in 

terms of their continuity, chronological accuracy, effective temporal resolution and the 

range of analytical methods combined (Valero-Garcés and Moreno, in press). We 

consider a review of the key published data timely because, since lake response to 

climate is non-linear, it is critical to synthesize large data sets to distinguish clearly local 

influences from broad-scale regional patterns (Fritz, 2008). In addition, we highlight the 

most critical gaps in the information (in terms of both spatial and temporal coverage) to 

help plan future research in the IP. 

 

2. Study sites 

The purpose of this paper is not an exhaustive compilation of last glacial Iberian lake 

records but a summary of the most recent work that fulfills the following requisites: (1) 

the palaeoclimate interpretations are based on multiproxy reconstructions from lake 

sediments, including sedimentological description and physical or geochemical data 

from the lacustrine sequences and not only palynological data as occurs in the case of 



many well-known studies, and (2) the chronology is independent, robust and accurate, 

based on calibrated AMS 
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14C dates, U-Th dating or Optically Stimulated Luminiscence 

(OSL), if applicable. With the selected records, this study aims to carry out a regional 

palaeoclimate synthesis (Table 1, Fig. 1) covering the last glacial cycle, since last 

glacial inception (about 120,000 cal yrs BP) to the onset of the Holocene (11,600 cal yrs 

BP). Up to now, none of the available climate reconstructions from southern IP lake 

records spanning the last glacial and deglaciation intervals is based on a multiproxy 

strategy. Thus, Padul peatbog from southeast IP is only based on pollen data for the 

glacial interval (Pons and Reille, 1988) and the chronology for this interval is not well 

constrained in the new 107-m long borehole from the same basin (Ortiz et al., 2004). 

Other multi-proxy reconstructions from southern IP span only the Holocene or part 

thereof (e.g., Laguna de Zoñar; Martín-Puertas et al., 2008). As a consequence, the 

selected records are distributed mostly across the northern IP, with the exception of 

Fuentillejo maar, which is located in central Spain (Table 1, Fig. 1).  

 

The geology of the IP is remarkably diverse, but, in a simplistic way, can be divided 

into three main geological units (Gibbons and Moreno, 2002), although their exact 

boundaries are still under discussion (Vera, 2004): (1) Palaeozoic and Proterozoic rocks 

forming the Iberian Massif and the basement of other mountain ranges (e.g., Pyrenees); 

(2) Mesozoic and Cenozoic sedimentary formations affected by the Alpine orogeny, and 

mostly constituting the Pyrenees, Betics and Iberian Ranges, and (3) large tectonic 

Cenozoic basins, such as the Ebro or Tagus basins and other small basins located within 

the Alpine ranges (Fig. 1). Thus, in northern Iberia, the Pyrenees, Cantabrian Cordillera 

and Galaico-Leones Mountains constitute the most important orographic features while 

the central IP is crossed by the Central Range, which divides the central plateau in two 



northern and southern “mesetas”. The Iberian Range, which runs North-West to South-

East, constitutes the hydrological divide between the Atlantic and Mediterranean 

watersheds (Fig. 1). Due to the geographic situation and topographic conditions, the 

climate of the IP is extremely varied, but roughly, a moderate Continental climate 

characterizes the inland areas, an Oceanic climate dominates in the north and west and a 

warm Mediterranean climate is experienced along the Mediterranean coast (Capel 

Molina, 1981). Both geography and climate critically influence the distribution of 

vegetation and determine the biogeographical features of all the provinces within the 

Eurosiberian and Mediterranean regions (Blanco-Castro et al., 1997; Rivas-Martínez, 

2007) (see also Fig. 1 in González-Sampériz et al., in press).  
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Unfortunately, the large geological, climatic and biogeographic diversity of the IP is far 

from being representatively sampled by the selected lake records included in this work 

(Table 1 and Fig. 1). Some areas remain poorly covered, such as the central region, due 

to the lack of multi-proxy studies on the scarce lacustrine systems (cf. Fuentillejo maar; 

Vegas et al., in press), while other environments are over-represented, such as the 

montane sectors, due to more abundant permanent, deep lakes, which originated during 

the last deglaciation (e.g., Enol Lake; Moreno et al., in press-a). To cover some of the 

gaps, other well-known, relatively long records (e.g., Area Longa in the NW; Gómez-

Orellana et al., 2007, or Abric Romaní in the NE, Burjachs and Julià, 1994) are included 

in the discussion despite the fact that they do not fulfill the palaeoenvironmental criteria 

established above for site selection since they mainly concern vegetation reconstruction. 

Furthermore, the last glacial cycle is not homogenously represented by the selected 

records since lake sequences including MIS 4 or MIS 5a-d in the IP are very rare. For 

these intervals, we support the palaeoclimate discussion with other terrestrial (moraines, 



speleothems) or marine archives (both represented by black squares in Fig. 1). An 

exhaustive compilation of pollen records from the IP covering the Pleistocene has been 

recently published by (González-Sampériz et al., in press). In addition, a new issue of 

Journal of Paleolimnology (Valero-Garcés and Moreno, in press) includes a good 

compilation of papers based on Iberian lake records, though mostly focused on the 

Holocene. 
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3. Methods 

An important advance in palaeoclimate reconstruction based on lake records in the IP 

has been the consistent application of a multi-proxy methodology, following the 

PAGES strategy and the procedure implemented, among others, by the Limnological 

Research Center from the University of Minnesota (http://lrc.geo.umn.edu). This 

procedure starts with the Initial Core Description (ICD) including non-destructive 

measurement of physical properties (usually carried out by a multi-sensor core logging 

GEOTEK and including the measurement of magnetic susceptibility -MS-, bulk density, 

etc.), core splitting into working and archive halves, imaging of the core sections, and 

macro- and microscopic identification of sedimentary structures and composition using 

visual and microscopic observations (Schnurrenberger et al., 2001) (Fig. 2). The 

sedimentological analyses characterise the evolution of the depositional environment of 

the lake and, in combination with other geological and biological data, allow 

reconstruction of past climatic variability (Valero-Garcés et al., 2003) (Fig. 2).  
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Among the geological proxies, the main palaeoindicators used to identify and 

characterize the sedimentary processes controlling the input, transport and deposition of 

sedimentary particles, i.e. essential information for understanding the infilling of the 

http://lrc.geo.umn.edu/


lacustrine system are: (1) mineralogical composition, derived from X-ray diffraction 

analyses; (2) elemental geochemistry, obtained at high-resolution by X-ray fluorescence 

(XRF) core scanning (Last, 2001) or as discrete samples by other methods (ICP, 

conventional XRF); (3) concentration of total organic (TOC) and inorganic (TIC) 

carbon, and (4) stable isotope composition (δ
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18O and δ13C) in carbonates or bulk 

organic matter (Fig. 2). The combined analysis of these proxies provides important 

information regarding, for example, the input and composition of detrital minerals 

versus the precipitation of endogenic components (Corella et al., in press), or data about 

the hydrological balance and temperature of lake water (Morellón et al., 2009a). Among 

the biological proxies used for palaeolimnological reconstructions, the most commonly 

employed are (1) pollen, (2) diatoms, (3) ostracods and/or (4) chironomids (e.g., 

Moreno et al., in press-b) (Fig. 2). These indicators provide information related to the 

type and extension of the vegetation cover (e.g., Carrión, 2002) and also environmental 

(temperature, precipitation) and limnological (pH, lake level, nutrients, water column 

mixing) conditions in the lake (e.g., Leira, 2005). The integrated multi-proxy approach 

in the study of lake sequences is critical for disentangling the different forcings 

influencing lacustrine systems, an indispensable pre-requisite for robust reconstructions 

of climatic variability. 

 

The chronology in the selected records was mainly based on the AMS 14C technique 

and the dates were calibrated for this review using the INTCAL09 calibration curve 

(Reimer et al., 2009). Additionally, other dating techniques were used, such as U-Th 

disintegration series in the carbonates from Banyoles record (Pérez-Obiol and Julià, 

1994); Optically Stimulated Luminescence (OSL) in Villarquemado palaeolake (Valero-

Garcés et al., 2007), and palaeomagnetism excursions in Fuentillejo maar (Vegas et al., 



in press). Final construction of the age models was carried out by linear interpolation 

between the obtained dates, except on Enol and Estanya lakes where a generalised 

mixed-effect regression was used, following Heegaard et al. (2005). Although the 

records selected for this review are characterized by robust chronological control, some 

general problems are nevertheless evident (eg. calibration difficulties for the dates 

beyond 45,000 years in longer sequences such as Fuentillejo maar, scarcity of organic 

terrestrial remains in glacial lakes such as Enol Lake, etc.) that remain difficult to 

overcome. However, when necessary, these limitations are discussed in order to avoid 

misinterpretation of the main climate trends.  
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4. The Iberian climate reconstruction during last glacial cycle 

Very few multi-proxy studies from lake records in the IP cover the time interval from 

last glacial inception (ca. 120 ka) to the “global LGM”1. In fact, from Table 1 we can 

only cite Fuentillejo maar (142.4 m) (Vegas et al., in press) and Villarquemado 

palaeolake (74 m) sequences, both obtained in present-day dry lakes using a truck-

mounted drilling system. Several sequences cover MIS 3 and a larger number includes 

MIS 2 (Table 1).  
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4.1. The beginning of last glacial cycle in Northern Iberia (MIS 5 and MIS 4) 237 
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The Greenland NGRIP ice core offers an undisturbed record of the last glacial inception 

and reveals a rapid event, D/O 25, occurring about 115,000 yrs ago when the northern 

hemisphere ice volume reached about one third of its glacial extent (NGRIP members, 

2004). Mediterranean pollen data show that the interglacial forest environment is 

 
1 We will use the term “global LGM”, according to EPILOG (Environmental Processes of the Ice Age: 
Land, Oceans, Glaciers) project, for the period from 23,000 – 19,000 yrs BP that refers to the time of 
maximum extent of the ice sheets during the last glaciation - the Würm or Wisconsin glaciation (Mix et 
al., 2001). In Iberian Peninsula, the time of maximum glacier extension does not correspond to the global 
LGM.  

http://www.glacialoceanatlas.org/index.php?option=com_content&view=article&id=55&Itemid=2


preserved during this period (mean percentage of temperate pollen around 40 to 50%) 

but also responded to rapid D/O events, indicating that the early glacial millennial scale 

variability in Greenland has an European counterpart (Sanchez-Goñi et al., 2008; 

Masson-Delmotte et al., 2005; Tzedakis et al., 2003). In the IP, the full details of the 

nature and timing of the onset of last glacial cycle and its possible correlation with other 

North Atlantic marine records and Greenland ice cores are not fully constrained. The 

most detailed available information comes from Iberian margin marine records, which 

yield information about palaeoceanographic conditions and, through pollen analysis and 

direct land-sea correlation, provide evidence of regional-scale vegetation changes 

during the last glacial inception (e.g., ODP977/A: Martrat et al., 2004, Pérez-Folgado et 

al., 2004; ODP976: Combourieu-Nebout et al., 2002; MD95-2042: Sánchez-Goñi et al., 

1999, 2008; MD99-2331: Sánchez-Goñi et al., 2005; MD04-2845: Sánchez-Goñi et al., 

2008). These studies indicate a ~10° southward displacement of vegetation belts in 

western Europe as early as ~121 ka as part of continental-scale vegetation changes 

which may have played a role in triggering the last glaciation (Sánchez-Goñi et al., 

2005). Overall, an apparent synchrony with global climate events is shown, both in sea 

surface temperatures (Martrat et al., 2004) and pollen data (Sánchez-Goñi et al., 2008), 

reflecting millennial-scale climate variability associated with MIS 5 substages and D/O 

events 25-19, and following a long-term trend towards a cold and arid glacial scenario.  

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

 

In the terrestrial realm, the lack of well-dated lacustrine sequences for this period 

prevents the detailed characterization of the beginning of last glacial period on land and 

the nature and impacts of rapid climate oscillations. As an example, the available 

chronology for the Fuentillejo maar record is not yet clear beyond the limits of the 14C 

method, except for a magnetic reversal at the base that provides evidence of the 



Matuyama-Brunhes boundary (780 ka) (Vegas et al., in press) and extends the record to 

at least the beginning of the Middle Pleistocene.  
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The Villarquemado palaeolake sequence was dated by combining 14C (for the 

uppermost 20 m) and OSL (for the remaining 52 m) techniques, yielding a basal age of 

ca. 120 ka, thus covering the period from MIS 5 to present-day (Fig. 3). This record 

lacks an adequate time control for the interval between 20-48 m (corresponding to ~41.5 

ka-72.5 ka). Thus, boundaries between MIS5-MIS4 and MIS4-MIS3 were placed in 

Figure 3 on the basis of sedimentary unit boundaries. The Villarquemado sequence is 

composed of peatbog, alluvial fan and carbonate lake deposits and the basin was likely a 

variable mosaic of these three depositional environments during its evolution. In this 

sense, development of a carbonate lake (with high contents of Ca and TIC and lower 

MS values) represents higher lake levels than a peatbog setting (higher TOC, lower MS) 

while alluvial fan deposits (lower carbonate and TOC content, higher MS) represent the 

lowest lake levels in the basin. Thus, in the Villarquemado sequence, TOC values are 

higher during the Holocene (Unit I, 0-3 m) and MIS 5 (Units VI and VII, 37-74 m) (Fig. 

3) with the most significant development of wetlands of the whole sequence, 

characterized by the alternation of peatbog and shallow carbonate lake environments. A 

significant depositional change in the basin is recorded at the onset of MIS 4, with the 

retreat of the wetlands and the progradation of the distal alluvial fans indicative of a 

tendency towards lower lake levels (Unit V, 29-37 m, Fig. 3).  

 

Other Iberian records based on pollen data also show large changes at the onset of the 

last glacial cycle. In the NW IP, the Area Longa sequence, recovered from a beach cliff, 

spans the interval from MIS 5c to MIS 3 (Gómez-Orellana et al., 2007) (Fig. 1). The 



base of this pollen record (ascribed to MIS 5c, corresponding to St. Germain I phase) is 

dominated by deciduous woodland (Alnus, Quercus robur type, Corylus, Betula and 

Carpinus) with high proportions of Fagus. During MIS 4, high percentages of Erica, 

Calluna and Poaceae indicate heath and temperate grassland as the predominant 

vegetation types with a low abundance of conifers and persistence of meso-

thermophytes such us Quercus robur type, Corylus, Fagus, Carpinus, Ulmus and Ilex. 

The authors’ interpretion is that while the NW IP was affected by cooling that occurred 

globally during MIS 4, its climate continued to be relatively humid, mostly based on the 

high Ericaceae and Poaceae percentages and the low steppe taxa values (Artemisia, 

Chenopodiaceae) that dominate the herbaceous component. In NE Spain, the Abric 

Romaní travertine rock shelter provides palaeobotanical information for the interval 

70,000-40,000 years BP (Burjachs and Julià, 1994) (Fig. 1). Tree pollen percentages in 

the oldest deposits (attributed to MIS 5a) reach 40-60%, dominated by pines but with a 

continuous presence of Juniperus, Rhamnus, Quercus, Olea-Phillyrea, Betula, Fagus, 

Pistacia and other mesothermophilous taxa. The transition to MIS 4 represents a cold 

but humid phase with less thermophilous taxa (Burjachs and Julià, 1994).  
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Therefore, up to now and until more data from Villarquemado palaeolake are available, 

we can summarize from the scarce available terrestrial records covering MIS 5 to MIS 4 

that a consistent climatic change was observed across the IP in terms of temperature, 

with cooling after ca. 65,000 cal years BP. In contrast, patterns of moisture availability 

appear more variable, as detected from marine pollen data. Thus, records from the 

northern and northwestern margins of the IP indicate cool, humid conditions promoting 

the development of Ericaceae and conifers during MIS 4 (e.g., MD04-2845 and MD99-

2331 marine cores: Sánchez-Goñi et al., 2008 and 2005, respectively), while records 



from the southern margins indicate drier conditions, with greater development of semi-

desert vegetation (e.g., MD95-2042 and ODP site 976, reviewed in Fletcher et al., in 

press). At all sites, however, a trend of gradually increasing aridity over the MIS 4 

interval is apparent (Fletcher et al., in press; Sánchez-Goñi et al., 2008).  
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Glacier records from the Central Pyrenees (García-Ruíz et al., 2003; Lewis et al., 2009; 

Pallàs et al., 2006) provide coherent support for the prevalence of relatively humid 

conditions at the transition between MIS 5 and MIS 4 in northern IP. Thus, the most 

external moraines in the Spanish Central Pyrenees are dated by OSL at 85±5 ka (Lewis 

et al., 2009; Peña et al., 2003), placing the timing of the “Iberian last glacial maximum” 

close to the transition between MIS 5 and MIS 4 (García-Ruíz et al., 2010). This 

scenario of cold temperatures, significant humidity across the northern IP, and a gradual 

decline in humidity across MIS 4, may partly underline why the timing of maximum 

extent of other Mediterranean glaciers is much earlier than the global LGM (see a 

review in Hughes and Woodward, 2008). Besides the asynchrony in the maximum ice 

extent, there is also a discrepancy in the timing of last deglaciation, which appears to 

have occurred earlier in the Pyrenees (García-Ruíz et al., 2003; Lewis et al., 2009; 

Pallàs et al., 2006) and the Cantabrian mountains (Jiménez Sánchez and Farias, 2002) 

than in other European mountains. An explanation for this early glacier retreat may be 

found in the abrupt climate changes that occurred later, during MIS 3. 

 

4. 2. The record of rapid climate cycles in lake sediments (MIS 3) 338 

339 

340 
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Since the study carried out by Lebreiro et al. (1996), where the first evidence of 

Heinrich layers was found in marine sediments offshore Portugal, many other records, 

mostly from marine cores, have highlighted abrupt fluctuations in the Iberian climate 



during MIS 3 synchronous with HE and D/O cycles (e.g. Cacho et al., 1999; Frigola et 

al., 2008). From the palynological study on marine cores, it is now accepted that those 

fluctuations also produced important changes on land, mostly via changes in water 

availability and temperature that could have a great impact on vegetation cover 

(Combourieu Nebout et al., 2002, 2009; Fletcher and Sánchez Goñi, 2008; Fletcher et 

al., 2010, in press; Naughton et al., 2009; Roucoux et al., 2001, 2005; Sánchez-Goñi et 

al., 2000, 2002, 2008). In addition, other terrestrial tracers measured on marine 

sediments, such as indicators of fluvial and aeolian activity (Bout-Roumazeilles et al., 

2007; Frigola et al., 2008; Moreno et al., 2002, 2005), also point to millennial-scale D/O 

fluctuations in IP aridity (Fig 4). Recent high-resolution studies detected a two-phase 

hydrological pattern for some HE in a marine core offshore Galicia (Naughton et al., 

2007) which has been subsequently confirmed by a speleothem record from northern 

Iberia (Moreno et al.,2010).  
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In contrast to the relatively high number of marine records covering this time interval, 

lake sequences from the IP covering MIS 3 and demonstrating a response on land to 

rapid climate oscillations are scarce. In fact, even considering lacustrine records at a 

European scale, the lake sequences where D/O cycles have been clearly observed and 

dated are limited (e.g., Allen et al., 1999; Wohlfarth et al., 2008). Considering that lakes 

are very sensitive ecosystems to small environmental changes, why are MIS 3 climate 

fluctuations are not more clearly recorded? The most plausible explanation is that 

sampling resolution has generally not been high enough, limited in some cases by low 

glacial sedimentation rates and compounded by the difficulties of constructing accurate 

chronologies for this time period (i.e., the 14C method is close to its maximum limit and, 

additionally, lake sediments, particularly from proglacial lakes, are characterized by low 



organic content during this interval thus restricting even more the dating potential 

(Moreno et al., in press-a). Although laminated records from karstic lakes will probably 

provide better candidates (with more robust chronologies supported by counting annual 

laminae and higher sedimentation rates permitting the detection of abrupt changes), 

there is no record in the IP studied up to now with such features.  
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In the Villarquemado palaeolake, the aridity trend that started during MIS 4 continued 

and peaked during the lower part of MIS 3 (Unit IV, 21-29 m; Fig. 3) where 

sedimentological evidence for ephemeral lake conditions (dolomite formation, red, 

oxidized fine sediments) is present. After around 40,000 cal yrs BP, an alternation of 

shallow carbonate lake deposits and distal clastic alluvial fan materials reflect rapid 

hydrological and climate fluctuations during MIS 3, although the ascription to 

individual events is still not possible with the available chronological model. More dates 

throughout the MIS3 interval and the palynological study of the whole sequence, 

currently in progress, will aid the detection of MIS 3 variability. Although dating 

uncertainties are high in the Fuentillejo maar record from central IP (Table 1, Fig. 1) 

due to linear interpolation between very few dates (only 6 AMS 14C dates for the last 

50,000 years), several fluctuations ascribed to HE and other stadials of the D/O cycles 

have been identified and interpreted as arid periods (Vegas et al., in press). Based on the 

combination of several proxies (sedimentology, geochemistry, pollen, etc.), HE5 and 

HE3 have been identified as relatively warm periods while HE4, 2 and 1 were 

significantly colder (TiO2 percentage is plotted in Fig. 4 as a proxy for dry/cold 

conditions). The authors refer to regional processes as the cause of modifications in the 

intensity and persistence of these rapid climate oscillations (Vegas et al., in press).  

 



The site that provided initial clues about MIS 3 climate fluctuations in the IP is the 

Banyoles pollen record, first published by Pérez-Obiol and Julià (1994). A later study of 

sedimentary facies and stable isotopes on charophytes from the same littoral core 

reveals impacts on the sediments of HE 3 and 2 that are interpreted as dry periods 

characterized by lower lake levels (Valero-Garcés et al., 1998) (Fig. 4). Besides 

Banyoles, other locations in the northern IP, notably El Portalet peatbog and Enol Lake 

(Table 1, Fig. 1), responded to the arid and cold conditions of HE3 and HE2 (González-

Sampériz et al., 2006; Moreno et al., in press-a) (Fig. 4). Particularly clear is the record 

of El Portalet peatbog where an increase in steppe taxa and a decrease in Juniperus 

frequencies, together with a more abundant siliciclastic component in the sediments, 

occurred during cold and arid phases associated with rapid events of climate change 

(González-Sampériz et al., 2006).  
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Dating the base of sedimentary sequences obtained from proglacial lakes or 

glaciolacustrine deposits has provided useful information for reconstructing the 

deglaciation stages in the Spanish mountains during MIS 3 (González-Sampériz et al., 

2005). There are four noteworthy proglacial lake records that support an early 

deglaciation: (1) a basal age of 32.5 ka from El Portalet peatbog at 1802 m a.s.l. 

(González-Sampériz et al., 2006); (2) a basal age of around 33.9 ka from Tramacastilla 

glacial lake at 1640 m a.s.l. (García-Ruíz et al., 2003; Lewis et al., 2009; Pallàs et al., 

2006), both located in the Pyrenees; (3) a basal age of 38 ka from Lago Enol in the 

Cantabrian Mountains at 1075 m a.s.l. (Farias-Arquer et al., 1996; Moreno et al., in 

press-a); and (4) a basal age of 25.5 ka from Lago de Sanabria in NW Spain at 997 m 

a.s.l (Rico et al., 2007). All these ages postdate glacier activity in the area and, since the 

lakes are located at or close to the headwaters of the different basins, and behind 



terminal moraines, it means that the glaciers had already retreated to their cirques or 

very close to them by 40-30 ka. 
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Although several hypotheses have been postulated, up to now a satisfactory explanation 

for the early glacier retreat has not yet been found (Gillespie and Molnar, 1995). 

However, it seems clear that it was related to the high sensitivity of Mediterranean 

mountain glaciers to climate changes resulting from their distinctive characteristics such 

as their geographical location and their smaller size (Hughes and Woodward, 2008). 

Recently, García-Ruíz et al., (2010) have proposed that the sustained increase of the 

Scandinavian inlandsis between 80 and 55 ka BP (Svendsen et al., 2004) had parallels 

in the Mediterranean mountains, with rapid glacier growth that lead to maximum ice 

extension of some of the glacier tongues approximately at the transition from MIS 5 to 

MIS 4. Later on, during MIS 3, and due to the well-known abrupt climate fluctuations 

associated with the D/O cycles, the Scandinavian inlandsis may have stabilized thanks 

to its larger inertia, but the Mediterranean glaciers may have experienced a noticeable 

retreat during warm events. It is interesting to note that the Villarquemado record also 

points to more humid conditions during MIS 4 and MIS 2 than during MIS 3 (Fig. 3), 

coherent with higher long-term moisture availability in the IP as a prerequisite for 

glacier advances.  

 

More records from lakes and glacier evolution and an increased effort on dating, 

possibly combining dating techniques (14C, OSL), are necessary to go further in the 

identification of the effects on land of rapid climate changes during MIS 3. 

 

4.3. From the global LGM to the Holocene onset (MIS 2/GS-2).  441 



The global LGM can be defined as the most recent interval when global ice sheets 

reached their maximum integrated volume during the last glaciation (Mix et al., 2001). 

However, as we noted above, the glacier advance associated with the global LGM may 

be of smaller magnitude for Mediterranean, and particularly Iberian glaciers, than that 

which occurred during MIS 4 (García-Ruíz et al., 2010). The period since the global 

LGM to the Holocene onset (GS-2, GI-1 and GS-1 in the INTIMATE nomenclature; 

Lowe et al., 2008) is well-represented in many marine records surrounding the IP (e.g., 

Cacho et al., 2001; Jiménez-Espejo et al., 2007; Naughton et al., 2007; Combourieu 

Nebout et al., 2009; Fletcher et al., 2010), and it appears as a period with high 

variability, including events of abrupt climate change such as HE2 and HE1 and rapid 

climate fluctuations during LGIT (GI-1, GS-1). Additionally, many Iberian lake records 

(see Table 1, Fig. 4 and Fig. 5) cover this time interval and can provide some answers to 

questions about the nature, timing, regional particularities and spatial variability of the 

main climate changes in the IP since global LGM.. 
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4.3.1. Was the global LGM the coldest and driest interval of MIS 2 in the IP?  

One of the most important questions to be addressed in relation to climate variability in 

the IP is the signal on land of the global LGM (GS-2b). Although it is now evident that 

the global LGM does not correspond in most Iberian mountains to the maximum glacier 

extension (Lewis et al., 2009), was that period the coldest interval of the last ca. 25,000 

years? Was it relatively wet or dry? Marine records from Iberian margins indicate that 

the global LGM, although undoubtedly cold, was not the coldest interval in the marine 

realm (e.g., Alboran Sea, Cacho et al., 1999; Portuguese margin ,de Abreu et al., 2003) 

(Fig. 4). In contrast, HE1 (dated about 16,000 years BP) is generally marked by the 

highest percentages of cold foraminifer N. Pachyderma (s), the highest values of IRD, 



or the lowest SST reconstructed for the last 23,000 years. In terms of hydrological 

changes, HE1 appears also drier than global LGM in offshore Menorca record (based on 

the K/Al ratio as indicator of fluvial activity in Frigola et al., 2008, see Fig. 4) and in 

many marine pollen records (Beaudouin et al., 2007; Combourieu Nebout et al., 2009; 

Fletcher et al., 2009; Naughton et al., 2007). Model simulations obtained a clear 

reduction in both temperature of the coldest month and in precipitation for the HE1 

interval respect to global LGM in Iberia and highlighted a more significant response on 

the European Atlantic coast that decreases very rapidly inland (Kageyama et al., 2005). 

Data from continental sequences in the IP, related to temperature and water availability 

comparing global LGM and HE1, are available to corroborate or reject those model 

outputs.  
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In general, recently studied lake sequences from the IP support previous interpretations 

from marine sediments, and in particular are in agreement with the relatively humid 

hydrological signal of global LGM. In Villarquemado palaeolake (Fig. 1 and Fig. 3), 

MIS 2 is characterized by a decrease in alluvial fan activity and more development of 

carbonate lake environments than before, pointing to relatively humid conditions during 

the LGM. In Estanya Lake (Fig. 1, Morellón et al., 2009b), a shallow-carbonate-

producing lake system during the global LGM (from the onset of the lake sequence, ca. 

21,000 to 18,000 cal yrs BP), contrasts with a closed, permanent saline lake 

characterized by an evaporitic dominant sedimentation (starting at 18,000 and lasting 

until 14,000 cal yrs BP) (Fig. 4). Therefore, the global LGM was not the driest interval 

in the Pre-Pyrenees and the significant reduction in runoff occurred afterwards 

(Morellón et al., 2009a). Additionally, the preservation of lacustrine sediments in 

several records from playa-lakes in the Central Ebro Basin during the global LGM (see 



summary in Gonzalez-Samperiz et al., 2008), suggests phases of increased moisture 

during this period. Thus, the global LGM was probably characterized by periods of 

positive hydrological balance perhaps caused by reduced summer insolation at the 

latitude of Iberia (Fig. 4). If that was the case, evapotranspiration during the summer 

months may have decreased, contributing to relatively high lake levels without a 

significant increase in rainfall, as suggested by the reconstruction provided by the 

Estanya Lake record (Morellón et al., 2009a). An additional factor with the potential to 

increase water availability in certain areas is the expected high fluvial discharge 

produced in relation to the deglaciation process in the mountains (Valero-Garcés et al., 

2004; González-Sampériz et al., 2005) which had already started by this time. There is 

some evidence of that process in the form of flood deposits in global LGM terraces 

indicative of a period of high discharge (Sancho-Marcén et al., 2003) that correlates 

with an increase in fluvial activity just after global LGM (Frigola et al., 2008).  
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Although temperatures are usually more difficult to reconstruct from lake sediments 

than hydrological balance (Cohen, 2003), pollen data from lacustrine sequences provide 

clear evidence for the IP of a cold scenario for the global LGM until the beginning of 

the Bølling/Allerød (see compilation in González-Sampériz et al., in press): the 

landscape was dominated by cold steppe formations with a minor presence of conifers 

and restricted occurrence of mesothermophytes. In sequences with higher sample and 

temporal resolution, detailed interpretation of pollen spectra provides evidence for a 

particularly cold interval associated with HE1. Thus, in El Portalet peatbog, HE1 is 

detected by the presence of gray siliciclastic silts indicating low lake productivity, a 

decrease in Juniperus and increase of steppe taxa (González-Sampériz et al., 2006). 



Similarly, more positive values of δ13C in carbonates were found in Banyoles record 

(Pérez-Obiol and Julià, 1994; Valero-Garcés et al., 1998) (Fig. 4). 

516 

517 

518 

519 

520 

521 

522 

523 

524 

525 

526 

527 

528 

529 

530 

531 

532 

533 

534 

535 

536 

537 

538 

539 

540 

 

From all the recent evidence outlined above, we can conclude that the most arid and 

coldest period in the IP during GS-2 occurred in within the GS-2a (Fig. 4). This interval 

has been called the “Mystery Interval” (MI) (Denton et al., 2005), and embraces the 

marine HE1 thus corresponding to the first phase of last glacial termination (17.5 to 

14.5 cal kyr BP). In the Enol Lake record, the MI corresponds to the lowest linear 

sedimentation rate of the whole sequence pointing to very low runoff and thus little 

transport to the lake (Moreno et al., in press-a). In addition, the MI coincides with a 

hiatus in the formation of a speleothem from El Pindal Cave, in northern Spain, also 

suggesting a dry (and cold) period (Moreno et al., 2010). The same stalagmite grew 

during the global LGM, pointing to less extreme climate conditions at that time 

compared to the MI (Fig. 4). However, up to now, the evidence from lakes (or 

speleothems) has not been sufficiently accurate to discriminate chronologically whether 

the arid period includes the whole MI interval (ca. GS-2a) or whether it is more 

constrained to HE1, as seems to be the case from marine temperature records (Cacho et 

al., 2001). In fact, some sequences record two pulses during the MI (e.g., Estanya Lake 

salinity reconstruction or Fuentillejo maar TIO2 aridity indicator) while others (e.g., 

Juniperus percentages in El Portalet peatbog) only point to one longer cold/dry event 

embracing the whole GS-2a interval (Fig. 4). 

 

Despite chronological uncertainties and the different responses suggested by the 

available lake records (i.e. one or two pulses), the important effect of the Meridional 

Overturning Circulation (MOC) on the IP climate and the rapid response of terrestrial 



ecosystems to MOC variability is evident. The MI marks the start of the first phase of 

the last glacial termination (T1a) and was characterized by the strong reduction of MOC 

(McManus et al., 2004) in comparison to LGM levels due to high rates of freshwater 

input during iceberg discharges of HE1. The shutdown in MOC lasted 2000 yr and 

caused extremely cold winter temperatures in the North Atlantic area (Denton et al., 

2005) and likely formed sea ice, reduced sea-surface evaporation and consequently 

produced dry conditions  in Europe (Wohlfarth et al., 2008) and into Asia (Cheng et al., 

2006). Therefore, as a consequence of the close connection between western European 

temperatures and MOC intensity, IP temperatures are colder during the MI than during 

the earlier global LGM period. 
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4.3.2. When and how did the last deglaciation occur in the IP? 

Terminology for the last deglaciation was first defined from the Fennoscandian region 

based on pollen sequences and the corresponding vegetation changes, including periods 

such as the Bølling-Allerød or the Younger Dryas (Mangerud et al., 1974), that 

correspond in the INTIMATE nomenclature referring to Greenland ice records to GI-1 

and GS-1, respectively (Björck et al., 1998) (Fig. 5). The last deglaciation was 

characterized by a series of abrupt climatic changes (GI-1a to GI-1e, GS-1), with 

broadly similar trends identified in palaeoclimate records obtained from many sites 

throughout the North Atlantic region. However, the extent to which the North Atlantic 

sequence of climatic changes is reflected in palaeoclimatic records from the IP, in terms 

of timing and pattern of the abrupt climatic changes, is still a matter of debate (e.g., 

Carrión et al., in press). From marine cores surrounding the IP, at least two 

particularities with respect to Greenland records have arisen: (1) the earliest onset of 

warming associated with the first phase of the last deglaciation occurred at ~15.5 cal kyr 



BP, prior to further and more marked warming at the onset of the GI-1  (Fletcher et al., 

2010), and (2) a stable- to warming trend in sea surface temperatures during GI-1 is 

observed in contrast to the cooling trend recorded in Greenland (Cacho et al., 2001). 

Furthermore, recent analyses of pollen records in southern Iberian marine cores indicate 

short-lived intervals of forest decline consistent with cooling and drying during the GI-

1d (Older Dryas) and GI-1b (Inter-Allerød Cold Period) (Combourieu Nebout et al., 

2009; Fletcher et al., 2010). The lack of accurate chronologies and high-resolution 

analyses in continental records has precluded the identification of abrupt climate 

changes within GI-1 until recently (e.g., González-Sampériz et al., 2006). New lake 

sequences like Villarquemado palaeolake, combining the study of vegetation and the 

response of the lake system itself to climate changes, will provide key information for 

the characterization of abrupt changes experienced during last deglaciation. 
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In the northeastern IP, the hydrological response to abrupt climate change during the 

last deglaciation has been described in Estanya Lake (Fig. 1). In this record, the onset of 

GI-1 is detected by changes in sedimentation in the lake and a significant negative 

excursion of δ13Corg values reflecting an increase in organic productivity likely related 

to deeper lake level conditions (Morellón et al., 2009a). The salinity reconstruction also 

points to a more positive hydrological balance during GI-1 and shows minor changes in 

response to short abrupt cold events, such as GI-1d and GI-1b, pointing to slightly drier 

conditions (Fig. 5). Similarly, the montane peatbog record from El Portalet reflects a 

decline in herbaceous steppe association, typical of glacial conditions, and an expansion 

of pioneer deciduous trees at the beginning of GI-1. Vegetation cover and sediment 

composition also reacted rapidly to shorter cold events with the deposition of 



siliciclastic silts and an increase in steppe plants and a decrease in Juniperus (González-

Sampériz et al., 2006) (Fig. 5).  
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In Laguna Grande and Laguna del Hornillo, both located in the western Iberian Range, 

the sequence of events within GI-1 have been identified by characterizing the 

laminations and the type and content of organic matter (Vegas, 2006). In these two 

lakes, an arid and cold event (GI-1d) is found between GI-1a (Allerød) and GI-1e 

(Bølling) but there is no signal around GI-1b, probably due to the low temporal 

resolution of the record. In other lakes from the wider Mediterranean region, a similar 

hydrological response to GI-1d and GI-1b events is observed (e.g., Lago dell’Accesa in 

Central Italy; Magny, 2006). On the contrary, an opposed palaeohydrological pattern is 

observed in central-western Europe, where G1-1d and GI-1b are characterized by higher 

lake-levels in the Swiss Plateau, Jura mountains and French Pre-Alps (Magny, 2001). 

This latitudinal division in the hydrological response during abrupt climate changes 

occurring throughout last deglaciation, has been recently explained by the prevalence of 

“blocking episodes” that will favor or prevent cyclone penetration into the 

Mediterranean or northern and central Europe (Fletcher et al., 2010). 

 

In the available lake records (Fig. 5), the onset of the warming trend associated with the 

Bølling period is synchronous, within age model uncertainties, with the onset of GI-1 in 

Greenland, but the pattern observed is more gradual than abrupt. Additionally, in 

Estanya Lake record, the Allerød period appears wetter than the Bølling period, in a 

similar way to that recorded in El Pindal cave located in northwestern Spain (Moreno et 

al., 2010) (Fig. 5). Similarly, the El Portalet pollen record reflects a generally reduced 

presence of steppe taxa and the first development, as opposed to occasional presence, of 



Corylus during the Allerød in contrast to the Bølling (González-Sampériz et al., 2006). 

Therefore, this pattern is consistent with Mediterranean marine SST records (Cacho et 

al., 2001) and differs from Greenland ice record where warmer temperatures over 

Greenland were reached abruptly at the onset of the Bølling period and declined 

afterwards (Fig. 5). The similar response of some lake (González-Sampériz et al., 2006; 

Morellón et al., 2009a) and speleothem (Moreno et al., 2010) sequences from northern 

IP and Mediterranean marine SST records (Cacho et al., 2001) to the global warming 

related to the first phase of the last glacial termination 1 (T1a), reflects a particular 

reaction in terms of temperature and water availability of this southern European region. 

This pattern may relate to a continental-scale N-S latitudinal pattern of changing 

climatic evolution over the GI-1 interval as proposed by Genty et al. (2006), which 

should be better characterized for the IP with future studies.   
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4.3.3. Timing, synchrony and ecosystems response to the Younger Dryas and the 

Holocene onset 

The second phase of last glacial termination (T1b) corresponds to the second weakening 

of the MOC during the Younger Dryas cold period, probably also triggered by a 

discharge of glacial meltwater (Hughen et al., 2000; McManus et al., 2004). While a 

clear response during the GS-1 interval (or Younger Dryas, YD) is detected in marine 

environments of the Iberian margin, mostly in terms of reduced sea surface 

temperatures (e.g. Cacho et al., 2001), clear response is less evident in continental 

archives from the Iberian Peninsula where a variable vegetation response is observed 

depending on the altitude and latitude of the studied records (Carrión et al., in press). 

Thus, changes in the landscape and vegetation cover during the YD appear to be more 

marked in mountainous areas (e.g., El Portalet peatbog record indicates that the lake 



was frozen all-year round, González-Sampériz et al., 2006) than in mid-to-low altitude 

sites (e.g., Lake Banyoles; Pérez-Obiol and Julià, 1994).  
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Other indicators measured in lake sequences besides vegetation are plotted in Fig. 5 and 

their combination supports the existence of a YD event in the northern IP as a dry and 

cold period without clear geographical variability. Thus, a lake-level drop and salinity 

increase in Estanya Lake were indicated by the return to deposition of gypsum-rich 

facies and an abrupt decrease in organic productivity (marked by positive excursion of 

δ13Corg and a sharp decrease in Bio Si) (Morellón et al., 2009a). In Banyoles Lake, the 

isotopic composition of authigenic carbonates (δ18O and δ13C) reaches peak values at 

around 12,000 years (Valero-Garcés et al., 1998) while sedimentation in El Portalet 

decreased dramatically or even ceased during the GS-1 in response to the previously 

mentioned permanent freezing of the lake (González-Sampériz et al., 2006). In Enol 

Lake, gray siliciclastic silts with low organic content and pollen spectra dominated by 

herbaceous taxa characterize an open landscape with scarce vegetation during the GS-1 

unit (Moreno et al., in press-a). Similarly, the presence of massive clayey silts with low 

organic content in the Fuentillejo maar record (Vegas et al., in press), and significant 

changes in sediment stratigraphy and diatoms association in the Laguna Grande at 

Sierra de Neila (Vegas et al., 2003), indicate a cold and arid climate associated with the 

GS-1 interval.  

 

Thus, considering high and low altitude sites, the response to GS-1 in the IP lake 

records seems identical (Fig. 5). This finding may indicate that the different signals to 

the same climatic event recorded in the pollen spectra from different IP regions was 

linked to the distance to vegetation refuges that controlled the timing and intensity of 



the vegetation response. In addition, since most of the cases that are considered to show 

an “unexpected” response to GS-1 lie in the Mediterranean-influenced climate region 

(Fig. 1), a centennial to millennial-scale resilience of the established forests can be 

presented as another explanation to account for the different vegetation responses 

(Carrión et al., in press; Gil-Romera et al., 2010). This view, however, is not in 

agreement with the findings of palynological research on Mediterranean marine cores, 

which suggest a rapid response of the Mediterranean forest cover to centennial-scale 

variability, both at the abrupt onset of the YD and within the GS-1 interval (Fletcher et 

al., 2010, Combourieu Nebout et al., 2009). 
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The onset of the Holocene represents an abrupt climate change towards warmer and, in 

general, wetter climates at 11,600 cal yrs BP (e.g., Hoek et al., 2008). Although this 

transition was apparently synchronous in different records from the IP, optimum 

Holocene climate conditions were not reached at the same time (Morellón et al., 2009a). 

In Estanya Lake, sedimentary and geochemical proxies indicate that the lowest lake 

level of the whole sequence (last 20,000 years) occurred from 11,600 to 9400 cal yrs 

BP, when full Holocene conditions were finally reached (Morellón et al., 2009a). The 

Lake Banyoles sequence also records the eventual decrease in steppe taxa at 9500 cal 

yrs BP (Pérez-Obiol and Julià, 1994). In Enol Lake record, wetter conditions were not 

found until 9800 cal yrs BP when Ca, TOC and TIC percentages increase while 

siliciclastic particles decrease (Moreno et al., in press-b). In that record, arboreal pollen 

values increase markedly at the onset of the Holocene, dominated by a rapid increase of 

deciduous Quercus (45%), although the highest values were recorded at 9700 cal yrs 

BP. Accordingly, pollen records from the Alboran Sea indicate that the temperate 

Mediterranean forest expanded dramatically in response to increased humidity not 



developed at the Holocene onset but at 10,600 cal yrs BP (Fletcher et al., 2010). This 

delay may be related to a restricted rainy season during the boreal summer insolation 

maximum (Tzedakis, 2007). Thus, it seems from the available records, that the delay in 

the Holocene onset is related more to hydrological parameters than to temperature 

changes, pointing to a possible impact of the monsoon dynamics on the IP climate.  
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5. Summary and ideas for the future work 

Selected lake records show the IP response to abrupt climate changes during last glacial 

cycle. Although, in general, there is a synchrony and a high correlation with North 

Atlantic region climate, the IP presents some peculiarities likely related to its southern 

location and the mix of African and European influences on its climate. Thus, the 

transition from MIS 5 to MIS 4 appears as a cold but relatively wet period, and 

corresponds to the maximum glacier extension in the northern Iberian mountains (e.g., 

Pyrenees, Cantabrian Mountains). Subsequent deglaciation occurs rapidly, probably 

associated with the general tendency towards greater aridity during MIS 4, and due to 

abrupt climate changes that characterized the MIS 3 interval, which includes some of 

the most arid periods in Iberian continental records. Abrupt climate changes, 

particularly HE, are observed in several records by changes in the sediment and 

vegetation cover and composition, thus demonstrating the effect of rapid climate 

variability on land. The global LGM is not the coldest or the most arid interval of the 

last 25,000 years since the MI, and the embedded HE1 event, are characterized by the 

highest aridity in the studied sequences. As detected in the lake sequences, the 

Lateglacial period starts synchronously to temperature increase in Greenland (14,600 

cal yrs BP), but the pattern is not so abrupt and, additionally, the highest humidity is 

reached at the end of GI-1 (Allerød) and not at the beginning (Bølling). Finally, the GS-



1 (YD) is observed in the hydrological response of the lake records but variable signals 

in the pollen spectra, suggesting different sensitivity of the vegetation in different 

localities with respect to altitude, topography and micro-climate, and possibly relating 

to vegetation resilience at this time. The Holocene climatic optimum in terms of 

humidity seems to be delayed with respect to other European records, being reached in 

different locations only after 10.5 – 9.5 cal yrs BP. 
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From this compilation, it is evident that a major advance has been achieved recently in 

terms of palaeoclimate reconstructions obtained from lake records in the IP. Many of 

the records that provide critical information have been published recently or are in press 

(Estanya Lake, Enol Lake, etc.). However, despite the increased number of new studies, 

several questions remain open due to the lack of high-resolution records in key 

geographic regions. Thus, the southern IP region was not extensively discussed in this 

paper due to the scarcity of multi-proxy high-resolution lake records. It is clear that 

more records are necessary, especially from low-altitude areas, that are currently 

underrepresented in the compilation. The greatest effort must be made to obtain 

laminated records, e.g., in karstic lakes such as Banyoles Lake, that will provide better 

resolution permitting the detection and characterisation of abrupt climate changes 

during the last glacial cycle. In addition, long sequences such as Villarquemado 

palaeolake will provide new information on climate changes during the last glacial 

inception and the IP LGM. It is strongly advisable to compare and combine information 

from lake records with those obtained from other continental palaeoarchives, 

particularly speleothems and glacial deposits, and terrestrial tracers in marine sediment 

sequences. The integration of data from different palaeoarchives is critical to developing 



the understanding of the response of continental Iberia to rapid climate changes during 

last glacial cycle. 
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The multi-proxy approach has been found to be the best (if not only!) option to 

discriminate climate changes from other more local influences on the lake records 

(particular response of vegetation, etc.). However, further efforts are required not only 

to combine indicators, but to improve their calibration with the instrumental record. 

Greater use of quantitative estimations of temperature and precipitation would be highly 

informative and this remains an under-explored approach in the IP. Proxy calibration, 

together with an improvement of transfer function databases, will lead to better 

reconstruction of climate signals and will thus also contribute to the improvement of 

climate models.  

 

Finally, the construction of robust chronological frameworks is indispensable for 

palaeoclimate reconstruction, particularly for the characterisation of rapid climate 

changes. More effort must be made to look for high-quality dating material (terrestrial 

macro-remains, charcoal) suitable for 14C AMS in lake sediments. In addition, other 

methods, such as the tephrochronology, have not been explored in the IP terrestrial 

records and may be worth trying despite the non-favourable situation with respect to 

major volcanic zones and prevailing wind directions. Comparing records with 

independent chronologies (i.e., not tuned respect to Greenland ice cores) is essential for 

the identification of leads and lags in the continental response to different climate 

events.  
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Figure 1. Outline map of mainland Spain and the Balearic Islands showing the broad 

division into “Variscan” (pink) and “Alpine” (green) Spain and the Cenozoic basins 

(light yellow) (modified from Gibbons and Moreno, 2002; Vera, 2004). Lake sites 

considered in this study are indicated by black circles (see also Table 1) while black 

squares mark the position of other sites cited in the text (marine, speleothem and pollen 

sequences).  

 

Figure 2. Flow diagram showing the multi-proxy approach followed in palaeoclimate 

reconstructions from lake sediments (modified from Morellón, 2009). MS: Magnetic 

Susceptibility; OM: organic matter; TOC: Total Organic Carbon; TIC: Total Inorganic 

Carbon; TN: Total Nitrogen; BSi: Biogenic Silica.  

 

Figure 3. Sedimentary sequence for Villarquemado palaeolake record. From left to right: 

sedimentary units and sedimentological profile, Magnetic Susceptibility (MS) (in SI 

units), Ca (in counts per second units) measured by the X-ray Fluorescence (XRF) core 

scanner, and TIC (Total Inorganic Carbon) and TOC (Total Organic Carbon) 

percentages. An interpretation of the inferred depositional environments for each unit is 

presented together with the preliminary chronology (Marine Isotope Stages – MIS – 

from 5 to 1). Available AMS 14C (in bold type) and OSL dates (in italics) are shown to 

the left.  

 

Figure 4. Selected marine and terrestrial records from the IP covering GS-2 and GS-3. 

From up to down: (%) of N. pachyderma (sinistra) from MD95-2039 and MD95-2040 



cores offshore Oporto, Portugal (de Abreu et al., 2003); δ18O (‰ VPDB) from El Pindal 

cave (Moreno et al., 2010); Ca (cps) profile from Enol Lake (Moreno et al., in press-a); 

(%) Juniperus from El Portalet peatbog (González-Sampériz et al., 2006); reconstructed 

salinity from Estanya Lake (Morellón et al., 2009a); δ

800 

801 

802 

803 

804 

805 

806 

807 

808 

809 

810 

811 

812 

813 

814 

815 

816 

817 

818 

819 

820 

821 

822 

823 

824 

13C (‰ VPDB) from Banyoles 

Lake (Pérez-Obiol and Julià, 1994; Valero-Garcés et al., 1998); (%) TiO2 from 

Fuentillejo maar (Vegas et al., in press); reconstructed fluvial activity from MD95-2343 

record (Frigola et al., 2008); summer insolation at 65ºN; SST (ºC) from MD95-2043 

record (Cacho et al., 1999) and NGRIP δ18O (‰ VSMOW) record from Greenland 

(Rasmussen et al., 2006) and smoothed with a 5-point moving average (thicker line). 

DO-I are labelled from 1 to 8. Shaded bands indicated the amplitude of HE, positioned 

following the record of N. pachyderma (sinistra) from MD95-2039 and MD95-2040 

cores (de Abreu et al., 2003).  

 

Figure 5. Selected marine and terrestrial records from the IP covering from 18,000 to 

8,000 cal yrs BP. From up to down: (%) of N. pachyderma (sinistra) from MD95-2039 

offshore Oporto, Portugal (de Abreu et al., 2003); δ18O (‰ VPDB) from El Pindal cave 

(Moreno et al.,2010); (%) Juniperus from El Portalet peatbog (González-Sampériz et 

al., 2006); reconstructed salinity from Estanya Lake (Morellón et al., 2009a); broad 

tendencies of δ13C (‰ VPDB) from Banyoles Lake (Pérez-Obiol and Julià, 1994; 

Valero-Garcés et al., 1998); (%) TiO2 from Fuentillejo maar (Vegas et al., in press); 

summer insolation at 65ºN; SST (ºC) from MD95-2043 record (Cacho et al., 1999) and 

NGRIP δ18O (‰ VSMOW) record from Greenland (Rasmussen et al., 2006) and 

smoothed with a 5-point moving average (thicker line). Shaded bands indicated the 

amplitude of short abrupt events during deglaciation and arrows mark tendencies (see 

text for discussion).  
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