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Individual sequence variability and functional activities of fibrinogen-related 

proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest 

ancient and complex immune recognition models in invertebrates.  
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Abbreviations used in this paper: PAMP, pathogen-associated molecular patterns; MBL, 

mannose-binding lectin;  MASPs, MBL-associated serine proteases; MAC, membrane 

attack complex; EST, expressed sequence tag; LTA, lipoteichoic acid ; FREP, 

fibrinogen-related protein; ORF, open reading frame; PRRs, Pattern Recognition 

Receptors;  TLRs, Toll-like receptors. 
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Abstract 

 

In this paper, we describe sequences of fibrinogen-related proteins (FREPs) in 

the Mediterranean mussel Mytilus galloprovincialis (MuFREPs) with the fibrinogen 

domain probably involved in the antigen recognition, but without the additional 

collagen-like domain of ficolins, molecules responsible for complement activation by 

the lectin pathway. Although they do not seem to be true or primive ficolins since the 

phylogenetic analysis are not conclusive enough, their expression is increased after 

bacterial infection or PAMPs treatment and they present opsonic activities similar to 

mammalian ficolins. The most remarkable aspect of these sequences was the existence 

of a very diverse set of FREP sequences among and within individuals (different 

mussels do not share any identical sequence) which parallels the extraordinary 

complexity of the immune system, suggesting the existence of a primitive system with a 

potential capacity to recognize and eliminate different kind of pathogens. 
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1. Introduction 

 

Although in recent years there have been important advances in invertebrate 

innate immunity, there is not a comprehensive view of the immune mechanisms utilized 

across the broad spectrum of invertebrate phyla (Zhang et al., 2004).  

Fibrinogen-related proteins (FREPs) are a family of glycoproteins that contain in 

the C-terminal portion a fibrinogen-like (FBG) domain but differ in the N-terminal 

region. This family comprises diverse proteins such us tenascins, tachylectins, ficolins, 

angiopoietins, ixoderins or fibrinogen β and γ chains (Adema et al., 1997; Lu and Le, 

1998; Zhang et al., 2001; Gorbushin et al., 2010). FREPs are universally found in 

vertebrates (Doolittle,1992; Matsushita et al., 1996), urochordates (Kenjo et al., 2001) 

and invertebrates such us echinoderms (Xu and Doolittle, 1990), molluscs (Knibbs et 

al., 1993; Adema et al., 1997), and arthropods (Baker et al., 1990; Gokudan et al., 1999; 

Rego et al., 2005; Dixit et al., 2008), suggesting that a fibrinogen-related domain must 

have existed before the divergence of protostomes and deuterostomes (Gorbushin et al., 

2010). 

FREPs play an important role in the innate immune response of invertebrates 

against pathogens. They are up-regulated following relatively specific 

immunostimulation (Adema et al., 1999) and they bind to pathogens and precipitate 

parasites antigens (Adema et al., 1997; Zhang et al., 2008). For example, hemocytes 

from the snail Biomphalaria glabrata produced high amount of FREPs following 

challenge with trematode parasites and have lectin-like properties allowing them to 

precipitate soluble antigens derived from trematodes (Adema et al., 1997); FREPs from 

the mosquito Armigeres subalbatus (also called aslectin) are up-regulated by bacterial 

challenge and are able to bind bacteria Escherichia coli and Micrococcus luteus (Wang 
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et al., 2004). FREPs are also frequently implicated as mediators of non self-recognition 

in invertebrates (Richards and Renwrantz, 1991, Drickamer, 1995; Zhang et al., 2004; 

Hertel et al., 2005). In Biomphalaria, FREPs show a relatively high diversity (Zhang 

and Loker, 2003; Zhang et al., 2004). Likewise, vertebrate FREPs are also involved in 

immune reaction. It has been shown that human FREP1 is an acute phase reactant (Liu 

and Ukomadu, 2008), and mouse FREP2 contributes to CD4+CD25+ regulatory T cell 

activity (Shalev et al., 2008).  

One of the most important FREPs is the ficolin group since they are important 

components of the lectin complement pathway. In mammals, ficolins are oligomeric 

proteins characterized by a short N-terminal segment, a collagen-like domain and a C-

terminal fibrinogen-like domain (Matsushita et al., 1996). One of the main functions of 

ficolins is the recognition of sugars present in microorganisms (Tanio et al., 2007) 

playing an important role in innate immunity because they are able to enhance 

phagocytosis and activate the complement pathway (Turner, 1996; Lu and Le, 1998; 

Matsushita et al., 2000; Zhang and Ali, 2008).  

The importance of ficolins in the recognition of pathogens is unquestionable in 

mammals. However, these molecules have not been found so far in fish, birds or reptiles 

(Garred et al., 2010), and there is only one case of ficolin-like proteins reported in 

ascidians (Kenjo et al., 2001).  

 In the Mediterranean mussel, the major immunological defense system is carried 

out by hemocytes present in the hemolymph (Allam et al., 2001; García-García et al., 

2008; Pipe, 1990; Pipe et al., 1997). However, little is known about how this organism 

responds against pathogens. Despite the practice of culturing these animals at high 

densities, no important mortalities associated with pathogens have been found in these 

molluscs so far, suggesting the existence of an efficient defense mechanism. 
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Interestingly, clams and oysters cultured nearby have experienced mass mortalities 

associated with pathogens that have been also found in mussels. Accordingly, we have 

recently shown the high individual sequence variability for myticin C, a novel class of 

antimicrobial peptide (Pallavicini et al., 2008), suggesting that this wide repertoire of 

sequences could be related to the high degree of disease resistance observed (Costa et 

al., 2009). Another relevant aspect of bivalve molluscs is their important filtering 

activity: one adult mussel can filter roughly 8 liters of water in one hour (Meyhöfer, 

1985; Norman, 1988; Hugh et al., 1992), which implies that they are in intimate contact 

with microorganisms. 

The present work constitutes another astonishing example of highly diverse 

immune molecules in these animals and provides the first evidence of their possible 

involvement in immune defense.  
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2. Materials and Methods 

 

2.1. Animals 

Mediterranean mussels (Mytilus galloprovincialis) with a maximum shell length 

of 6 cm were obtained from a commercial shellfish farm from the Ría de Vigo (NW of 

Spain) during the summer season. Animals were maintained in open circuit filtered 

seawater tanks at 15 ºC with aeration. They were fed daily with Isochrysis galbana, 

Tetraselmis suecica and Skeletonema costatum. Bivalves were acclimatized for 1 week 

before the experimental work. All animal experiments were reviewed and approved by 

the CSIC National Committee on Bioethics. 

 

2.2. Phylogenetic analysis 

 Fourteen mussel sequences putatively homologous to FREPs (GeneBank 

accession numbers from HQ236392 to HQ236405) were selected from two cDNA 

libraries previously constructed (Venier et al., 2009). Additional 62 ficolin and FREPs 

sequences from different animals were downloaded from GenBank. Protein sequences 

were aligned with MAFFT (Katoh et al., 2005) using the E-INS-i algorithm for multiple 

conserved domains and long gaps. Ambiguous columns in the alignment were filtered 

out with Gblocks (Castresana, 2000), with a minimum of 40 sequences for 

conserved/flanking positions, a maximum of 4 contiguous non-conserved positions, a 

minimum length of 4 amino acids in every block, and allowing gap positions. The best-

fit model of amino acid replacement was selected according to the Akaike Information 

Criterion (AIC) (Akaike, 1974) using ProtTest (Abascal et al., 2005) and Phyml 3.0 

(Guindon et al., 2010). This model was used to estimate a maximum likelihood (ML) 
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phylogenetic tree with RaxML 7.2.6 (Stamatakis, 2006). Nodal support was estimated 

using the same program with 1000 bootstrap replicates (Felsenstein, 1985). 

 

2.3. Amplification of groups of FREPs by Rapid Amplification of cDNA Ends 

(RACE) 

Total RNA was isolated from hemolymph using Trizol reagent according to the 

manufacturer’s instructions. The SMART RACE cDNA Amplification Kit (BD 

Clontech) was used to complete the 5’- and 3’-cDNA ends of two representative types 

of FREPs found in the alignments (groups 2 and 3) (GeneBank accession numbers 

HQ236406 and HQ236407, respectively) using specific primers designed with the 

Primer3 (v. 0.4.0) software (Group 2: CAA ATC GTT GCT GTA TCA CCG TCC, 

Group 3: GAA GCC ATC GAA AGA GCC TGT CGG G). PCR products were purified 

from 1.2% agarose gel, subcloned using the Original TOPO T/A Cloning Kit, and 

sequenced.  

 

2.4. Structural analysis 

A consensus sequence for each group of FREPs was obtained by using the CAP3 

Sequence Assembly Program and aligned with sequences from Tachypleus tridentatus, 

Halocynthia roretzi, Xenopus laevis, Rattus norvegicus, Sus scrofa and Homo sapiens 

available in the GenBank database using ClustalW2. The topology prediction of mussel 

FREPs was done using pTARGET software (Guda, 2006). The prediction of signal 

peptide, cleavage sites and the trans-membrane regions were carried out using different 

available software from the ExPASy Proteomics Server (SignalIP 3.0, SOSUI and 

SMART software, respectively). 
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2.5. Constitutive expression of FREPs 

The expression of the three representative groups of FREPs was analyzed by 

quantitative PCR in different tissues. Mussel hemocytes, muscle, mantle, gills, gonads, 

foot and gland were extracted and preserved in Trizol Reagent (Invitrogen) until use. 

Total RNA was extracted using Trizol Reagent (Invitrogen) following the 

manufacturer’s instructions. RNA (5 g per sample) was treated with DNase I 

(Ambion) to remove contaminating DNA, and first-strand cDNA was synthesized with 

SuperScript™ II Reverse Transcriptase (Invitrogen). Quantitative PCR was performed 

using the following set of primers (Group 1; G1F: CCT GAC AAA TGC AAC AGT 

GG, G1R: TGG CCG TTG TGA TGT TCT AA. Group 2; G2F: GTG ATG CAT TCA 

GCG GAC TA and G2R: CCC CAA TTG ATA CCA GAT GC. Group 3; G3F: CAA 

CGT TGG TGA CTC ATT GG and G3R: CCG CCA AGA TAC TGT CCA TT). A 

total of 0.5 µl of each primer (10 µM) was mixed with 10.5 µl of SYBR green PCR 

master mix (Applied Biosystems) in a final volume of 21 µl. The standard cycling 

conditions were 95 ºC for 10 min, followed by 40 cycles of 95 ºC for 15 s and 60 ºC for 

1 min. The comparative CT method (2-∆∆CT method) was used to determine the 

expression level of analyzed genes (Livak and Schmittgen, 2001). The expression of 

candidate genes was normalized using the β-actin as housekeeping gene (ActinF: AAC 

CGC CGC TTC TTC ATC TTC and ActinR: CCG TCT TGT CTG GTG GTA). Fold 

units were calculated by dividing the normalized expression values of infected tissue by 

the normalized expression values of the controls. Data were analyzed using Student’s t-

test. The results were expressed as the mean ± standard deviation and differences were 

considered statistically significant at p<0.05. 
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2.6. Genomic organization 

 Genomic DNA from adult mussels was extracted from hemolymph with 

DNAzol (Invitrogen) following the manufacturer’s instructions. The genomic sequence 

of FREP from group 1 (GeneBank accession number HQ236391) was then analyzed by 

PCR after consecutive amplification with specific primers designed using Primer3 

(Table I). The PCR reaction was performed with a high fidelity Taq polymerase 

(TaKaRa ExTaq
™

 Hot Start Version; TaKaRa Bio Inc., Otsu, Siga, Japan), and the 

cycling protocol was 94 ºC for 5 min, 40 cycles of 94 ºC for 30 s, 50 ºC for 1 min and 

72 ºC for 1 min followed by a final extension of 72 ºC for 7 min. The predicted intron-

exon structure of the genomic sequence was obtained using Wise2 software.  

 

2.7. Individual variability 

Total RNA from three mussels was individually extracted, and the individual 

variability of the cDNA sequences of FREPs from group 1 was then analyzed by PCR 

using the specific primers previously described (G1F and G1R). The PCR reaction was 

done with a high fidelity Taq polymerase (TaKaRa ExTaq
™

 Hot Start Version; TaKaRa 

Bio Inc., Otsu, Siga, Japan), and the cycling protocol was 94 ºC for 5 min followed by 

40 cycles of 94 ºC for 1 min, 55 ºC for 1 min and 72 ºC for 1 min with a final extension 

step of 72 ºC for 10 min. Products were analyzed as described above, and the PCR 

products matching the predicted product size (389 bp) were cloned into the pCR2.1-

TOPO vector (Invitrogen) using DH5α™ Competent Cells (Invitrogen). Thirty clones 

from each mussel were sequenced (GeneBank accession numbers from HO666697 to 

HO666738), and the identity between sequences was analyzed using ClustalW2 

software, in terms of the number of different nucleotides detected in the alignment. 
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2.8. Enrichment of FREPs in plasma fractions and functional activity 

Hemolymph from 50 mussels was collected and centrifuged. FREPs were 

isolated from serum by affinity chromatography on a GlcNac-Sepharose 6B column at 4 

ºC. Briefly, the column was washed with 7 M guanidine hydrochloride and three times 

with buffered solution (50 mM Tris-HCl, 1 M NaCl, 50 mM CaCl2). The GlcNac-

Sepharose was dispensed in sample tubes, which were kept overnight at 4 ºC with 

gentle mixing. The sample was loaded onto the column and unbound proteins were 

washed out using the same buffer. The bound proteins were eluted with 150 mM 

GlcNac in 50 mM Tris-HCl, 1 M NaCl and 50 mM CaCl2. The presence of proteins in 

the bound fraction was assessed by SDS-PAGE on a 15% acrylamide:bisacrylamide gel 

using a Mini-PROTEAN electrophoresis system (Bio-Rad). Bands of SDS-PAGE gel 

were analyzed using a PMF system (Proteomic unit, Universidad Autónoma, Madrid). 

The functional activity of the purified FREPs was assayed with phagocytosis 

experiments. One milliliter of hemolymph from each of 16 mussels was placed into 

individual wells of tissue-culture 24-well plates. The number of hemocytes in each 

sample was estimated by counting cells with the aid of a hemocytometer chamber. 

Hemocytes were allowed to adhere for 30 min in the dark at 15 °C. Hemolymph 

supernatant was then removed and cells were washed with filtered sea water. 

Fluorescein-labeled 1 μm latex beads were added at a 10:1 target:hemocyte ratio. 

Purified FREPs were also added to the plates at a final concentration of 2.27 g/ml. 

Hemocytes with latex beads not treated with FREPs and hemocytes without FREPs or 

latex beads were included as controls. After 2 h of incubation at 15 °C in the dark, beads 

not internalized were removed by gently washing wells twice with 500 μl of PBS. Cells 

were finally resuspended in 150 μl of PBS by carefully  detaching them from the bottom 

of the well using a rubber cell scraper. Fifty microliters of 0.8% trypan blue in PBS 
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were added to each sample to quench external fluorescence. Phagocytosis was evaluated 

in the four different hemocyte populations (with different morphology and functional 

activities) previously described in our laboratory (García-García et al., 2008). Ten 

thousand cells were then analyzed by flow cytometry. Cell fluorescence was analyzed in 

the FL-1 channel set to a log scale. FL-1 voltage was adjusted for positive cells (cells 

that internalized at least one particle) falling within the same fluorescence range. 

Phagocytosis was expressed as the percentage of cells that internalized at least one 

fluorescent particle (positive cells). 

 

2.9. Expression of FREPs under different stimuli 

To analyze the effect of external stimuli on the expression of the FREPs in 

hemocytes, several PAMPs (Pathogens-Associated Molecular Patterns) and live bacteria 

were administered intramuscularly (im) (in vivo experiments) or added to hemocyte 

primary cultures (in vitro experiments). For the PAMPs, solutions of 1 mg/ml of poly 

I:C, zymosan, lipopolysaccharide (LPS) or lipoteichoic acid (LTA) were prepared from 

a commercial stock (Sigma). To prepare a bacterial CpG solution, bacteria (V. 

anguillarum) were grown in TSA supplemented with 1% NaCl at room temperature 

over several days. Bacterial DNA was then isolated using phenol-chloroform (Maniatis 

et al., 1982), and the concentration of CpG was adjusted to 1 mg/ml. For live bacteria, 

M. lysodeikticus and V. anguillarum were used as Gram-positive and Gram-negative 

stimuli, respectively. M. lysodeikticus was grown in LB medium at 37 ºC, and V. 

anguillarum was cultured as previously described. Bacteria were resuspended in sterile-

filtered seawater to obtain an OD620 of 0.033 (1.6x10
7
 cfu Vibrio/ml and 1.2x10

6
 cfu 

Micrococcus/ml). 
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2.9.1. In vivo stimulation 

Eight groups of 48 naive animals were injected on the posterior adductor muscle 

with 100 µl of PAMP solution (either poly I:C, zymosan, LPS, LTA or CpG) or live 

bacteria (V. anguillarum or M. lysodeikticus). The control group was injected with 

filtered seawater (FSW). All individuals were maintained out of the water for 20-30 min 

before and after the injection. Each treatment group was individually maintained in 

tanks with aeration until sampling. After 3, 6 and 24 h post inoculation, hemolymph was 

collected from the adductor muscle, pooled and adjusted to 2x10
5
 cells/ml. Pooled 

hemolymph from 4 individuals was used per each sampling point and treatment. 

 

2.9.2. In vitro stimulation 

A total of 20 hemocyte primary cultures were obtained from naive mussels. 

Hemolymph was collected from the adductor muscle of 5 individuals using the 

methodology previously described. For each experiment, pooled hemolymph (2-5 ml of 

hemolymph per individual) from 5 animals was used. Hemocytes were then incubated 

with the PAMPs solution (final concentration of 50 µg/ml) or live bacteria (OD620 

0.033). Samplings were performed after 1, 3 and 6 h post-inoculation. All the 

experiments were performed at 15 ºC and replicated at least twice. 

 

2.9.3. Expression studies by Q-PCR 

To determine and quantify the FREPs expression pattern, real time PCR was 

performed on hemocytes exposed to the different treatments using the cDNAs 

previously generated. The different treatments analyzed include bacterially infected 

samples, samples stimulated with each of the various PAMPs (described above) and 
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untreated control samples. Amplification was carried out using the same protocol 

previously described. The expression of candidate genes was normalized to the 18S 

ribosomal RNA as a housekeeping gene (Mussel-18S-F: GTA CAA AGG GCA GGG 

ACG TA and Mussel-18S-R: CTC CTT CGT GCT AGG GAT TG).  
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3. Results 

 

3.1. Phylogenetic analysis 

The final alignment was 366 residues long and was reduced to 166 residues once 

ambiguous columns were removed. The selected model of amino acid replacement was 

WAG (Whelan and Goldman, 2001), with a proportion of invariable sites and gamma 

distributed rate variation among sites (Yang, 1996) (i.e., WAG+I+G). The maximum 

likelihood estimate of the phylogeny (Figure 1) showed well-supported specific clades, 

although the relationships among these clades could not be resolved with confidence.  

The deepest split in the tree defined two lineages, although with very low support. The 

first lineage included fibrinogens and fibrinogen-like proteins, whereas the second was 

comprised of ficolins and ficolin-like proteins, tenascins, angiopoietins and tachylectins. 

Mussel FREPs (MuFREPs) clustered into 3 main groups with high confidence (99% of 

bootstrap values; Figure 1A). MuFREPs included in groups 1 and 3 were most closely 

related to each other forming, together with the Argopecten FREP, a sister group to the 

vertebrate ficolins. On the other hand, mussels sequences included in group 2 seemed to 

conform to a different lineage separated from other invertebrate and mammalian 

ficolins. 

The position of the MuFREPs in the phylogenetic tree seems related to their 

domain structure (Figure 1B). Mussel sequences only possessed the fibrinogen domain, 

as observed in other invertebrate proteins such as tachylectins, ixoderins, carcinolectins, 

aslectins and several FREPs from Anopheles and Branquiostoma. The fibrinogen 

domain associated with other domains to constitute not only vertebrate ficolins, in 

combination with the collagen domain, but also other more complex proteins in 

combination with EGF, IG or fibronectin domains. 



 16 

3.2. Structural analysis 

The consensus sequence for group 1, with 789 bp, included the complete open 

reading frame (ORF), encoding a protein of 262 amino acids. Two sequences of 806 

and 929 bp in length (from group 2 and 3, respectively) were finished by the RACE 

technique. The translated nucleotide sequences encoded two proteins of 230 and 249 

amino acids, respectively. 

 The alignment of the MuFREPs sequences with other FREPs available in 

GenBank revealed that only the fibrinogen-like domain was present (Figure 2). A small 

leader 5´ signal peptide followed by a specific cleavage site was present in all groups of 

mussel FREPs. The cleavage site was TTQ-EP for group 1, ANA-EL for group 2 and 

VNS-TS for group 3. The fibrinogen-like domain consisted of 206-210 residues and 

was characterized by the presence of mostly hydrophobic amino acids, including four 

conserved cysteine residues. There were three potential N-glycosylation sites at residues 

240, 300 and 305 and two potential calcium-binding sites in the latter half of the 

COOH-terminal. According to the topology prediction, all of the MuFREPs were 

classified as extracellular/secreted proteins. The hydrophobic signal peptides, which 

mediated protein translocation into the endoplasmic reticulum, and the cleavage sites 

were found in all mussel FREPs.  

 

3.3. Constitutive expression of MuFREPs 

 To analyze the relative expression of the three groups of mussel FREPs, a 

quantitative PCR was conducted in several tissues (hemocytes, muscle, mantle, gills, 

gonads, foot and gland). The most highly expressed sequences were those 

corresponding to FREPs from group 1, which was especially evident in hemocytes and 

to a lesser extent in gills and digestive gland. However, the expression of FREPs from 
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groups 2 and 3 was almost undetectable (Figure 3). No differences were detected among 

male and female mussels (data not shown).  

Because the FREP from group 1 was the highest expressed sequence, we 

focused in different aspects of this molecule, including genomic structure, expression in 

response to stimuli and individual variability. 

 

3.4. Genomic organization 

The sequence of the FREP gene from group 1 was 5339 nucleotides long. This 

sequence was divided into six exons, ranging in length from 72 to 247 bp. Their splice 

acceptor and donor sequences were consistent with the AG/GT rule. The first and 

second exons were 73 bp in length and encoded a signal peptide of 25 amino acids, a 

cleavage site and the N-terminal region. The next three exons encoded the upstream 

portion of the fibrinogen-like domain, and the last exon contained 247 bp encoding the 

remaining fibrinogen-like domain (Figure 4). 

 

3.5. Individual variability 

An assessment of polymorphisms and individual variability in mussel FREP 

sequences from group 1 was performed on 66 different clones from three different 

mussels (27, 17 and 22 clones from mussels 1, 2 and 3, respectively). The alignments 

showed that each sequence was unique with at least four different nucleotides per 

sequence. Moreover, the three mussels did not present any nucleotide or amino acid 

sequence in common. In total, 33, 26 and 36 of 389 nucleotides were variable in 

mussels 1, 2 and 3, respectively, indicating a percentage of variability ranging from 6.6 

to 9.2 (Figure 5A). 



 18 

 Fifty-nine percent of all analyzed sequences were unique (18, 15 and 9 

nucleotide sequences and 16, 9 and 9 amino acid sequences from mussels 1, 2 and 3, 

respectively). Furthermore, one specific sequence from each mussel was highly repeated 

(sequence A: 11 times in mussel 1; sequence B: 5 times in mussel 2 and sequence C: 15 

times in mussel 3) (Figure 5B). 

 

3.6. Functional activity of purified FREPs 

The elution of mussel serum into the GlcNAc-Sepharose 6B column allowed us 

to identify a predominant protein of 45 kDa (Figure 6A) and two unidentified and 

minority proteins of 35 and 20 kDa. The peptide mass fingerprinting of the 45 kDa 

protein identified three peptides: one peptide as ficolin-2 precursor (peptide 1070.49 

ficolin-2 precursor) with an amino acid sequence (QDGSVDFFR), which was present in 

the three groups of FREPs (highlighted in Figure 2); the other peptides (1163.62 and 

1741.82) had similarity with the sequences available in the database (fibronectin and 

HC immunoglobulin, respectively).  

 The biological activity of the partially purified FREPs was measured by 

phagocytosis assay. The incubation of hemocytes with the purified FREPs induced an 

increase in the phagocytosis of fluorescent beads. Only 2 out of 16 mussels analyzed did 

not respond to this stimulation (Figure 6B). The phagocytic rate recorded in the 

different populations of hemocytes was different among mussels. Half of the analyzed 

mussels increased their phagocytic rate by less than 20% and 37.5% of the remaining 

mussels increased their activity by more than 20%, reaching up to 60% in some cases 

(Figure 6C). Moreover, the hemocyte subpopulations presented different levels of 

phagocytosis. The phagocytic activity in R1 and R2 cells was incremented up to 70% 

and 50%, respectively. R3 and R4 hemocytes presented less activity and the FREP 
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treatment only incrementally enhanced the phagocytic activity up to 30% and 10%, 

respectively (Figure 6D). 

 

3.7. Expression of FREPs under different stimuli 

After in vitro incubation of hemocytes with several PAMPs, the maximum 

expression of FREPs was obtained after 3 h post treatment in all cases. However, the 

results obtained after 1 and 6 h post stimulation did not show significant differences. 

LTA (50-fold induction) and LPS (34-fold induction) induced the highest FREP 

expression levels among the PAMPs administered (Figure 7A). Even though the 

expression levels obtained after poly I:C and zymosan stimulation were mild (4.9 and 

7.7 fold increase, respectively), both PAMPs showed statistically significant increments 

when compared to controls from the same sampling point. The in vivo stimulation of 

mussels with the PAMPs showed that LTA was able to induce the maximum response 

after 3 h post stimulation (8.8 fold increase) (Figure 7B). Despite a reduction in 

expression values after 6 and 24 h post inoculation, significantly increased expression 

values were still observed at 24 h following LTA stimulation (3.9 fold induction). LPS 

also provoked a high FREP expression (8.1 fold increase) at 24 h post stimulation. 

However, the remaining PAMPs did not induce significant expression differences when 

compared to control samples. 

The Gram-positive bacteria M. lysodeikticus was able to induce a significant 

increase in expression after 3 h post in vitro treatment (7.6 fold induction). No 

significant differences were found for the other sampling points following either M. 

lysodeikticus or V. anguillarum challenge (Figure 7C). In contrast, in vivo stimulation 

by Gram-negative or Gram-positive bacteria provoked a significant increase in the 
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expression at 24 h post stimulation (1451.2 and 9286.4 fold increase, respectively). No 

significant differences were found in the remaining sampling points (Figure 7D). 
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4. Discussion 

 

 It is well known that ficolins and MBL are the molecules responsible for 

complement activation by the lectin pathway (Endo et al., 2007; Runza et al., 2008). 

Ficolins have been identified in several species of amphibians (Kakinuma et al., 2003) 

and mammals (Fujimori et al., 1998; Ichijo et al., 1993; Matsushita et al., 1996; Ohashi 

and Erickson, 1998; Omori-Satoh et al., 2000). However, little is known about the 

presence of ficolins in fish, birds or reptiles. Ficolins from invertebrate animals have 

been only reported in the solitary ascidian Halocynthia roretzi (Kenjo et al., 2001) and 

as predicted proteins in Ciona intestinalis, Strongylocentrotus purpuratus and Culex 

quinquefasciatus. However, to date there has not been any description of these proteins 

in the protostome lineage. Because of this lack of information, the phylogenetic 

relationships between ficolin families remain unclear. Other proteins with fibrinogen-

like domains, such us tachylectins and tenascins present in invertebrate and vertebrate 

animals (Gokudna et al., 1999; Kawabata and Tsuda, 2002; Mali et al., 2006; Ju et al., 

2009), have been used in the past to understand the evolution of the ficolin genes (Endo 

et al., 2006). We cannot determine with certainty if the mussel FREPs sequences that 

we report in this study, resemble primitive structures from which the different FREPs 

(angiopoietins, tachylectins, carcinolectins and ficolins) evolved. 

The fibrinogen-like domains of mussel FREPs conserve the Ca
+2

-binding sites 

and likely bind carbohydrates in a calcium-dependent manner, as it has been described 

before for human ficolins and other FREPs (Matsushita et al., 2001; Kawabata and 

Tsuda, 2002; Zhang et al., 2009; Garlatti et al., 2010). The four conserved cysteines that 

are present in the C-terminal end could be involved in inter-chain disulfide bonds, as 

predicted according to the similar bonds found in human fibrinogen. The cDNA-derived 
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amino acid sequence for mussel FREP does not suggest the presence of typical 

transmembrane domains. This characteristic seems to be shared with other proteins of 

similar structures, such as C1q, collectins or tachylectins, which are soluble proteins 

that can be secreted into the circulatory system.  

The exon-intron organization of FREPs in mussel is quite similar to the structure 

already described for mammalian ficolins (Runza et al., 2008; Garred et al., 2010). The 

fibrinogen-like domain is codified in both cases by 4 exons, from exons 5 to 8 in 

mammals and from exons 3 to 6 in mussel. The first and second exons encode the 

5´UTR, the leader peptide and a short link region in both species.  

Certain fibrinogen-like domains are involved in the recognition of 

microorganisms by lectins, including ficolin/P35 and the horseshoe crab lectins (Endo 

et al., 1996, 2005). This suggests that the mussel fibrinogen-like domain might play an 

important role in the first line of immune defense. In this sense, the high variability 

observed within mussels could explain the role of these molecules as a starting point for 

the activation of the lectin complement pathway (Zhu et al., 2005). Moreover, the high 

variability of MuFREPs, proposed here as an innate mechanism to fight pathogens 

(individual mussels do not share any identical sequence) has been described previously 

for other related invertebrate genes with allo-recognition. This is the case for FREPs of 

the freshwater snail Biomphalaria glabrata, which contain amino terminal 

immunoglobulin domains (Zhang et al., 2004); the highly polymorphic FuHc gene from 

Botryllus schlosseri; the self-sterility receptors of Halocynthia or the vCRL1 gene from 

Ciona intestinalis (Khalturin and Bosch, 2007). Also, we have already reported high 

individual variability, generated by a mechanism not yet determined, in the 

antimicrobial peptide myticin C (Costa et al., 2009; Pallavicini et al., 2008) and C1q-

containing proteins (Gestal et al., 2010). 
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We could detect a constitutive mRNA expression of mussel FREP in different 

tissues (hemocytes, muscle, mantle, gills, male and female gonads, foot and digestive 

gland). Human ficolin mRNA has been detected by northern-blot techniques in 

peripheral blood leukocytes (Lu et al., 1996) and, to a lesser extent, in other tissues such 

as spleen, lung, thymus, placenta and skeletal muscle (Ichijo et al., 1993; Liu et al., 

2005). This pattern of expression suggests that ficolins are mainly produced by 

peripheral blood leukocytes or tissue macrophages. The detection of mussel FREP 

mRNA in a wide range of tissues (especially in hemocytes) does not completely rule out 

the possibility that this cell type is the major producer of FREPs. 

To analyze the functional activity of purified mussel FREPs, hemolymph 

samples were loaded onto a GlcNAc-Sepharose 6B column. This methodology has been 

also applied to the purification of ficolins in other species, such us Xenopus laevis and 

Halocynthia roretzi, with good results (Kenjo et al., 2001; Kakinuma et al., 2003). 

Peptide mass fingerprinting analyses revealed the presence of a ~45 kDa protein in 

serum identified as “ficolin-2 precursor”. Although the molecular weight did not match 

with the one predicted, probably due to glycosylation, a peptide from the majoritary 

protein was present in the three groups of MuFREPs. The concentration used in these 

experiments (2.27 g/ml) was quite similar to the concentration present in the serum of 

different vertebrate animals, which ranges from 3.0 to 5.0 µg/ml (Kilpatrick et al., 2003; 

Le et al., 1998). The incubation of hemocytes with enriched fractions of FREPs induced 

an increase in the phagocytic capacity. The phagocytic rate recorded in the overall 

hemocyte populations changed from one mussel to another ranging from 0% up to 60% 

and reflected heterogeneity in the immune response between individuals. As previously 

described (García-García et al., 2008), hemocyte groups R1 and R2 presented a high 

phagocytic capacity and a higher opsonization activity.  
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The invertebrate immune system is able to recognize molecular patterns 

(PAMPs) present on pathogen surfaces by means of several receptors (PRRs, Pattern 

Recognition Receptor) located on the host defense cells (Medzhitov and Janeway, 

1997). Among the PRRs the Toll-like receptors (TLRs) are the best-known family of 

membrane receptors, which recognize several PAMPs. Among them, TLR-4 has been 

described as the main receptor for LPS, but can also recognize other PAMPs including 

zymosan and peptidoglycan. No Toll-like receptors have been characterized in Mytilus 

galloprovincialis so far. However, several ESTs with homology to TLRs have been 

identified in other bivalve molluscs, including the Japanese oyster, Crassostrea gigas 

(Tanguy et al., 2004) and the scallops Argopencten irradians (Song et al., 2006) and 

Chlamys farreri (Qiu et al., 2007). Other PRRs, such as LPS-binding proteins or glucan-

binding proteins have been detected in Crassostrea gigas (González et al., 2007) and in 

Mytilus galloprovincialis (Venier et al., 2003), respectively. The existence of ESTs with 

homology to different PRRs in bivalves led us to consider that similar recognition 

mechanisms may occur in these organisms. Indeed, after both in vitro and in vivo 

stimulation with several PAMPs, the FREPs expression pattern on mussels seemed to be 

stimuli-dependent, suggesting that mussel hemocytes were able to discriminate between 

the different stimuli. LPS and LTA produced the highest FREP gene expression. Live 

bacteria challenges have also shown an increase in FREP expression. The highest level 

of FREP expression was found after challenge with the Gram-positive bacteria M. 

lysodeikticus, suggesting that some component of the bacteria would be responsible for 

this increase over the control. In humans, ficolins can specifically recognize LTA and 

activate the lectin pathway (Lynch et al., 2004). Thus, the contact of hemocytes with 

whole bacteria (dead or alive), or with a part of its structure (LPS or LTA), may be 

enough to up-regulate FREPs expression. 
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In conclusion, we have described several FREPs in mussels that could be related 

to mammalian ficolins because a) they cluster together with ficolins in a phylogenetic 

tree, b) their expression is increased after bacterial infection or PAMPs treatment and c) 

they have opsonic activities similar to mammalian ficolins. However, the lack of a 

collagen domain, the low confident phylogenetic position and the surprising lack of 

ficolins in some animal groups confound the identification of these simple molecules as 

primitive forms of more evolved ficolins. On the other hand, the high FREP variability 

observed within and among individuals in M. galloprovincialis seems to indicate an 

extraordinary innate complexity and a potential mechanism to fight pathogens. Also, the 

high variability described in FREPs and other innate molecules, such as myticin C, 

could be hypothesized as one of the main reasons why no mortalities have been 

associated with the Mediterranean mussel when kept at high densities. Further studies 

are needed to elucidate the function of each group of FREPs and to establish the 

functional relationship between them. Such studies will help to determine how the high 

sequence diversity found in bivalve genes with putative immune role, can be a key to 

pathogen resistance. These aspects would certainly add new insights to the origin and 

evolution of this important innate immune family of proteins. 

 

Acknowledgements 

 

This work has been funded by the European Union Integrated Project 

Imaquanim CT-2005-007103 and by the project AGL2008-05111/ACU from the 

Spanish Ministerio de Ciencia e Innovación. The authors have declared that no 

competing interests exist. 

 



 26 

 

 

 

References 

 

Abascal, F., Zardoya, R., Posada, D., 2005. ProtTest: selection of best-fit models of 

protein evolution. Bioinformatics 21, 2104-2105. 

Adema, C.M., Hertel, L.A., Loker, E.S., 1999. Evidence from two planorbid snails of a 

complex and dedicated response to digenean (echinostome) infection. Parasitol. 

119, 395–404. 

Adema, C.M., Hertel, L.A., Miller, R.D., Loker, E.S., 1997. A family of fibrinogen-

related proteins that precipitates parasite-derived molecules is produced by an 

invertebrate after infection. Proc. Natl. Acad. Sci. U.S.A. 94, 8691–8696. 

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans Aut 

Control 19, 716-723. 

Allam, B., Ashton-Alcox, K.A., Ford, S.E., 2001. Haemocyte parameters associated 

with resistance to brown ring disease in Ruditapes spp. clams. Dev. Comp. 

Immunol. 25, 365-375. 

Baker, N.E., Mlodzik, M., Rubin, G.M., 1990. Spacing differentiation in the developing 

Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 

250, 1370–1377. 

Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their 

use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552. 

Costa, M.M., Dios, S., Alonso-Gutierrez, J., Romero, A., Novoa, B., Figueras, A., 2009. 

Evidence of high individual diversity on myticin C in mussel (Mytilus 

galloprovincialis). Dev. Comp. Immunol. 33, 162-170. 



 27 

Dixit, R., Roy, U., Patole, M.S., Shouche, Y.S., 2008. Molecular and phylogenetic 

analysis of a novel family of fibrinogen-related proteins from mosquito Aedes 

albopictus cell line. Comput. Biol. Chem. 32, 382–386. 

Doolittle, R.F., 1992. A detailed consideration of a principal domain of vertebrate 

fibrinogen and its relatives. Protein Sci. 1, 1563–1577. 

Drickamer, K., 1995. Increasing diversity of animal lectin structures. Curr. Opin. Struct. 

Biol. 5, 612–616. 

Endo, Y., Liu, Y., Fujita, T., 2006. Structure and function of ficolins. Adv. Exp. Med. 

Biol. 586, 265-279. 

Endo, Y., Matsushita, M.,Fujita, T., 2007. Role of ficolin in innate immunity and its 

molecular basis. Immunobiol. 212, 371-379. 

Endo, Y., Nakazawa, N., Liu, Y., Iwaki, D., Takahashi, M., Fujita, T., Nakata, M., 

Matsushita, M., 2005. Carbohydrate-bindingspecifities of mouse ficolin A, a 

splicing variant of ficolin A and ficolin B and their complex formation with 

MASP-2 and aMAP. Immunogenetics 57, 837-844. 

Endo, Y., Sato, Y., Matsushita, M., Fujita, T., 1996. Cloning and characterization of the 

human lectin P35 gene and its related gene. Genomics 36, 515–521. 

Endo, Y., Takahashi, M., Fujita, T., 2006. Lectin complement system and pattern 

recognition. Immunobiol. 211, 283-293. 

Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the 

bootstrap. Evolution 39, 783-791. 

Fujimori, Y., Arrumilla, S., Fukumoto, Y., Miura, Y., Yagasaki, Y., Tachikawa, H., 

Fujimoto, D., 1998. Molecular cloning and characterization of mouse ficolin-A. 

Biochem. Biophys. Res. Commun. 244, 796–800. 



 28 

García-García, E., Prado-Álvarez, M., Novoa, B., Figueras, A., Rosales, C., 2008. 

Immune responses of mussel hemocyte subpopulations are differentially regulated 

by enzymes of the PI 3-K, PKC, and ERK kinase families. Dev. Comparative 

Immunol. 32, 637-653. 

Garlatti, V., Martin, L., Lacroix, M., Gout, E., Arlaud, G., Thielens, N., Gaboriaud, C., 

2010. Structural insights into the recognition properties of human ficolins. J. 

Innate Immun. 2, 17-23. 

Garred, P., Honoré, C., Ma, Y.J., Rorvig, S., Cowland, J., Borregaard, N., Hummelshoj, 

T., 2010. The genetics of ficolins. J. Innate Immun. 2, 3-16. 

Gestal, C., Pallavicini, A., Venier, P., Novoa, B., Figueras, A., 2010. MgC1q, a novel 

C1q-domain-containing protein involved in the immune response of Mytilus 

galloprovincialis. Dev. Comp. Immunol. 34, 926-934. 

Gokudna, S., Muta, T., Tsuda, R., Koori, K., Kawahara, T., Seki, N., Mizunoe, Y., Wai, 

S.N., Iwanaga, S., Kawabata S., 1999. Horseshoe crab acetyl group-recognizing 

lectins involved in innate immunity are structurally related to fibrinogen. Proc. 

Nat.l Acad. Sci. USA. 96, 10086-10091. 

González, M., Gueguen, Y., Desserre, G., de Lorgeril, J., Romestand, B., Bachère, E., 

2007. Molecular characterization of two isoforms of defensin from hemocytes of 

the oyster Crassostrea gigas. Dev. Comp. Immunol. 31, 332-339.  

Gorbushin, A.M., Panchin, Y.V., Iakoleva, N.V., 2010. In search of the origin of 

FREPs: characterization of Aplysia californica fibrinogen-related proteins. Dev. 

Comp. Immunol. 34, 465-73. 

Guda, C., 2006. pTARGET: A web server for predicting protein subcellular 

localization. Nucleic Acids Res. 35, 210-213. 



 29 

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 

2010. New algorithms and methods to estimate maximum-likelihood phylogenies: 

assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321. 

Hertel, L.A., Adema, C.M., Loker, E.S., 2005. Differential expression of FREP genes in 

two strains of Biomphalaria glabrata following exposure to the digenetic 

trematodes Schistosoma mansoni and Echinostoma paraensei. Dev. Comp. 

Immunol. 29, 295–303. 

Hugh, D., Owen, R., Tracy, A., 1992. Southern Gill dimensions, water pumping rate 

and body size in the mussel Mytilus edulis L. J. Exp. Ma.r Biol. Ecol. 155, 213-

237. 

Ichijo, H., Hellman, U., Wernstedt, C., Gonez, J.L., Claesson-Welsh, L., Heldin, C.H., 

Miyazono K., 1993. Molecular cloning and characterization of ficolin, a 

multimeric protein with fibrinogen- and collagen-like domains. J. Biol. Chem. 

268, 14505–14513. 

Ju, L., Zhang, S., Liang, Y., Sun, X., 2009. Identification, expression and antibacterial 

activity of a tachylectin-related homolog in amphioxus Branchiostoma belcheri 

with implications for involvement of the digestive system in acute phase response. 

Fish Shellfish Immunol. 26, 235-242. 

Kakinuma, Y., Endo, Y., Takahashi, M., Nakata, M., Matsushita, M., Takenoshita, M. 

Fujita, T., 2003. Molecular cloning and characterization of novel ficolins from 

Xenopus laevis. Immunogenetics 55, 29–37. 

Katoh, K., Kuma, K., Toh, H., Miyata, T., 2005. MAFFT version 5: improvement in 

accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511-518. 

Kawabata, S., Tsuda, R., 2002. Molecular basis of non-self recognition by the horseshoe 

crab tachylectins. Biochim. Biophys. Acta 1572, 414-421.  



 30 

Kenjo, A., Takahashi, M., Matsushita, M., Endo, Y., Nakata, M., Mizuochi, T., Fujita, 

T., 2001. Cloning and characterization of novel ficolins from the solitary ascidian, 

Halocynthia roretzi. J. Biol. Chem. 276, 19959–19965. 

Khalturin, K., Bosch, T.C.G., 2007. Self/nonself discrimination at the basis of chordate 

evolution: limits on molecular conservation. Current Op. Immunol. 19, 4-9. 

Kilpatrick, D.C., McLintock, L.A., Allan, E.K., Copland, M., Fujita, T., Jordanides, 

N.E., Koch, C., Matsushita, M., Shiraki, H., Stewart, K., Tsujimura, M., Turner, 

M.L., Franklin, I.M., Holyoake, T.L., 2003. No strong relationship between 

mannan binding lectin or plasma ficolins and chemotherapy-related infections. 

Clin. Exp. Immunol. 134, 279-284. 

Knibbs, R.N., Osborne, S.E., Glick, G.D., Goldstein, I.J., 1993. Binding determinants of 

the sialic acid-specific lectin from the slug Limax flavus. J. Biol. Chem. 268, 

18524–18531. 

Le, Y., Lee, S.H., Kon, O.L., Lu, J., 1998. Human L-ficolin: plasma levels, sugar 

specifity and assignment of its lectin activity to the fibrinogen-like (FBG) domain. 

FEBS Lett. 425, 367-370. 

Liu, Y., Endo, Y., Homma, S., Kanno, K., Yaginuma, H., Fujita, T., 2005. Ficolin A 

and Ficolin B are expressed in distinct ontogenic patterns and cell types in the 

mouse. Mol. Immunol. 42, 1265-1273. 

Liu, Z., Ukomadu, C., 2008. Fibrinogen-like protein 1, a hepatocyte derived protein is 

an acute phase reactant. Biochem. Biophys. Res. Commun. 365, 729–734. 

Livak, K., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-

time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–

408. 



 31 

Lu, J., Le, Y., 1998. Ficolins and the fibrinogen-like domain. Immunobiol. 199,190–

199. 

Lu, J., Tay, P.N., Kon, O.L., Reid, K.B., 1996. Human ficolin: cDNA cloning, 

demonstration of peripheral blood leucocytes as the major site of synthesis and 

assignment of the gene to chromosome 9. Biochem. J. 313, 473-478. 

Lynch, N.J., Roscher, S., Hartung, T., Morath, S., Matsushita, M., Maennel, D.N., 

Kuraya, M., Fujita, T., Schwaeble, W.J., 2004. L-ficolin specifically binds to 

lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates 

the lectin pathway of complement. J. Immunol. 172, 1198-1202.  

Mali, B., Soza-Ried, J., Frohme, M., Frank, U., 2006. Structural but not functional 

conservation of an immune molecule: a tachylectin-like gene in Hydractinia. Dev. 

Comparative Immunol. 30, 275-281. 

Maniatis, T., Fritsch, E.F., Sambrook, J., 1982. Molecular Cloning. A Laboratory 

Manual. Cold Spring Harbor Laboratory Publication, New York. 

Matsushita, M., Endo, Hamasaki, N., Fujita, T., 2001. Activation of the lectin 

complement pathway by ficolins. Int. Immunopharmacol. 1, 359–363. 

Matsushita, M., Endo, Y., Fujita, T., 2000. Cutting edge: complement-activating 

complex of ficolin and mannose-binding lectin-associated serine protease. J. 

Immunol. 164, 2281-2284. 

Matsushita, M., Endo, Y., Taira, S., Sato, Y., Fujita, T.,  Ichikawa, N., Nakata, N.,  

Mizuochi, T., 1996. A novel human serum lectin with collagen- and fibrinogen- 

like domains that functions as an opsonin. J. Biol. Chem. 271, 2448–2454. 

Medzhitov, R., Janeway, C.A., 1997. Innate immunity: the virtues of a non-clonal 

system of recognition. Cell 91, 295-298. 



 32 

Meyhöfer, E., 1985. Comparative pumping rates in suspension-feeding bivalves. Marine 

Biol. 85, 137-142. 

Norman, R., 1988. Hydrodynamics of flow in Mytilus gills. J. Exp. Mar. Bio. Ecol. 120, 

171-182. 

Ohashi, T., Erickson, H.P., 1998. Oligomeric structure and tissue distribution of ficolins 

from mouse, pig and human. Arch. Biochem. Biophys. 360, 223-232. 

Omori-Satoh, T., Yamakawa, Y., Mebs, D., 2000. The antihemorrhagic factor, erinacin, 

from the European hedgehog (Erinaceus europaeus), a metalloprotease inhibitor 

of large molecular size possessing ficolin/opsonin P35 lectin domains. Toxicon 

38, 1561–1580. 

Pallavicini, A., Costa, M.M., Gestal, C., Dreos, R., Figueras, A., Venier, P., Novoa, B., 

2008. High sequence variability of myticin transcripts in haemocytes of immune-

stimulated mussels suggests ancient host-pathogen interactions. Dev. Comp. 

Immunol. 32, 213-226. 

Pipe, R. 1990. Hydrolytic enzymes associated with the granular haemocytes of the 

marine mussel Mytilus edulis. Histochem. J. 22, 595-603. 

Pipe, R., Farley, S., Coles, J., 1997. The separation and characterisation of haemocytes 

from the mussel Mytilus edulis. Cell Tissue Res. 289, 537-545. 

Qiu, L., Song, L., Xu, W., Ni, D., Yu, Y., 2007. Molecular cloning and expression of a 

Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri. Fish 

Shellfish Immunol. 22, 451-466. 

Rego, R.O.M., Hajdusek, O., Kovar, V., Kopacek, P., Grubhoffer,  L., Hypsa, V., 2005. 

Molecular cloning and comparative analysis of fibrinogen-related proteins from the 

soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochem. 

Mol. Biol. 35, 991–1004. 



 33 

Richards, E.H., Renwrantz, L.R., 1991. Two lectins on the surface of Helix pomatia 

haemocytes: a Ca
2+-

dependent, GalNac-specific lectin and a Ca
2+-

independent, 

mannose 6-phosphate-specific lectin which recognises activated homologous 

opsonins. J. Comp. Physiol. 161, 43–54. 

Runza, V.L., Schwaeble, W., Männel, D.N., 2008. Ficolins: Novel pattern recognition 

molecules of the innate immune response. Immunobiol. 231, 297-306. 

Shalev, I., Liu, H., Koscik, C., Bartczak, A., Javadi, M., Wong, K.M., Maknojia, A., He, 

W., Liu, M.F., Diao, J., Winter, E., Manuel, J., McCarthy, D., Cattral, M., 

Gommerman, J., Clark, D.A., Phillips, M.J., Gorczynski, R.R., Zhang, L., Downey, 

G., Grant, D., Cybulsky, M.I., Levy, G., 2008. Targeted deletion of fgl2 leads to 

impaired regulatory T cell activity and development of autoimmune 

glomerulonephritis. J. Immunol. 180, 249–260. 

Song, L., Xu, W., Li, C., Li, H., Wu, L., Xiang, J., Guo, X., 2006. Development of 

expressed sequence tags from the bay scallop Argopecten irradians irradians. 

Mar. Biotechnol. 8, 161-169. 

Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic 

analyses with thousands of taxa and mixed models. Bioinformatics. 22, 2688-

2690. 

Tanguy, A., Guo, X., Ford, S.E., 2004. Discovery of genes expressed in response to 

Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. 

gigas) oysters. Gene 338, 121-131. 

Tanio, M., Kondo, S., Sugio, S., Kohno, T., 2007. Trivalent recognition unit of innate 

immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like 

domain. J. Biol. Chem. 282, 3889-3895. 



 34 

Turner, M.W., 1996. Mannose-binding lectin: the pluripotent molecule of the innate 

immune system. Immunol. Today 17, 532-540. 

Venier, P., De Pittà, C., Bernante, F., Varotto, L., De Nardi, B., Bovo, G., Roch, P., 

Novoa, B., Figueras, A., Pallavicini, A., Lanfranchi, G., 2009. MytiBase: a 

knowledgebase of mussel (M. galloprovincialis) transcribed sequences. BMC 

Genomics 10,72. 

Venier, P., Pallavicini, A., De Nardi, B., Lanfranchi, G., 2003. Towards a catalogue of 

genes transcribed in multiples tissues of Mytilus galloprovincialis. Gene 314, 29-

40. 

Wang, X., Rocheleau, T.A., Fuchs, J.F., Hillyer, J.F., Chen, C., Christensen, B.M., 

2004. A novel lectin with a fibrinogen-like domain and its potential involvement in 

the innate immune response of Armigeres subalbatus against bacteria. Insect Mol. 

Biol. 13, 273–282. 

Whelan, S., Goldman, N., 2001. A general empirical model of protein evolution derived 

from multiple protein families using a maximum-likelihood approach. Mol. Biol. 

Evol. 18, 691-699. 

Xu, X., Doolittle, R.F., 1990. Presence of a vertebrate fibrinogen-like sequence in an 

echinoderm. Proc. Natl. Acad. Sci. U.S.A. 87, 2097–2101. 

Yang, Z., 1996. Among-site rate variation and its impact on phylogenetic analysis. 

Trends Ecol. Evol. 11, 367-372.  

Zhang, H., Wang, L., Song, L., Song, X., Wang, B., Mu, C., Zhang, Y., 2009. A 

fibrinogen-related protein from bay scallop Argopecten irradians involved in 

innate immunity as pattern recognition receptor. Fish Shellfish Immunol. 26, 56-

64. 

Zhang, S., Adema, C.M., Kepler, T.B., Loker, E.S., 2004. Diversification of Ig 

superfamily genes in an invertebrate. Science 305, 251–254. 



 35 

Zhang, S., Leonard, P.M., Adema, C.M., Loker, E.S., 2001. Parasite-responsive IgSF 

members in the snail Biomphalaria glabrata: characterization of novel genes with 

tandemly arranged IgSF domains and a fibrinogen domain. Immunogenetics 53, 

684–694. 

Zhang, S.M., Loker, E.S., 2003. The FREP gene family in the snail Biomphalaria 

glabrata: additional members, and evidence consistent with alternative splicing and 

FREP retrosequences. Fibrinogen-related proteins. Dev. Comp. Immunol. 27, 175–

187. 

Zhang, S.M., Zeng, Y., Loker, E.S., 2008. Expression profiling and binding properties 

of fibrinogen-related proteins (FREPs), plasma proteins from the schistosome snail 

host Biomphalaria glabrata. Innate Immun. 14, 175–189. 

Zhang, X., Ali, M., 2008. Ficolins: Structure, function and associated diseases, in 

Lambris, J.D. (Eds.), Current topics in complement II. Springer Science, New 

York. 

Zhu, Y., Thangamani, S., Ho, B., Ding, J.L., 2005. The ancient origin of the 

complement system. EMBO J. 24, 382-394. 



 36 

 

Figure legends 

 

Figure 1. (A) Maximum likelihood phylogenetic tree for FREPs. Numbers on branches 

are bootstrap percentages. FIB: Fibrinogen. FIBL: Fibrinogen-like. ANGP: 

Angiopoietin. TL: Tachylectin. Fico: Ficolin. TENA: Tenascin. G1, G2 and G3 

correspond to the names of the three FREPs found in mussel. (B) Domain structure of 

ficolin proteins and fibrinogen-containing proteins. The signal peptide and the low 

complexity regions are marked in red and pink, respectively. FBG: fibrinogen related 

domain. Small black box: Pfam collagen domain. Big black box: Pfam fib-alpha 

domain. IG: immunoglobulin domain. EGF: epidermal growth factor domain. FN3: 

fibronectin type 3 domain. G1, G2 and G3 correspond to the names of the three FREPs 

found in mussel. 

 

 

Figure 2. Alignment of amino acid sequences of mussel FREPs and ficolins from 

Halocynthia roretzi, Xenopus laevis, Rattus norvegicus, Sus scrofa and Homo sapiens. 

The putative signal sequence is underlined and the cleavage sites are designated in bold 

and italics. The N-terminal region is highlighted in green and the conserved cysteine 

residues are highlighted in pink. The collagen-like domain, characterized by Gly-X-Y 

triplets, is highlighted in dark and light blue. The neck domain (only present in 

mammalian ficolins) is highlighted in yellow. Potential N-glycosylation sites are 

highlighted in red and the Ca
+2

-binding sites are designated by two bold sequences in 

the COOH-terminal. The ficolin-2 precursor (QDGSVDFFR) purified from mussel 

hemolymph by affinity chromatography is highlighted in red. 
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Figure 3. Quantitative PCR of FREPs groups in different tissues from mussels. F 

gonad: female gonad, M gonad: male gonad. The results are presented as the mean ± 

SD. Bars represent the relative expression of FREPs normalized to β-Actin expression 

levels. 

 

Figure 4. Exon-intron organization of mussel FREPs from group 1. 

 

 

Figure 5. Sequence variability of FREPs mussel transcripts in group 1. (A) Numbers in 

bold indicate variable positions in 3 mussels. Numbers in italics indicate variable 

positions in 2 mussels and the asterisk (*) indicates the variable position in only 1 

mussel. Transversal short bars represent point mutations in each mussel. Transition and 

transversion mutations are noted with letters. (B) Diagram summarizing the number of 

clones and the number of different nucleotide and amino acid sequences analyzed. 

Genetic identity was calculated according to the number of variable nucleotides 

between individuals. 

 

 

Figure 6. Functional activity of purified mussel FREPs by phagocytosis assay. (A) 

Acrylamide:bisacrylamide gel stained with Coomassie blue showing the predominant 

protein of 45 kDa. (1) Molecular weight marker. (2) Hemolymph before passing though 

the column. (3) Hemolymph after passing though the column. (4) Washed unbound 

proteins. (5) Fraction of bound proteins. (B) Percent increase in phagocytosis (Y axis) 



 38 

of 16 individual mussels. (C) Representative result of the phagocytosis experiments 

obtained with hemocytes isolated from mussel number 3 and treated with purified 

FREPs. The X axis represents the fluorescence intensity emitted by FITC-conjugated 

beads, as measured by flow cytometry. The Y axis represents the relative number of 

fluorescent events (phagocytic hemocytes) after treatment with purified FREPs. (D) 

Phagocytic activity of different populations of hemocytes isolated from the mussel 

number 13 after treatment with purified FREPs. 

 

 

Figure 7. Quantitative expression of FREPs in hemocyte samples of mussels M. 

galloprovincialis after an in vitro (A) or in vivo (B) stimulation with PAMPs and 

following an in vitro (C) and in vivo (D) stimulation with bacteria during 1, 3 and 6 h or 

3, 6 and 24 h post-inoculation, respectively. The results are presented as the mean ± SD. 

Lines represent the relative expression of FREPs as compared to controls, previously 

normalized to endogenous 18S expression levels. Significant values are represented 

with an asterisk (*) (p<0.05). 

 

 

 

  

 



Table I: Sequences of primers designed to analyze the genomic structure of FREPs from 

group 1. 

 

Name Sequence Name Sequence 

FREPG1-Gen-For1 ACAAACGAAAAGGACAAATG FREPG1-Gen-Rev2 GAGTGCAAATTATCGTTGCCTA 

FREPG1-Gen-For2 TGTTTGTCATTTGTCCTTTTCG FREPG1-Gen-Rev3 CGTTTGATTGACACGAGGTA 

FREPG1-Gen-For3 TGTTTCTTGACGTCACTTCG FREPG1-Gen-Rev4 AAGTTAAAACCCTCGGGAAG 

FREPG1-Gen-For4 TCCGTTAGGTCCAGTACATCC FREPG1-Gen-Rev5 CACCAGGCTCCGAGATAGTT 

FREPG1-Gen-For5 ACTTTGTGCAAAATGGTCCAG FREPG1-Gen-Rev6 CCTTTCCAAGTACGCCAGTA 

FREPG1-Gen-For6 CAAGTTTTCCCCAATCCACA FREPG1-Gen-Rev7 CGTCCAGTGTCCTTCATCTA 

FREPG1-Gen-For7 CATTGGCACTCACACAACATC FREPG1-Gen-Rev8 TGTTGTGTGAGTGCCAATGA 

FREPG1-Gen-For8 GAGAAGAAGCATGGACACAGG FREPG1-Gen-Rev9 GTGCCAATGAGACAACTCTCC 

FREPG1-Gen-For9 GTGTTTGCAGACGAAACGTG FREPG1-Gen-Rev10 TGTTTTCTCGTCAAGCACCA 

FREPG1-Gen-Rev1 CTGAACTTGTTTCCGTTAGG FREPG1-Gen-Rev11 AAATCATCATTTCCCGAGGAT 
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G1_consensus                   ---------MVQIKTRSICVFLVSLLVSETTQEPGICFYGEEAWTQA--- 38 

G2_consensus                   ----------MFFFRLTVFAIVFGIFAN---------------------- 18 

G3_consensus                   --------MIMTPLTLEIGVFLGILVMLVNSTS----------------- 25 

Fico1_Sus-scrofa               MELSRVAVALGPTGQLLLFLSFQTLAAQAADTCPEVKVVGLEGSDKL--- 47 

Fico2_Sus-scrofa               MDTRGVAAAMRP---LVLLVAFLCTAAPALDTCPEVKVVGLEGSDKL--- 44 

Fico1_Homo-sapiens             MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEGSDKL--- 47 

Fico2_Homo-sapiens             MELDRAVGVLGAATLLLSFLGMA-WALQAADTCPEVKMVGLEGSDKL--- 46 

FicoB_Rattus-norvegicus        -------MVLGSAALFVLSLCVTELTLHAADTCPEVKVLDLEGSNKL--- 40 

FicoA_Rattus-norvegicus        -----MWWPMLWAFPVLLCLCSSQALGQESGACPDVKIVGLGAQDKV--- 42 

Fico2_Xenopus-laevis           ----------MTWWVQILILLVAAILSYAEDTCPDVKVIGVGASDKM--- 37 

Fico4_Xenopus-laevis           ----------MTRWVQTFLLLVAVIRSYAEDSCPDVKVIGVGASDKL--- 37 

Fico1_Xenopus-laevis           ----------MTRWVQTFLLLVAVIRSYAEDSCPDVKVIGVGASDKL--- 37 

Fico3_Xenopus-laevis           ----------MTGWVQSFFLLVAAILSYAEDTCPEVKVIGLGASDKL--- 37 

Fico3_Homo-sapiens             ----MDLLWILPSLWLLLLGGPACLKTQEHPSCPGPR--ELEAS-KV--- 40 

Fico1_Halocynthia-roretzi      ----------MNTNTALFLAIVHCISAHNEDLCTGLRNQLQEHCSLP--- 37 

Fico2_Halocynthia-roretzi      ----------MNTNTALFLAIVHCISARNEDLCTGLRNQLQEHCSLP--- 37 

Fico3_Halocynthia-roretzi      ------MNPSVTIAIFCFVAFLQHTTAHKQDFCIVMQKVMCQYCSAEGVT 44 

Fico4_Halocynthia-roretzi      ---------MKLLAFLWLAALLQRTVVKANSSCHSMQLALNLICNTG--D 39 

                                                                                  

 

G1_consensus                   -------KDYFTQPS----------------------------------- 46 

G2_consensus                   -------------------------------------------------- 

G3_consensus                   ----------IQSNS----------------------------------- 30 

Fico1_Sus-scrofa               -------SILRGCPGLPGAAGPKGEAGANGPKGERGSPGVVGKAGP---- 86 

Fico2_Sus-scrofa               -------SILRGCPGLPGAAGPKGEAGASGPKGGQGPPGAPGEPGP---- 83 

Fico1_Homo-sapiens             -------TILRGCPGLPGAPGPKGEAGVIGERGERGLPGAPGKAGP---- 86 

Fico2_Homo-sapiens             -------TILRGCPGLPGAPGPKGEAGTNGKRGERGPPGPPGKAGP---- 85 

FicoB_Rattus-norvegicus        -------TILQGCPGLPGALGPKGEAGAKGDRGESGLPGHPGKAGP---- 79 

FicoA_Rattus-norvegicus        -------AVIQSCPSFPGPPGPKGEPGSPAGRGERGLQGSPGKMGP---- 81 

Fico2_Xenopus-laevis           -------TILRGCPGIPGVPGPQGPAGPAGVKGEKGFQGITGKMGP---- 76 

Fico4_Xenopus-laevis           -------TILRGCPGIPGVPGPQGPSGPAGAKGEKGFPGIPGKMGP---- 76 

Fico1_Xenopus-laevis           -------TILRGCPGIQGVPGPQGPAGPVGAKGFAGARGIPGDIGP---- 76 

Fico3_Xenopus-laevis           -------SILQGCP---GVPGTQGPTGPTGTKG----------------- 60 

Fico3_Homo-sapiens             -------VLLPSCPGAPGSPGEKGAPGP------QGPPGPPGKMGP---- 73 

Fico1_Halocynthia-roretzi      ----ESGVIIEGRIGKAGPQGPPGKVNYTLVQEKIEEIYQKFEVR----- 78 

Fico2_Halocynthia-roretzi      ----ETGVIIEGRIGKAGPQGPPGKVNYTLVQEKIEEIYQKFEVR----- 78 

Fico3_Halocynthia-roretzi      GNGSQNNEVPDGCRGIAGPQGPPGEVNYTLVEEKMKKINRAFEQRLEMEI 94 

Fico4_Halocynthia-roretzi      QNAETQQQIVEGKRGKAGPQGPPGKVNYTLVDENIKERYRAFEQR----- 84 
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G1_consensus                   -----------------------------------------TCHEGRPID 55 

G2_consensus                   --------------------------------------------AELPRE 24 

G3_consensus                   -----------------------------------------GSYTRIPID 39 

Fico1_Sus-scrofa               ------AGPKGDRGEKGARGEKGEPGQ-------------LQSCATGPRT 117 

Fico2_Sus-scrofa               ------PGPKGDRGEKGEPGPKGESWE-------------TEQCLTGPRT 114 

Fico1_Homo-sapiens             ------VGPKGDRGEKGMRGEKGDAGQ-------------SQSCATGPRN 117 

Fico2_Homo-sapiens             ------PGPNGAPGE-------------------------PQPCLTGPRT 104 

FicoB_Rattus-norvegicus        ------TGPKGDRGEKGVRGEKGDTGP-------------SQSCATGPRT 110 

FicoA_Rattus-norvegicus        ------AGSKGEPGTMGPPGVKGEKGERGTASPLGQKELGDALCRRGPRS 125 

Fico2_Xenopus-laevis           ------AGLKGERGISGPKGQKGDKGDP------------GIPAAGTAQN 108 

Fico4_Xenopus-laevis           ------TGLKGERGISGPKGQKGDKGDP------------GIPVVGMAQN 108 

Fico1_Xenopus-laevis           ------TGLKGEQGYPGARGLKGEKGDP------------GVPVPGTAQN 108 

Fico3_Xenopus-laevis           -----------------------DKCDP------------GVPIPGTAKN 75 

Fico3_Homo-sapiens             ------KGEPGDPVN-------------------------LLRCQEGPRN 92 

Fico1_Halocynthia-roretzi      ------MDNRVDQKTETCSSQIKLLE-----------KRFNSLLTGCEKV 111 

Fico2_Halocynthia-roretzi      ------MDNRVDQKTETCSSQIKLLE-----------KRFNSLLTGCEKV 111 

Fico3_Halocynthia-roretzi      EKKFKIFSIKSERQIEMHSTEIKLLENKITELESRWHKRINS--TGCEKV 142 

Fico4_Halocynthia-roretzi      ------FSLESERQIGMHSTEIKLLKNKITELESRWQKRFNSLLTGCEKV 128 

                                                                                  

 

G1_consensus                   CNDIPDK--CKSGVYKVFPK-QTQGFDVYCKMNLD--EGHWTVFQKRENG 100 

G2_consensus                   CAELAITSCGVYKIYPFAKL-QP-GVSVYCKIDTS--GHIWTVIQQRFDG 70 

G3_consensus                   CGDIDIK--RGSGVYMIYPTGSFDGFNVYCNMKVDNVGGGWTVFQRRLNG 87 

Fico1_Sus-scrofa               CKELLTRGHFLSGWHTIYLP-DCQPLTVLCDMDTD--GGGWTVFQRRSDG 164 

Fico2_Sus-scrofa               CKELLTRGHILSGWHTIYLP-DCQPLTVLCDMDTD--GGGWTVFQRRSDG 161 

Fico1_Homo-sapiens             CKDLLDRGYFLSGWHTIYLP-DCRPLTVLCDMDTD--GGGWTVFQRRMDG 164 

Fico2_Homo-sapiens             CKDLLDRGHFLSGWHTIYLP-DCRPLTVLCDMDTD--GGGWTVFQRRVDG 151 

FicoB_Rattus-norvegicus        CKELLTRGYFLTGWYTIYLP-DCRPLTVLCDMDTD--GGGWTVFQRRIDG 157 

FicoA_Rattus-norvegicus        CKDLLTRGIFLTGWYTIYLP-DCRPLTVLCDMDVD--GGGWTVFQRRVDG 172 

Fico2_Xenopus-laevis           CKEWLDQGASISGWYTIYTP-NGLPLSVLCDMETD--GGGWIVFQRRMDG 155 

Fico4_Xenopus-laevis           CKEWLDQGASISGWYTIYTT-NGLSLTVLCDMETD--GGGWIVFQRRMDG 155 

Fico1_Xenopus-laevis           CKEWLDQGVTISGWYTIYTP-NGLTLSVLCDMETD--GGGWIVFQRRADG 155 

Fico3_Xenopus-laevis           CKDWLDQGASITGWYTIYTS-TGRRLRVLCDMETD--GGGWTVFQRRSDG 122 

Fico3_Homo-sapiens             CRELLSQGATLSGWYHLCLP-EGRALPVFCDMDTE--GGGWLVFQRRQDG 139 

Fico1_Halocynthia-roretzi      SKYGALSWNGTGGIFNIYPDNPQQSIEVYCDLTSD--GGGWTVFQRRMDG 159 

Fico2_Halocynthia-roretzi      SKYGALSWNGTGGIFNIYPDNPQQSIEVYCDLTSG--GGGWTVFQRRMDG 159 

Fico3_Halocynthia-roretzi      SKYGAISWKGTGGIFNIYPDNPQESIEVYCDLTSD--GGGWTVFQRRMDG 190 

Fico4_Halocynthia-roretzi      SKYGALSWNGTGGIFNIYPDNPQESIEVYCDLTSD--GGGWIVFQRRMDG 176 

                               .             . .        . * *.:        * *:*:* :* 

 

 

 

 

 

 

 

 

 

 

 

 



G1_consensus                   YVDFYRGWNDYKSGFGNPKHEFWLGNENLHPLTSQHNYEMRIDLTDFEGN 150 

G2_consensus                   SVNFFRKWQNYKTGFGQPFGEYWLGNDVIHELTTGANHALRIEVEDFNGT 120 

G3_consensus                   AVGFYRGWDDYKAGFGTLEEEHWLGNENLHILTSQAEYQLLITLQDFANH 137 

Fico1_Sus-scrofa               SVDFYRDWAAYKRGFGSQLGEFWLGNDHIHALTAQGTSELRVDLVDFEGN 214 

Fico2_Sus-scrofa               SVDFYRDWAAYKRGFGSQLGEFWLGNDHIHALTAQGTNELRVDLVDFEGN 211 

Fico1_Homo-sapiens             SVDFYRDWAAYKQGFGSQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGN 214 

Fico2_Homo-sapiens             SVDFYRDWATYKQGFGSRLGEFWLGNDNIHALTAQGTSELRVDLVDFEDN 201 

FicoB_Rattus-norvegicus        TVDFFRDWTSYKQGFGSQLGEFWLGNDNIHALTTQGTNELRVDLADFDGN 207 

FicoA_Rattus-norvegicus        SINFYRDWDSYKRGFGNLGTEFWLGNDYLHLLTANGNQELRVDLREFQGQ 222 

Fico2_Xenopus-laevis           SVDFFRDWNSYKKGFGRQDSEFWLGNDNLHLLTATGNFQLRVDLTDFDKN 205 

Fico4_Xenopus-laevis           SVDFFQDWISYKRGFGRQDSEFWLGNNNLHLLTVTGSFQLRVDLTDFGNN 205 

Fico1_Xenopus-laevis           SVDFNRDWNSYKRGFGRKDSEFWLGNDNLHLLTATGNFQLRVDLTDFSDK 205 

Fico3_Xenopus-laevis           SVDFFRDWDSYKRGFGLQQSEFWLGNENIHLLTSTGYFQLRIDLTDFEKK 172 

Fico3_Homo-sapiens             SVDFFRSWSSYRAGFGNQESEFWLGNENLHQLTLQGNWELRVELEDFNGN 189 

Fico1_Halocynthia-roretzi      SVDFYRGWNEYVNGFGEKNKEFWLGLETIHQLTKNGNYELRVDIGNWEGE 209 

Fico2_Halocynthia-roretzi      SVDFYRGWDEYVNGFGEKDKEFWLGLETIHQLTKNGNYELRVDIGNWEGE 209 

Fico3_Halocynthia-roretzi      SVDFYRGWNEYVNGFGEKDKEFWLGLETIHQLTKNGSYELRVDIGDWEGE 240 

Fico4_Halocynthia-roretzi      SVDFYRGWNEYVNGFGENDKEFWLGLETIHQLTKNGNYELRVDIGDWEGE 226 
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G1_consensus                   TAFAKYKVFAIGDESSKFKLTANGYHG-TAGNSIEHHNGHRFSTKDRDND 199 
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Fico1_Homo-sapiens             HQFAKYKSFKVADEAEKYKLVLGAFVGGSAGNSLTGHNNNFFSTKDQDND 264 

Fico2_Homo-sapiens             YQFAKYRSFKVADEAEKYNLVLGAFVEGSAGDSLTFHNNQSFSTKDQDND 251 

FicoB_Rattus-norvegicus        HDFAKYSSFQIQGEAEKYKLILGNFLGGGAGDSLTSQNNMLFSTKDQDND 257 

FicoA_Rattus-norvegicus        TSFAKYSSFQVSGEQEKYKLTLGQFLEGTAGDSLTKHNNMAFSTHDQDND 272 

Fico2_Xenopus-laevis           HTSASYSNFRIAGESRNYTLSLGTFTGGDAGDSLSGHKNKGFSTKDRDND 255 

Fico4_Xenopus-laevis           RTSASYSDFRIAAEAQNYTLSLGTFTGGDAGDSLYGHKNKGFSTKDRDND 255 

Fico1_Xenopus-laevis           STYASYSNFSIAEESQSYTLSLRSFMGGDAGDSLSGHKNFSFSTKDRDNK 255 

Fico3_Xenopus-laevis           HTYAAYSGFSITGDSNNYALRLGTFIGGDAGDSLSIHNNMAFSTKDRDND 222 

Fico3_Homo-sapiens             RTFAHYATFRLLGEVDHYQLALGKFSEGTAGDSLSLHSGRPFTTYDADHD 239 

Fico1_Halocynthia-roretzi      RRYAQYGTFSIAGSNDNYRLTVGDYSGTAGDSMTPRSNGQQFTTKDRDND 259 

Fico2_Halocynthia-roretzi      RRYAQYGTFSIAGSNDNYRLTVGEYSGTAGDSLIANHNGKQFSTKDRDND 259 

Fico3_Halocynthia-roretzi      RRYAQYGSFSIAGSNDNYRLTVGEYSGTAGDSMTPRSNGQQFSTKDRDND 290 

Fico4_Halocynthia-roretzi      RRYAQYGTFSISGSNDNYRLTVGDYSGTAGDSLIGHHNGQQFSTKDQDND 276 
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G1_consensus                   NNNS-KCATNYRGAWWFNKCVKADLNGQYFLKTPDAEHRGVYWRTW-KGA 247 

G2_consensus                   IWPS-NCAEKFKGAWWYSKCHSSNLNGLYWGGAHTEYASGINWGS--WGY 216 

G3_consensus                   KFPQ-NCAVSFKGAWWYKECHDSNLNGQYLGGTHTSFADGVNWKAW-KGY 234 

Fico1_Sus-scrofa               NHSG-NCAEQYHGAWWYNACHSSNLNGRYLRGLHTSYANGVNWRSG-RGY 312 

Fico2_Sus-scrofa               QYAS-NCAVLYQGAWWYNSCHVSNLNGRYLGGSHGSFANGVNWSSG-KGY 309 

Fico1_Homo-sapiens             VSSS-NCAEKFQGAWWYADCHASNLNGLYLMGPHESYANGINWSAA-KGY 312 

Fico2_Homo-sapiens             LNTG-NCAVMFQGAWWYKNCHVSNLNGRYLRGTHGSFANGINWKSG-KGY 299 

FicoB_Rattus-norvegicus        QGSS-NCAVRYHGAWWYSDCHTSNLNGLYLRGLHKSYANGVNWKSW-KGY 305 

FicoA_Rattus-norvegicus        TNGGKNCAALFHGAWWYHDCHQSNLNGRYLPGSHESYADGINWLSG-RGH 321 

Fico2_Xenopus-laevis           SSPN-SCAERYKGAWWYTSCHVSHLNGLYLGGKHSSSANGVNWRSG-RGF 303 

Fico4_Xenopus-laevis           SSPA-SCAERYRGAWWYTSCHSSNLNGLYLRGNHSSFANGVNWKSG-RGY 303 

Fico1_Xenopus-laevis           SN----CAHTFKGGWWYETCHYSNLNGLYLHGNHTSYANGVNWSTG-RGY 300 

Fico3_Xenopus-laevis           AHMAGNCAQNYKGAWWYESCHSSNLNGLYQQGEHSSSINGINWRTG-RGY 271 

Fico3_Homo-sapiens             SSNS-NCAVIVHGAWWYASCYRSNLNGRYAVSEAAAHKYGIDWASG-RGV 287 

Fico1_Halocynthia-roretzi      G-SGGNCAVEWSGAWWYEKCHVSNLNGIYLVGGTGATSKNVAWYHWGNNH 308 

Fico2_Halocynthia-roretzi      E-YGSNCAVQWSGAWWYKSCHYSNLNGIYLVRGTGATAKNVAWYHWGNNY 308 

Fico3_Halocynthia-roretzi      GWAAGHCAIDWSGAWWYGICHYSNLNGIYLVGGTGATPKNVAWYHWGNNH 340 

Fico4_Halocynthia-roretzi      G-NSGNCAVSYTGAWWYQSCYNSNLNGVYHVGGTGANDKNIAWWQWKNTH 325 
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Fico2_Homo-sapiens             NYSYKVSEMKVRPA-- 313 

FicoB_Rattus-norvegicus        NYSYKVSEMKVRLI-- 319 

FicoA_Rattus-norvegicus        RYSYKVAEMKIRAS-- 335 

Fico2_Xenopus-laevis           NYSYKVSEMKFRPQS- 318 
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Fico1_Xenopus-laevis           ITHTRCPK-------- 308 

Fico3_Xenopus-laevis           STLTRCQK-------- 279 
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