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ABSTRACT 

 

Different naturally occurring, cell adapted or genetically manipulated stocks of African 

swine fever virus were able to infect directly cultures of COS-1 cells, producing 

extensive cytopathic effects and amounts from 10
6
 to 10

7
 of infective progeny virus per 

ml. The induction of late virus-specific proteins, demonstrated by RT-PCR and 

immunoblotting, and the development of lysis plaques by all the virus samples tested so 

far, allowed the optimization of both titration and diagnostic assays, as well as the 

proposal of a method for selection of virus clones during the generation of virus mutants 

with specific gene deletions. 
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African swine fever (ASF) virus is the causative agent of a highly contagious 

disease of swine prevalent in more than 20 sub-Saharan countries of Africa, with 

devastating effects in the areas where the disease is endemic, these areas representing an 

enormous reservoir and a risk for the re-introduction of ASF into other countries. ASF 

virus (ASFV) is a complex enveloped virus which contains a double-stranded DNA 

molecule surrounded by several layers of protein and lipid with an isometric shape of 

about 200 nm in diameter (Breese and DeBoer, 1966; Carrascosa et al., 1984). The virus 

has been classified as the only member of the Asfarviridae family (Dixon et al., 2004) 

and it infects domestic and wild pigs of the Suidae family, as well as ticks of the 

Ornithodoros genus, leading to a range of conditions from acutely fatal hemorrhagic 

fever to chronic or inapparent persistent infection (Vinuela, 1985). In domestic pigs the 

virus infects tissue macrophages, blood monocytes and, to a lesser extent, specific 

lineages of reticular, polymorphs, and megakaryocytic cells (Casal et al., 1984; 

Wilkinson, 1989).  

Wild type ASFV isolates do not replicate in conventional cell cultures. Porcine 

monocytes and macrophages are the in vitro systems selected to mimic natural ASF 

virus infection, in which most of the virus stocks readily grow. These cells have been 

used for many years for the diagnosis and titration of both hemadsorbing (Enjuanes et 

al., 1976) and non-hemadsorbing (Carrascosa et al., 1982) ASFV isolates, but, being 

primary cells, they often reveal divergences and they are difficult to obtain in sufficient 

amounts as those required for biochemical studies. Adaptation of some ASFV isolates 

for growth in different cell lines allowed many experimental approaches and the 

development of suitable plaque formation assays to evaluate the infectivity titers using 

more simple, reproducible and quantitative methods (Bustos et al., 2002; Enjuanes et 
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al., 1976; Parker and Plowright, 1968). Nevertheless, these assays were confined to cell 

culture-adapted virus strains. 

On the other hand, as there is no available vaccine against ASF, the rapid and 

accurate laboratory diagnosis of ASFV-positive and carrier animals is critical for the 

control of virus outbreaks; The procedures developed so far include the detection in 

clinical samples of infectious virus (titration), viral antigens/antibodies (ELISA and 

immunoblotting) or genomic DNA (PCR) (Aguero et al., 2003; Barderas et al., 2000; 

Oura et al., 1998; Pastor et al., 1992; Pastor et al., 1989; Zsak et al., 2005). In many 

cases, the low concentration of virus components, the poor quality of samples, or the 

requirement to confirm an ambiguous result, demand the previous amplification of the 

virus in cell culture. 

The sensitivity of COS cells to some ASFV strains, and its use to construct a 

deletion mutant in ASFV, have been previously described (Carrascosa et al., 1999; 

Galindo et al., 2000; Granja et al., 2006; Hurtado et al., 2004). These cells have been 

also routinely used for the transient and stable expression of ASFV genes in cell culture, 

but the analysis of its sensitivity to different ASFV field isolates had not been already 

performed. The COS-1 cell line used in this study was originally obtained from the 

American Type Culture Collection (CRL-1650, Manassas, VA 20108 USA) and it was 

grown in Dulbecco’s modified Eagle Medium (DMEM) supplemented with 2 mM L-

glutamine, 100 U of gentamicin per ml, and non essential amino acids. Cells were 

cultured at 37ºC in medium supplemented with 5% heat-inactivated fetal calf serum. 

The African swine fever virus (ASFV) stocks selected in this study (Table 1) were 

obtained from the laboratory collection (Garcia-Barreno et al., 1986) and most of them 

were available from the Community Reference Laboratory for ASF (Department of 

Exotic Diseases, Centro de Investigación en Sanidad Animal, Valdeolmos, Madrid, 
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Spain). They represent a broad perspective of the many field or laboratory-manipulated 

virus stocks presently available, including virulent and non-virulent, hemadsorbing or 

not, as well as African, European and American samples. The field ASFV isolates were 

propagated (from 2 to 6 passages) from frozen stocks on swine macrophages and 

titrated by hemadsorption and plaque assay as previously described (Carrascosa et al., 

1982; Enjuanes et al., 1976). The Vero-adapted African swine fever virus (ASFV) strain 

BA71V and the deletion mutant EP153R were grown and titrated on Vero cells as 

described (Galindo et al., 2000).  

As a first screening to determine the ability of the different virus stocks to infect 

COS-1 cells, we analyzed the presence of mRNA specific for the p72 ASFV gene, 

which is transcribed late in the virus infection cycle, and it codes for the major capsid 

viral protein. Indeed, many routine diagnosis tests for ASFV developed so far are based 

on the detection of p72-related components (DNA, protein or antibody). To perform this 

analysis, pre-confluent cultures of COS-1 cells were infected with the indicated ASFV 

isolate at an m.o.i. of 1 to 3 pfu per cell. After 2h of adsorption the remaining virus was 

washed away, and cultures were incubated in fresh medium until extensive cytopathic 

effect was evident (about 70 hpi). An aliquot of cells collected from the culture medium 

was reserved in each case to evaluate the total virus production (see below). The 

samples were divided in two tubes and centrifuged to analyze in each pelleted fraction 

the presence of p72-specific mRNA (by RT-PCR) and ASFV-specific virus proteins 

induced late in the infection (by immunoblotting), respectively. For RT-PCR analysis, 

total RNA was isolated using the Trizol reagent (Invitrogen, Carlsbad CA 92008, USA). 

RNA (1 g) was reverse transcribed to single-stranded cDNA with Revertaid H Minus 

First Strand cDNA synthesis kit (Fermentas, Burlington, Canada), following the 
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manufacturer’s recommendations and the DNA was PCR-amplified with Amplitaq 

DNA polymerase (Roche, Basel, Switzerland) and the following primers: 

p72 forward: 5´-CGCGGATCCATGGCATCAGGAGGAG-3´ 

p72 reverse: 5´-CGCGAGATCTAGCTGACCATGGGCC-3´ 

and then analyzed by electrophoresis in 0.7% agarose gels containing ethidium bromide. 

For Western blot analysis, cells were lysed in TNT buffer (20 mM Tris–HCl, pH 7.5, 

0.2 M NaCl, 1% Triton X100) supplemented with protease inhibitor cocktail tablets 

(Roche, Basel, Switzerland). Proteins (30 g) were subjected to sodium dodecyl sulfate 

–12% polyacrylamide gel electrophoresis, and then electroblotted onto a PVDF-

Immobilon (Millipore, Billerica, MA01821, USA) membrane. After reacting with 

primary antibody specific for late ASFV-induced virus proteins (del Val and Vinuela, 

1987), membranes were exposed to horseradish peroxidase-conjugated secondary anti-

rabbit antibody (Amersham, GE Healthcare, Chalfont St. Giles, United Kingdom), 

followed by chemiluminescence (ECL, Amersham, GE Healthcare, Chalfont St. Giles, 

United Kingdom) detection by autoradiography. As it is shown in Fig. 1, all of the 

tested ASFV stocks were able to induce the synthesis of p72-specific mRNA (Fig. 1A). 

Moreover, the synthesis of many ASFV proteins induced late in the infection was also 

detected in COS cells infected with everyone of the virus stocks, revealing a number of 

viral specific bands that were absent in the mock-infected samples (Fig. 1B).  

The virus-induced proteins in COS cells were assembled into infectious viral 

particles, yielding titers from 10
6
 to 10

7
 pfu per ml when assayed by plaque titration in 

COS cell monolayers, as shown in Fig. 1C, where it is represented the mean values and 

standard deviations obtained from 2 to 5 independent determinations. The expected 

yield for pathogenic ASFV in pig macrophage cultures ranges from 10
7
 to 10

8 
HADU50 

per ml (data not shown) when assayed by hemadsorption (Carrascosa et al., 1982; 
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Enjuanes et al., 1976), but the difference in productivity found among COS and 

macrophage cultures should be most probably assigned to the higher sensitivity of the 

hemadsorption test as compared to the plaque titration assay. The plaque test developed 

in COS cells was similar to that described for ASFV titration in Vero cells (Enjuanes et 

al., 1976). Briefly, subconfluent cultures of COS-1 cells grown on multiwell dishes 

were infected with 10-fold dilutions of virus stocks in culture medium, shacked every 

10 min for 2 h, and carefully overlaid, without removing the inoculum, with agar-

medium made up by mixing one volume of DMEM (2X) medium with 4% fetal calf 

serum and 160 g/ml of DEAE-dextran, and one volume of freshly prepared 1.4% agar 

noble (Difco, Lawrence Kansas 66044 USA) in distilled water, equilibrated at 45ºC. 

Plates were incubated at 37ºC for 5 to 7 days and stained with 2% crystal violet in 5% 

formaldehyde. An illustration of the plaques developed by each ASFV isolate in COS 

cell monolayers is presented in Fig. 2A, where plaques were stained with 2% crystal 

violet at day 5 after infection. Several virulent ASFV isolates (Malawi 82, Lisbon 57, 

Mozam 69 and Brazil 81) developed large plaques in COS cell monolayers, but some 

others, like E70, Uganda vir., Lisbon 60 and CC83 yielded standard small-sized lysis 

plaques, as did the attenuated stocks (Ba71V, EP153R, Hinde att., and NHV). 

Therefore, it was not possible to establish any correlation between plaque size and 

virulence, hemadsorbing properties or origin of the virus stocks. However, all of the 

four ASFV isolates yielding large-sized plaques in COS-1 cells developed an aggressive 

and rapid cytopathic effect, and they were also able to produce large plaques in Vero 

cell monolayers (data not shown), where the standard-sized plaques produced by cell-

adapted ASFV strains (like Ba71V and EP153R) required the standard period (5 to 6 

days after infection) to be detected. Information regarding the sensitivity of different 

cells to ASFV stocks is of the major importance, not only to determine their capacity to 
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detect, grow and titrate these viruses, but also to define possible candidates with 

increased ability to cross host-specific barriers, which should be manipulated and 

controlled even more carefully than the rest of field ASFV isolates. In any case, and 

taking into account the results presented in this study, we propose the use of COS-1 

cells to improve the detection, growth and titration of field and laboratory-engineered 

ASFV stocks. 

The ability of the E70 virus isolate to grow in COS cell monolayers has been 

previously exploited to generate mutant viruses defective in the viral A238L gene 

(Granja et al., 2006) after disrupting the open reading frame by insertion of the 

Escherichia coli -glucuronidase gene. Considering the results presented above on the 

sensitivity of COS-1 cells to different ASFV stocks, we can anticipate that the 

construction of defective mutants in specific viral genes might be boarded in all the 

ASFV stocks able to grow in this cell line, as it was made before in the Vero cell-

adapted BA71V ASFV strain (Galindo et al., 2000; Garcia et al., 1995; Granja et al., 

2004; Nogal et al., 2001; Rodriguez et al., 1993). To illustrate the type of result 

expected in the selection of a virus recombinant expressing the marker gene LacZ under 

the control of the ASFV promoter p72, a suitable dilution of the deletion mutant 

EP153R generated from the BA71V ASFV strain (Galindo et al., 2000) was subjected 

to plaque assay in COS-1 cell monolayers in 6-well tissue culture plates, as above 

indicated. Samples at day 4 after infection were incubated with the substrate X-gal (5-

bromo-4-chloro-3-indolyl- -D-galactopyranoside, 300 g/ml in fresh semi-solid 

medium, as indicated elsewhere (Garcia et al., 1995)), and then stained at day 5 after 

infection with crystal violet as above indicated. A perfect match of the plaques 

developed by both staining is shown in Fig.2B, corroborating that all the plaque-

forming units present in the virus stock were expressing the marker gene, supporting the 
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use of the plaque assay for the selection and purification of virus recombinants 

engineered with selectable marker genes. 
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FIGURE LEGENDS 

 

Fig.1. Infection of COS-1 cells by different ASFV stocks. COS-1 cells infected with the 

indicated virus sample at an m.o.i. of 3 pfu per cell, were incubated at 37ºC and 

collected at 70 h after infection to determine the presence of p72-specific m-RNA by 

RT-PCR (panel A), and for the detection of virus-specific late induced proteins by 

immunoblotting (panel B). The molecular weight markers (MW) are shown at right and 

the position of the major ASFV-induced proteins at left by arrows. The production of 

infective progeny virus was also determined by titration on COS-1 cell monolayers 

(panel C): mean and standard deviation from 2 to 5 independent experiments are 

represented. ASFV stocks are numbered as described in the top of the figure and in 

Table 1. 

 

 

Fig.2. Plaques developed in COS-1 cell monolayers by different ASFV stocks. Sub-

confluent cultures of COS-1 cells in multiwell plates were infected with suitable 

dilutions of the indicated ASFV stock (panel A) or with EP153R (panel B), and 

overlaid with solid culture medium. Plaques were stained with crystal violet (CV) at day 

5 after infection (panel A), or pre-stained with X-Gal at day 4 and then with CV at day 5 

after infection (panel B). 

 

  

 

 

 

 



75

50

37

25
20

15

10

1
.-

B
A

7
1

V

E
P

1
5

3

3
.-

E
7

0

4
.-

M
a

la
w

i 
8

2

5
.-

H
in

d
e

 a
tt

6
.-

U
g
a

n
d

a
 v

ir

7
.-

L
5

7

8
.-

L
6

0

9
.-

N
H

V

1
0

.-
M

o
z
a

m
 6

8

1
1

.-
C

C
8

3

1
2

.-
B

ra
s
il 

8
1

m
.-

m
o

c
k

500

415 (p72)

MW 

MW

(kD)

Fig.1

A: RT-PCR

B: WB

A
S

F
V

 t
it
re

 (
p
fu

/m
l)

10000

100000

1000000

10000000

100000000

B
A71

V

D
E
P15

3R
E
70

M
al
aw

i 8
2

H
in
de 

att.

U
ga

nda
 v

ir.

Li
sb

on 
57

Li
sb

on 
60

N
H
V

M
oz

am
 6

8

C
ác

er
es

 8
3

B
ra

si
l 8

1

C: Titration

1   2   3   4   5   6    m 7   8   9  10 11  12   m    ASFV isolate

ASFV isolate 1    2    3   4    5    6    7   8    9   10  11  12

(bp)

Figure 1



A. ASFV isolates

Fig.2

Uganda virE70

L60 NHV

BA71V EP153R

Brasil 81CC 83

Hinde att

L57

Malawi 82

Mozam 68

X-Gal CV

B. EP153R

Figure 2



Table 1. ASFV stocks selected to analyze COS-1 cell sensitivity 

 

ASFV stock        Virulence    Hemadsorbing Origin             #   

 

BA71V
a
  att   +/-  European 1 

EP153R
b
  att   non  European 2 

E70 (Spain 70) vir   +  European 3 

Malawi 82  vir   +  African 4 

Hinde att.  att   +  African 5 

Uganda vir.  vir   +  African 6  

Lisbon 57  vir   +  European 7 

Lisbon 60  vir   +  European 8 

NHV
c
   att   non  European 9 

Mozam 68  vir   +  African 10 

CC83   vir   +  European 11 

Brazil 81  mod vir  +  American 12 

 

att: attenuated; vir: virulent; mod vir: moderately virulent 

a
 Adapted to Vero cells (Enjuanes et al., 1976) 

b
 Lab-engineered strain (Galindo et al., 2000) 

c
 Non-hemadsorbing virus (Gil et al., 2003) 

#: numbered as in Fig. 1 

Table(s)


