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Abstract 

 

Steel with an ultimate tensile strength of 2500 MPa, a hardness at 600-670 HV and toughness 

in excess of 30-40 MPa m1/2 is the result of exciting new developments with bainite. The 

simple process route involved avoids rapid cooling so that residual stresses can in principle be 

avoided even in large pieces. The microstructure is generated at temperatures which are so 

low that the diffusion of iron is inconceivable during the course of the transformation to 

bainite. As a result, slender plates of ferrite, just 20-40 nm thick are generated, giving rise to 

the extraordinary properties. 
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Strength is a term which needs to be used with care. A material can be made stronger by 

reducing its size in order to avoid defects; carbon nanotubes fall into this category since their 

strength collapses as they are made into ropes with dimensions in the micrometer scale [1]. 

Alternatively, strength can be achieved by packing the material with defects that interfere 

with the motion of dislocations; Scifer, which has a strength of 5.5 GPa is made in this way 

[2]. However, the deformation process by which the defects are introduced places limits on 

the dimensions in which the material can be produced. Thus, Scifer can only be produced in 

the form of wires whose diameters are measured in micrometers. 

Another method of making strong materials is to reduce the scale of the microstructure using 

heat treatment. The giga-pascal steels rely for their strength on fine martensitic 

microstructures which are generated during rapid cooling [3,4]. This also limits the size of the 

components that can be produced with uniform properties.  

In this article we review a novel method for making extremely strong and cheap 

nanocrystalline-steel without using deformation, rapid heat-treatment or mechanical 

processing. Furthermore, the material can be produced in a form which is large in all its three 

dimensions, and has a plethora of other properties useful in engineering design. The new 

material relies on a microstructure called bainite, which has been known of since 1930 [5]; 

the novelty is in the alloy design which leads to the fine scale and controlled response to heat 

treatment. 

 

 

2. Blueprint for Alloy Design 

 



It has long been known that alloying a steel with about 2 wt% of silicon can in appropriate 

circumstances yield a carbide-free microstructure which is a mixture of bainitic ferrite and 

carbon-enriched residual austenite. The silicon does not dissolve in cementite and hence 

suppresses its precipitation from austenite. Cementite is a cleavage and void-initiating phase 

which is best eliminated from strong steels. However, the full benefits of this carbide-free 

bainitic microstructure have frequently not been realised. This is because the transformation 

to baintic ferrite stops well before equilibrium is reached [6-9]. There remain large regions of 

untransformed austenite which under stress decompose to hard, brittle martensite. 

The problem, which is essentially thermodynamic in origin, can be solved by altering the 

relative stabilities of the austenite and ferrite phases. The essential principles governing the 

optimisation of such microstructures are now well established. Everything must be done that 

encourages an increase in the amount of bainitic ferrite so as to consume the blocks of 

austenite [10,11]. With careful design, impressive combinations of strength and toughness 

have been reported for high-silicon bainitic steels [10-14]. More recently, it has been 

demonstrated experimentally that models based on the atomic mechanism of displacive 

transformation, can be applied successfully to the design of carbide-free bainitic steels, the 

only experiments needed are those to validate the theoretical predictions [15,16]. Toughness 

values of nearly 130 MPa m1/2 were obtained for strength in the range of 1600-1700 MPa. 

This compares well with maraging steels, which are at least ninety times more expensive.  

The details of the design method, which is based on the discipline with which the atoms move 

during transformation, are as follows. 

Bainite grows without diffusion in the form of tiny plates known as ‘sub-units’; each plate 

grows to a limited size which is determined by the plastic accommodation of the shape 

deformation accompanying transformation. One consequence of diffusionless growth is that 

the plates can be supersaturated with carbon, in which case the carbon partitions into the 



residual austenite soon after the growth event. Diffusionless growth of this kind can only 

occur if the carbon concentration of the parent austenite is less than that given by the T  

curve. The T

o′

o curve is the locus of all points, on a temperature versus carbon concentration 

plot, where austenite and ferrite of the same chemical composition have the same free energy. 

The T  curve is defined similarly but taking into account the stored energy of the ferrite due 

to the displacive mechanism of transformation.  

o′

It follows that the maximum amount of bainitic ferrite that can form in the absence of carbide 

precipitation is limited by the T  curve; this is a severe limitation if large quantities of blocky 

austenite remain in the microstructure at the point where transformation stops. The design 

procedure avoids this difficulty in three ways: by adjusting the T

o′

o curve to greater carbon 

concentrations using substitutional solutes, by controlling the mean carbon concentration, and 

by minimising the transformation temperature.  

It is worth pointing out that attempts have been made to interpret the To criterion differently. 

One theory argues that the reason why the bainite reaction stops prematurely is because of the 

plastic work done as the plate grows by a displacive mechanism overwhelms the driving force 

for transformation [17,18]. However, the theory is derived incorrectly in that the calculated 

work is divided by the fraction of remaining austenite, whereas it is in fact  per unit quantity 

of bainite. Furthermore, there is an upper limit to the amount of work done in plastic 

accommodation [19]; this is the strain energy associated with an elastically accommodated 

plate, amounting to just 400 J mol-1 [20]. A alternative interpretation [21] requires local 

equilibrium at the interface, contradicting atomic resolution experiments which show the 

absence of substitutional solute partitioning [23]. 

Returning now to the design, it is known that blocky austenite should be avoided to ensure 

good toughness.  The size of these blocks (which may transform to brittle martensite under 

stress) must be less than or comparable to that of other fracture initiating phases such as non-



metallic inclusions. A reduction in the scale of the microstructure enhances both strength and 

toughness; this leads naturally to the conclusion that the microstructure is best generated at 

low temperatures. The question then arises, what is the lowest temperature at which bainite 

can be obtained?. 

 

 

3. Low Transformation-Temperature 

 

In order to answer this question, it is necessary to be able to reliably calculate the highest 

temperature at which bainite can form. This requires a consideration of both nucleation and 

growth. 

Bainite can only form below the T  temperature when  o′

 

SBGG −<∆ →αγ  and          (1) Nm GG <∆

 

where G  J mol400≅SB
-1 is the stored energy of bainite [24];  is the free energy 

change accompanying the transformation of austenite without any change in chemical 

composition. The first condition therefore describes the limit to growth. The second condition 

refers to nucleation; thus,  is the maximum molar Gibbs free energy change 

accompanying the nucleation of bainite . G  is a universal nucleation function based on a 

dislocation mechanism of the kind associated with martensite [24-26]. The variation of G  

with temperature is well-behaved even for the high carbon steels of interest here [27]. 

Together with the growth condition, the function allows the calculation of the bainite start 

temperature, B

αγ →∆G

mG∆

N

N

s, from a knowledge of thermodynamics alone. An example calculation is 



presented in Figure 1a, which reveals the important result that extraordinarily low 

transformation temperatures can be achieved because the bainite and martensite-start 

temperatures remain separated. 

The rate of reaction is also important  since transformation must be achieved in a realistic 

time. For this purpose, a method [9] developed to allow the estimation of isothermal 

transformation diagrams can be used, with the chemical composition as an input. Calculated 

time-temperature-transformation (TTT) diagrams indicate the time required to initiate 

transformation (Figure 1b).  Such calculations also help design the hardenability of the alloy 

so as to avoid interfering reactions such as allotriomorphic ferrite and pearlite. 

 

 

4. The Alloys 

 

Low transformation temperatures are associated with fine microstructures which in turn 

possess strength and toughness. The theory described above has been used to develop steels 

which transform to bainite at temperatures as low as 125 ºC, in time scales which are practical 

(Table 1). The low BS temperature is a consequence of the high carbon concentration and to a 

lesser extent, solutes such as manganese, chromium which in the present context increase the 

stability of austenite relative to ferrite. The molybdenum is added to ameliorate any temper-

embrittlement  phenomena due to inevitable impurities such as phosphorus.  The alloys all 

contain sufficient silicon to suppress the precipitation of cementite from any austenite. 

In the steels designated A and B (Table 1), bainite can take between 2 to some 60 days to 

complete transformation within the temperature range 125-325 ºC [28,29]. In a commercial 

scenario it may be useful to accelerate transformation without losing the ability to utilise low 

temperatures. Certain elements increase the free energy change when austenite transforms and 



hence should accelerate its decomposition; hence, the cobalt and aluminium containing alloys 

in Table 1. 

Some micrographs following isothermal transformation to bainitic ferrite in the temperature 

range 125-325 oC are illustrated in Figure 2, for alloy A. The early stage of transformation is 

shown in Fig 2a for a sample isothermally heat treated for 25 days at 125 ºC. As Fig. 2b 

suggests, only a small fraction of bainite (~0.10) is formed after 30 days of holding time at 

150 ºC. Very long heat treatments are required (more than 2 months) to obtain substantial 

transformation when the temperature is as low as 125 ºC or 150 ºC. The rate of transformation 

is faster when the temperature exceeds 150 °C. Thus, it is found that the fraction of bainite is 

0.6 for transformation at 190 and 250 ºC for 7 days and 24 hours, respectively (Figs. 2c and 

2d). An almost fully bainitic microstructure (~90 % bainite) is obtained at 190 ºC after 9 days 

of transformation. At 300 ºC, the maximum volume fraction of bainite formed was 0.6 and 4 

days were needed to complete the transformation. 

The calculated [9,30,31] time-temperature-transformation (TTT) diagram for the initiation of 

transformation in Steels A and B are shown in Fig. 3, which also contains experimental data 

for the reaction times. The upper C-curve represents the onset of reconstructive 

transformations such as allotriomorphic ferrite and pearlite, whereas the lower curve is for 

bainite.  The measured values for a detectable degree of transformation are in reasonable 

agreement with those calculated, except at the highest temperature where the time period 

required is underestimated. 

X-ray analysis was used to estimate the quantities of retained austenite present at the point 

where transformation ceases (Fig. 4). The retained austenite fraction is expected to increase 

for the higher transformation temperature because less bainite forms; this is in contrast to the 

situation with low-carbon alloys, where a larger fraction of bainite favours the retention of 

austenite because of the portioning of carbon into the austenite. 



The maximum amount of bainite that can be obtained at any temperature is limited because 

the carbon content of the residual austenite must not exceed that given by the T  curve. At 

that point, the enriched austenite can no longer transform into bainite. The carbon 

concentrations of the austenite and bainitic ferrite, determined using X-ray analysis in Steels 

A and B are presented in Fig. 4b. The fact that the measured concentrations in austenite lie 

between the T  and the paraequilibrium Ae

o′

o′ 3 phase boundaries for both steels is consistent 

with a mechanism in which the bainite grows without any diffusion, but with excess carbon 

partitioning into the austenite soon after transformation. The reaction is said to be incomplete 

since transformation stops before the phases achieve their equilibrium compositions. 

The X-ray data also indicate that excess carbon is trapped in the bainitic ferrite (Fig. 4b) and 

the results have been verified using an atom probe [32]. The latter technique revealed a 

distribution of carbon concentrations in bainitic ferrite (Fig. 4c). It is believed that the carbon 

is retained in the ferrite because it is trapped at defects. 

The transmission electron micrograph in Fig. 5 illustrates a typical microstructure of low-

temperature bainite, with slender plates which are incredibly thin and long, giving a most 

elegant fine scale structure which is an intimate mixture of austenite and ferrite. Dislocation 

debris is evident in both the bainitic ferrite and the surrounding austenite. Extensive 

transmission microscopy failed to reveal carbides in the microstructure, only a few minute (20 

nm wide and 175 nm long) cementite particles in the ferrite within Steel A transformed at 190 

ºC for 2 weeks [28]. Quite remarkably, the plates formed at 200 ºC in Steel B (Fig. 5) have a 

width that is less than 50 nm, with each plate separated by an even finer film of retained 

austenite. It is this fine scale which is responsible for much of the tenacity of the 

microstructure, with hardness values in excess of 600 HV and strength in excess of 2.5 GPa 

[28]. The dispersion of films of austenite undoubtedly helps render the steel tough. 



Analysis indicates that the largest effects on plate thickness are the strength of the austenite, 

the free energy change accompanying transformation and a small independent effect due to 

transformation temperature [33]. In the present case, the observed refinement is a 

consequence mainly of  high carbon content and the low transformation temperature on 

enhancing the strength of the austenite. 

 

 

5. Acceleration of transformation 

 

Slow transformation gives the ability to transform large components to a uniform 

microstructure free from residual stresses or complex processing. Suppose, however,  that 

there is a need for more rapid heat-treatment. The transformation can easily be accelerated to 

complete the processing within hours (as opposed to days), by making controlled additions of 

small quantities of solutes to the steel, such that the free energy change as austenite changes 

into ferrite is enhanced. There are essentially two choices, aluminium and cobalt, in 

concentrations less than 2 wt%, have been shown to accelerate the transformation in the 

manner described [34]. Both are effective, either on their own or in combination. They work 

by increasing the driving force for the transformation of austenite; they have therefore been 

added to make Steels C and D which should then transform more rapidly. Fig. 6.a shows the 

increase in the reaction rate due to the cobalt, the effect is particularly large when both 

elements are added. A further rate increment is possible by refining the austenite grain size 

(Fig. 6.b). An increase in the free energy change also means that a greater fraction of bainite 

is obtained, which may have the additional advantage of increasing the stability of the 

austenite [34]. 

 



 

6. Tempering Resistance 

 

Bainite tempers more gently than martensite because it autotempers as it forms. Its starting 

hardness is less than that of martensite, so it follows that any change in hardness must be 

small when compared with martensite. However, the starting hardness of the low-temperature 

bainite described here is very high, so it is of interest to study its tempering behaviour [35]. 

Figure 7 shows a plot of the normalised hardness of a variety of steels versus the tempering 

parameter defined as ( )tlog20 +T  where T is expressed in Kelvin and t in hours. The 

normalised hardness is given by ( ) ( )minmaxmin / HHHH −− , where H, Hmax and Hmin represent 

the hardness, untempered hardness and fully-softened hardness, respectively. The tempering 

resistance of the baintic steel is impressive when compared against an equivalent martensitic 

or secondary hardening steel. The mild secondary hardening effect in Steel B is associated to 

with the intense precipitation of fine cementite when the retained austenite decomposes. 

Furthermore, these the precipitation occurs at the boundaries of the ferrite plates, thus pinning 

them and preventing coarsening. Since much of the strength of the bainite comes from the 

plate size, the microstructure becomes very resistant to tempering.  

It is also found that the excess carbon within the ferrite remains there during heat treatment, 

reducing only in proportion to the density of defects [35].  

 

 

7. High Strain Rate Deformation 

 

Ballistic experiments conducted at strain rates of about 107 s-1 have revealed that bainitic steel 

with a composition and microstructure similar to that of steel A (Table1 ) undergoes a 



pressure induced martensitic phase transformation to epsilon-iron (hexagonal close-packed) at 

about 13 GPa [36]. This is as would be expected from the phase diagram [37]. Strength is 

expected to increase with strain rate; the experiments indicate a yield strength in the range 

3.5-10 GPa under ballistic conditions. The spall strength, a parameter important in the design 

of armour, is found to be about about 2 GPa, decreasing sharply as the longitudinal stress 

approaches the 13 GPa associated with the phase transition. As explained by the authors, the 

basis of the latter correlation is not clear. 

 

 

Conclusions 

 

It is clear that bainite can be obtained by transforming at very low temperatures. There is then 

no possibility that iron or substitutional solutes diffuse. A consequence of the low 

transformation temperature is that the plates of bainite are incredible fine, 20-40 nm thick, 

making the material very strong. This is a bulk nanocrystalline material that is cheap and can 

be obtained without severe processing. When this feature is combined with the fact that the 

plates of ferrite are interspersed with austenite, it becomes possible to create novel strong and 

tough steels. The potential for exploitation is large because the alloys are routine to 

manufacture. 

The alloys designed so far either transform slowly over a period of many days, or have to be 

alloyed with cobalt and aluminium in order to accelerate transformation. In the future, it is 

possible that rapid transformation could be engineered by controlling the manganese 

concentration. The key will be to do this without compromising properties.  
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Figure Legends 

 

Figure 1: Example calculations: (a) computed martensite-start, MS, and bainite-start, BS, 

temperatures, (b) the time required to initiate transformation. 

 

Figure 2.- Optical micrographs of isothermal decomposition of austenite in Steel A: (a) 125 

ºC for 25 days; (b) 150 ºC for 30 days; (c) 190 ºC for 7 days; and (d) 250 ºC for 24 hours. 

 

Figure 3.- Calculated TTT diagram for the initiation of transformation, and measured times 

for the commencement (filled points) and termination of reaction (open circles): (a) steel A; 

(b) steel B. 

 

Figure 4.- X-ray experimental data on: (a) volume fractions of retained austenite; and (b) 

carbon in bainitic ferrite (square symbols) and austenite (circles); (c) carbon distribution in a 

baintic ferrite plate obtained by 3D-atom probe microanalysis. Calculated curves according to 

[31]. 

 

Figure 5.- Transmission electron micrographs of microstructure obtained at 200 ºC for 15 

days in Steel B. 

 

Figure 6.- Isothermal transformation at 200 ºC: (a) austenitisation at 1000 ºC for 15 min; (b) 

austenitisation at 900 ºC for 30 min. PAGS stands for prior austenite grain size. 

 



Figure 7.- Comparison of the temper resistance of Steel B with that of an Fe-0.5C-1.3Si wt-% 

quenched and tempered martensitic steel, and a secondary hardening steel (Fe-0.34C-5.08Cr-

1.43Mo-0.92V-0.4Mn-1.07Si wt%). 



 

Tables 

 

Table 1 Compositions of new alloys, wt% 

Steel C Si Mn Cr Mo V Co Al 

A 0.79 1.59 1.94 1.33 0.30 0.11 - - 

B 0.98 1.46 1.89 1.26 0.26 0.09 - - 

C 0.83 1.57 1.98 1.02 0.24 - 1.54 - 

D 0.78 1.49 1.95 0.97 0.24 - 1.60 0.99 
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