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ABSTRACT 

PTEN is a key regulator of PIP3 signaling, which controls cell growth and differentiation. 

However, PTEN is also highly expressed in the adult brain, where it can be found in dendritic 

spines in hippocampus and other brain regions. Here, we have investigated specific roles of 

PTEN in the regulation of synaptic function in excitatory hippocampal synapses. We found that 

NMDA receptor activation triggers a PDZ-dependent association between PTEN and the 

synaptic scaffolding molecule PSD-95. This association is accompanied by PTEN localization at 

the postsynaptic density and anchoring within the spine. On the other hand, enhancement of 

PTEN lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic 

responses. This activity is specifically required for NMDA receptor-dependent LTD, but not for 

LTP or mGluR-dependent LTD. Therefore, these results reveal PTEN as a regulated signaling 

molecule at the synapse, which is recruited to the postsynaptic membrane upon NMDA receptor 

activation, and is required for the modulation of synaptic activity during plasticity. 

 

 

Keywords: hippocampus/LTD/AMPA receptors/NMDA receptors/spines 
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INTRODUCTION 

 PTEN (Phosphatase and Tensin Homolog Deleted on Chromosome Ten; also known as 

MMAC1 or TEP1) was originally cloned as a tumor suppressor protein (Li et al., 1997; Steck et 

al., 1997). PTEN antagonizes phosphatidylinositosl-3’-kinase (PI3K) signaling by 

dephosphorylating phosphatidylinositol-(3,4,5,)-trisphosphate (PIP3) to generate 

phosphatiylinositol-(4,5)-bisphosphate (PIP2) (Maehama and Dixon, 1999). As a negative 

regulator of the PI3K-PIP3 pathway, PTEN restrains cell proliferation and survival during 

embryogenesis. Consistent with this developmental role, PTEN null mice die during 

embryogenesis, while heterozygotes are tumor-prone and display enlargement of multiple organs 

(Stiles et al., 2004). Similarly, alterations in the function of PTEN are of major relevance for the 

incidence of a wide variety of human cancers (Li et al., 1997; Pendaries et al., 2003). 

 In the central nervous system, PTEN is expressed in most, if not all neurons. It is present 

in dendrites and spines of cerebral cortex, cerebellum, hippocampus and olfactory bulb 

(Perandones et al., 2004). Mutation or inactivation of PTEN contributes to brain tumors, 

macrocephaly, seizures and ataxia (Backman et al., 2001; Eng, 2003; Kwon et al., 2001). PTEN 

mutations have been also associated with mental retardation and autism spectrum disorders 

(Butler et al., 2005; Kwon et al., 2006). At the cellular level, neurons lacking PTEN develop 

larger and more branched dendrites, which harbor more synapses (Fraser et al., 2008; Jaworski et 

al., 2005; Kwon et al., 2006). Therefore, it is likely that the neurological deficits associated to 

PTEN mutations are derived from aberrant neuronal growth and connectivity during brain 

development. These widespread morphological changes may also be the reason for the 

pleiotropic effects on synaptic function and plasticity that have been reported for mice with 

reduced PTEN expression (Fraser et al., 2008; Wang et al., 2006). 
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Besides these developmental aspects, the PIP3 pathway has specific functions at synapses 

in differentiated neurons. For example, acute blockade of PI3K, the PIP3 synthesizing enzyme, 

has been shown to impair some forms of memory formation (Chen et al., 2005) and long-term 

potentiation (LTP) in hippocampal slices (Cammalleri et al., 2003; Opazo et al., 2003; Sanna et 

al., 2002; Tang et al., 2002). The PIP3 pathway has also been linked to AMPAR trafficking (Qin 

et al., 2005) and synaptic localization (Arendt et al., 2010) in hippocampal neurons. However, a 

specific role for PTEN in synaptic transmission or plasticity in developed neurons has not been 

pinpointed yet. 

 From a mechanistic point of view, PTEN possesses a PDZ binding motif at its C-

terminus (residues Thr401-Lys402-Val403-COOH), which interacts with multiple PDZ domain-

containing proteins, such as the scaffolding proteins MAGI-1/2/3, hDlg/SAP97 and the Ser/Thr 

kinase MAST205 (Bonifant et al., 2007). The physiological consequences of these PDZ-

dependent interactions remain poorly characterized; however it has been shown that the binding 

of PTEN to specific PDZ domain-containing proteins contributes to PTEN protein stability 

(Valiente et al., 2005). Nevertheless, no interaction between PTEN and synaptic PDZ proteins 

has been reported yet. 

In the present study, we have investigated specific roles of PTEN in synaptic plasticity, 

separate from its developmental functions. In particular, we have found that NMDA receptor 

activation triggers the association between PTEN and PSD-95 through a PDZ-dependent 

interaction. This interaction leads to the recruitment and anchoring of PTEN to the postsynaptic 

membrane, and possibly mediates a specific role of PTEN in the expression of LTD. These 

results have revealed PTEN as a regulated component of the intracellular signaling machinery 

that controls synaptic transmission and plasticity at hippocampal excitatory synapses. 
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RESULTS 

NMDA receptor activation regulates a PDZ-dependent association between PTEN and 

PSD-95 

As an initial step to evaluate potential functions of PTEN at synapses, we tested its 

association with PSD-95, a critical regulator of synaptic function and plasticity (Bhattacharyya et 

al., 2009; Ehrlich and Malinow, 2004; El-Husseini et al., 2000). To this end, we 

immunoprecipitated PTEN from total hippocampal extracts, and the presence of co-

immunoprecipitated proteins was analyzed by western blot (see Methods). As shown in Fig. 1A 

(upper panels, “Control” lanes), there was a detectable association between PSD-95 and PTEN, 

which was specific, according to the immunoprecipitation with a non-immune (“n.i.”) antibody. 

Interestingly, the association between PSD-95 and PTEN appeared to be regulated by activity, 

since it was increased after 5 min bath-application of 20 μM NMDA (Fig. 1A, compare 

“Control” and “NMDA” lanes), and this increase was abolished by incubation with the NMDAR 

antagonist AP5 (Fig. 1B, “NMDA+AP5” lanes). There was also a weak, but detectable, 

interaction between PTEN and MAGI-2, another PDZ protein known to associate with PTEN 

(Wu et al., 2000). However, this interaction was not altered by NMDAR activation (Fig. 1A, 

middle panels). 

We then tested whether the association between PSD-95 and PTEN was specifically 

regulated by NMDAR activation or whether it could also be induced by other forms of neuronal 

activation or depolarization. To this end, we compared the amount of PTEN-PSD-95 co-

immunoprecipitation from slices incubated for 5 min with NMDA (20 μM), AMPA (100 μM) or 

KCl (50 mM). A control immunoprecipitation with a non-immune antibody was also carried out. 

Interestingly, the association between PTEN and PSD-95 was only enhanced in slices treated 
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with NMDA, but not with AMPA or KCl (Fig. 1C, right panel; total protein inputs for all 

conditions are shown in the left panel). In order to evaluate the time course of this association, 

we carried out immunoprecipitations at different times after the 5 min incubation with NMDA. 

As shown in Fig. 1D, E, the association between PTEN and PSD-95 persists for a period of time 

after the end of NMDAR activation, although it gradually declines by the end of the time course. 

It should also be pointed out that the fraction of PSD-95 associated with PTEN is rather low at 

all times: around 1% of the total PSD-95 under basal conditions, roughly doubling after NMDA 

induction (see quantification in Fig. 1E). The regulated association between PSD-95 and PTEN 

was also observed after immunoprecipitation of PSD-95 and detection of PTEN as a co-

precipitated protein (Supplementary Fig. 1). This regulation appears to be specific for PTEN, 

because the interaction of PSD-95 with another PDZ-dependent partner (the NMDA receptor) 

was not enhanced by this treatment (Supplementary Fig. 1, PTEN versus GluN1 panels). 

To further characterize the structural requirements of this regulated association between 

PSD-95 and PTEN, we expressed GFP-tagged PTEN in organotypic slice cultures of rat 

hippocampus for 15 to 20 hours (GFP is fused to the N-terminus of PTEN). Confocal imaging of 

infected CA1 neurons showed widespread distribution of GFP-PTEN, including distal dendrites 

and spines (Fig. 1F). Recombinant GFP-PTEN was functional, as evidenced from its ability to 

antagonize the PI3K/PIP3 pathway, leading to a decrease in Akt phosphorylation at Ser473 

(Stambolic et al., 1998) (Supplementary Fig. 2A, B). Total protein extracts were prepared from 

untreated slices or from slices treated with NMDA, AMPA or KCl, as described above. 

Immunoprecipitations were carried out with an anti-GFP antibody, and the immunoprecipitated 

fractions were analyzed by western blot. As shown in Fig. 1G, PSD-95 was co-precipitated with 

GFP-PTEN only after NMDAR activation, but not after AMPA or KCl treatment, similar to the 
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results obtained with endogenous PTEN (Fig. 1C). The kinetics of GFP-PTEN association with 

PSD-95 were also similar to the endogenous protein (Fig. 1H, right panels; inputs for all 

conditions are shown in the left panels). As control, cytosolic GFP did not co-immunoprecipitate 

with PSD-95 with or without NMDA (Fig. 1H). 

 

PDZ-dependent interactions anchor PTEN at dendritic spines upon NMDA receptor 

activation 

To determine whether the association between PTEN and PSD-95 was PDZ-dependent, 

we generated a PTEN mutant lacking the last four amino acids, which contain the PDZ ligand 

motif (-ITKV*). We then carried out co-immunoprecipitations from slices expressing GFP, full-

length GFP-PTEN or the truncated form of PTEN lacking its PDZ binding motif (GFP-PTEN-

ΔPDZ) (see Supplementary Fig. 2C for a western blot analysis of the expression of this and other 

PTEN derivatives used in this study). As shown in Fig. 2A (upper right panel), the association 

with PSD-95 was only detectable with GFP-PTEN, but not with GFP-PTEN-ΔPDZ or cytosolic 

GFP, and only after NMDAR activation. This result confirms that the association between PTEN 

and PSD-95 requires the PDZ motif at the PTEN C-terminus. 

PSD-95 is a well-known synaptic scaffolding molecule that organizes multiple signaling 

complexes at the synapse (Sheng, 2001). Therefore, our biochemical results described above 

suggest that PTEN may be recruited and anchored at synapses after NMDAR activation. To test 

this possibility, we evaluated real-time dynamics of PTEN in dendritic spines using fluorescence 

recovery after photobleaching (FRAP; see fluorescence images from a representative experiment 

in Fig. 2B). GFP-tagged PTEN was expressed in organotypic hippocampal slices, and the 

NMDA treatment was carried out as described above. Spines expressing GFP-PTEN were 
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photobleached and the extent of fluorescence recovery was measured before and after NMDAR 

activation (“+5”, “+15” and “+25” minutes; for simplicity, the “+15-min” time point is only 

shown in the summary Fig. 2F). As shown in Fig. 2C (white circles), approximately 50% of the 

GFP-PTEN signal is recovered in the spine over a time course of 10-20 s, arguing that 50% of 

GFP-PTEN is stable in spines (over this period of time) under basal conditions. Intriguingly, 

GFP-PTEN fluorescence recovered to a significantly greater extent (around 70%) 5 min after the 

NMDA treatment (Fig. 2C, red circles). This result indicates an increase in PTEN mobility 

rapidly after NMDAR activation. In contrast, 20-30 min after the NMDA treatment, the recovery 

of fluorescence of GFP-PTEN in the spine was drastically reduced (around 20%; Fig. 2C, dark 

red circles; Fig. 2F), implying that a larger fraction of PTEN is retained in spines in a long-

lasting manner after NMDAR activation. 

To test the role of PDZ interactions in this behavior, we carried out similar experiments 

with the truncated form of PTEN lacking the PDZ motif, GFP-PTEN-ΔPDZ. As shown in Fig. 

2D, the extent of fluorescence recovery was also greater 5 min after NMDAR activation (60% at 

baseline –white circles- versus 90% 5 min after the NMDA treatment –red circles-). But in 

marked contrast with full-length PTEN, this increase in PTEN mobility was long lasting (20-30 

min after the NMDA treatment) and was never followed by an enhanced retention in spines (Fig. 

2D, dark red circles; Fig. 2F). 

As a control for potential changes in fluorophore diffusion in spines as a result of NMDA 

application, we carried out similar NMDA-FRAP experiments in slices expressing GFP. As 

shown in Fig. 2E, F, fluorescence recovery was nearly complete for GFP and was not altered at 

any time point in response to the NMDA treatment. In addition, neither the rates of recovery nor 
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the net distribution between spines and dendrites were significantly altered for any of the 

recombinant proteins after the NMDA treatment (Supplementary Fig. 3A and B, respectively). 

Therefore, we conclude that NMDAR activation triggers a biphasic regulation of PTEN 

mobility in dendritic spines. First, there is a rapid and transient increase in mobility, which is 

independent from PDZ interactions. This phase is then followed by a longer-lasting and PDZ-

dependent anchoring of PTEN at the spine (Fig. 2F). 

 

Biochemical association of PTEN with the postsynaptic density (PSD) after NMDA 

receptor activation 

 To further investigate the recruitment of PTEN to the postsynaptic machinery upon 

NMDAR activation, we evaluated its association with the PSD using standard fractionation 

methods (Carlin et al., 1980). To this end, we isolated synaptosomal fractions from 3-4 weeks 

rats (see Supplementary Methods). NMDARs were then activated on the purified synaptosomes 

by adding 20 μM NMDA and 10 μM glycine. After 5 min incubation, NMDAR activation was 

stopped with AP-5 and synaptosomes were incubated for 10 more minutes to allow for PTEN 

stabilization. Then, the PSD fraction was isolated as a Triton-insoluble pellet from treated and 

untreated synaptosomes, and was analyzed by western blot (see Supplementary Methods). 

 As shown in Fig. 3, the abundance of PTEN at the PSD was significantly enhanced (2-

fold) on the synaptosomes treated with NMDA plus glycine. The PSD enrichment of other 

postsynaptic markers was not altered (PSD-95) or was slightly decreased (GluN1 and αCaMKII) 

with this treatment, ruling out potential artifacts due to non-specific protein aggregation or 

precipitation. In conclusion, these experiments indicate that PTEN biochemically associates with 
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the PSD scaffold after NMDAR activation, in agreement with its co-precipitation with the PSD-

95 protein complex. 

 

Local redistribution of PTEN within dendritic spines in response to NMDAR activation 

In order to directly visualize the recruitment of PTEN to the postsynaptic scaffold, we 

evaluated the ultrastructural localization of endogenous PTEN within dendritic spines before and 

after NMDA treatment. PTEN has been described to be present in axonal and dendritic 

compartments in hippocampal neurons (Perandones et al., 2004), but the fine-scale distribution 

of PTEN in dendritic spines had never been evaluated before. 

We characterized the ultrastructural distribution of endogenous PTEN in close proximity 

to synaptic sites using postembedding immunogold electron microscopy (see Methods, and Fig. 

4A for representative micrographs). Most synaptic PTEN immunolabeling was found in the 

postsynaptic terminal (70% versus 30% presynaptic; Fig. 4B). Within the postsynaptic 

compartment, PTEN labeling was predominantly located in the intracellular space of the spine 

(Fig. 4B, “Intra”), outside of the postsynaptic density (PSD) and the extrasynaptic membrane 

(“Extra”). 

Remarkably, upon NMDAR activation (25 min after the NMDA treatment), PTEN 

fraction in the PSD increased by 6-fold, while the amount of PTEN in other synaptic 

compartments was not significantly affected (Fig. 4B, black columns; representative micrographs 

in Fig. 4A). In addition, and consistent with this redistribution of PTEN into the PSD, we 

observed a global shift in the population of PTEN molecules towards the PSD (Fig. 4C). 
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Therefore, and in agreement with our biochemical and fluorescence imaging data, these 

data confirm that endogenous PTEN redistributes to the postsynaptic membrane in response to 

NMDAR activation. 

 

Enhancement of PTEN activity depresses AMPA receptor-mediated synaptic transmission 

 As an initial step to examine PTEN function in synaptic transmission, we overexpressed 

wild-type GFP-PTEN or a catalytically dead mutant (GFP-PTEN-C124S) in CA1 neurons from 

organotypic slice cultures. Importantly, expression of this mutant produced an increase in 

phospho-Akt over basal levels (Supplementary Fig. 2A, B), indicating that this construct behaves 

as a dominant negative against endogenous PTEN activity in neurons, as it has been described 

previously in other cell types (Maehama and Dixon, 1998). 

 The effect of GFP-PTEN and GFP-PTEN-C124S on synaptic transmission was evaluated 

by simultaneous double whole-cell recordings from pairs of nearby infected and uninfected CA1 

neurons, under voltage clamp configuration, while stimulating presynaptic Schaffer collateral 

fibers (to note, under this configuration, the recombinant proteins are always expressed 

exclusively in the postsynaptic neuron). As shown in Fig. 5A-C, PTEN overexpression produced 

a significant depression of AMPAR-mediated currents as compared to uninfected cells, whereas 

NMDAR responses remained unchanged. In contrast, the catalytically dead mutant, PTEN-

C124S, did not alter AMPAR- or NMDAR-mediated transmission (Fig. 5D-F). This result 

verifies that the catalytic activity of PTEN is required for the depression of AMPAR-mediated 

transmission, and that this is not due to virus infection or nonspecific sequestration of regulatory 

proteins. Importantly, passive membrane properties, such as input resistance and holding current 
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(related to basal ionic conductances), and whole-cell capacitance (related to cell size) were also 

similar in control and in PTEN–overexpressing neurons (Supplementary Fig. 4). 

 Intriguingly, the depression of AMPAR responses produced by overexpression of PTEN 

was observed for basal synaptic transmission, that is, conditions under which PTEN is not 

normally recruited to the postsynaptic membrane (previous biochemical and imaging 

experiments). One possible explanation is that overexpressed PTEN is able to reach the 

postsynaptic membrane in the absence of its regulated association with PDZ proteins at the 

postsynaptic scaffold. To test this possibility, we carried out similar recordings with neurons 

overexpressing the truncated PTEN mutant lacking the PDZ motif (PTEN-ΔPDZ). As shown in 

Fig. 5G-I, overexpressed PTEN was able to depress AMPAR responses in the absence of PDZ-

dependent interactions. This depression was still specific for AMPARs, as compared to 

NMDARs. Therefore, although the recruitment of PTEN to the synaptic scaffold requires 

NMDAR activation and PDZ-dependent interactions, these requirements can be overcome by 

overexpression of the recombinant protein. 

 The depression of basal synaptic responses produced by PTEN might be a consequence 

of an abnormal cycling of AMPARs at synapses. AMPARs are believed to cycle continuously in 

and out of synapses in an activity-independent manner, which depends on the interaction 

between the GluA2 subunit (also known as GluR2 (Collingridge et al., 2009)) and NSF (N-

ethylmaleimide-sensitive fusion protein) (Luscher et al., 1999; Nishimune et al., 1998; Song et 

al., 1998). When this interaction is impaired by intracellular infusion of a peptide containing the 

NSF-binding sequence of GluA2 (pep2m/G10), AMPAR-mediated synaptic transmission rapidly 

“runs down” as the receptors continue to be internalized but fail to be reinserted at the synaptic 

membrane (Luscher et al., 1999; Nishimune et al., 1998). We have used the same approach to 
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determine whether PTEN affects the constitutive cycling of AMPA receptors. To this end, we 

recorded AMPAR-mediated synaptic responses from CA1 hippocampal neurons infected with 

PTEN while infusing them with the GluA2-NSF peptide pep2m/G10. The peptide produced a 

fast “run-down” of synaptic transmission in the uninfected cells (Fig. 5J, white symbols), as 

expected. This “run-down” was virtually identical in the cells expressing PTEN (Fig. 5J, black 

symbols), indicating that PTEN activity does not alter the continuous cycling of AMPARs. 

 Although PTEN was expressed in postsynaptic CA1 neurons, we examined whether 

presynaptic properties may have been altered retrogradely (Futai et al., 2007; Regalado et al., 

2006). As shown in Fig. 5K, paired pulse facilitation (PPF), an indicator of presynaptic function, 

was unaltered by PTEN overexpression. 

The PIP3 pathway is also involved in the regulation of gene expression (Brunet et al., 

2001). Nevertheless, overnight overexpression of PTEN did not affect the expression levels of 

GluA1 and GluA2 subunits of AMPA receptors, or their phosphorylation state (phospho-Ser 831 

and 845 for GluA1, and phospho-Ser 880 for GluA2; Supplementary Fig. 5). 

 Therefore, these combined data strongly suggest that PTEN plays a specific postsynaptic 

role at excitatory hippocampal synapses. 

 

PTEN activity is required for NMDA receptor-dependent LTD 

The depression of AMPAR responses as a consequence of PTEN overexpression led us 

to think that this phosphatase may play a role in long lasting changes of synaptic strength, and 

particularly, in long-term depression (LTD). In addition, the NMDA treatments that we found to 

regulate the association of PTEN with postsynaptic elements (Figs. 1 and 3) and its redistribution 

in spines (Figs. 2 and 4) are known to lead to synaptic depression (Lee et al., 1998). 
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To directly test a potential role of PTEN in LTD in hippocampal slices, we used a bis-

peroxivanadium derivative, bpV(HO)pic, which has been shown to specifically inhibit PTEN 

when used at a low nanomolar concentrations (Schmid et al., 2004) (see Supplementary Fig. 6 

for a test of bpV(HO)pic specificity). LTD was induced on control or on bpV(HO)pic-pretreated 

slices by pairing presynaptic stimulation (1 Hz, 500 pulses) with moderate postsynaptic 

depolarization (-40 mV). Interestingly, when compared to control cells, inhibition of PTEN with 

bpV(HO)pic greatly reduced the magnitude of LTD (Fig. 6A, D), suggesting that PTEN activity 

is necessary for LTD in CA1 hippocampal synapses (bpv(HO)pic did not have significant effect 

on the control pathway –Fig. 6D- or on basal synaptic transmission –not shown). Similar 

blockade of LTD expression was observed when the PTEN inhibitor was applied only during the 

time of LTD induction (see Supplementary Fig. 7). 

As an alternative approach to test the role of PTEN in LTD, we carried out similar 

experiments with neurons expressing the catalytically dead mutant PTEN-C124S. It is important 

to keep in mind that this mutant did not have any effect on basal AMPAR- or NMDAR-mediated 

transmission (Fig. 5D-F). Interestingly, PTEN-C124S displayed a dominant negative effect on 

LTD. That is, PTEN-C124S expression blocked LTD to a similar extent as the PTEN inhibitor 

(Fig. 6B, D). 

PTEN is known to have both lipid and protein phosphatase activity, as well as 

phosphatase-independent functions (Tamguney and Stokoe, 2007). To test whether the role of 

PTEN in LTD was specifically dependent on its PIP3-phosphatase activity, we used a lipid 

phosphatase PTEN mutant that retains its protein phosphatase activity: PTEN-G129E (Myers et 

al., 1998). Similar to our results with PTEN-C124S, neurons expressing PTEN-G129E did not 

undergo long lasting depression (Fig. 6C, D). Taken together, these pharmacological and genetic 
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approaches indicate that PTEN lipid phosphatase activity is required for LTD in CA1 

hippocampal synapses. 

To further explore the role of PTEN in synaptic depression, we evaluated LTD in neurons 

overexpressing wild-type PTEN. As shown in Supplementary Fig. 8, PTEN overexpression did 

not alter LTD expression. Taking into account that PTEN-overexpressing neurons display 

reduced AMPAR-mediated synaptic transmission under basal conditions (Fig. 5A, B), these data 

suggest either that PTEN-induced depression does not saturate subsequent LTD expression, or 

alternatively, that overexpressed PTEN acts on a different pool of AMPARs from those removed 

during synaptically induced LTD. 

 

PTEN is neither required for LTP nor for mGluR-dependent LTD 

After having established the importance of PTEN for LTD, we wished to investigate 

whether PTEN activity is required for LTP, another paradigmatic form of NMDAR-dependent 

synaptic plasticity. To this end, we evaluated the effect of the catalytically dead mutant, PTEN-

C124S, on LTP in CA1 hippocampal neurons. LTP was induced on infected and uninfected CA1 

neurons by pairing presynaptic stimulation (3 Hz, 300 pulses) with postsynaptic depolarization 

(0 mV). As shown in Fig. 7A, C, no significant difference was found between uninfected 

(control) and infected (PTEN-C124S-expressing) neurons. PTEN-C124S did not have any effect 

on the non-potentiated (unpaired) pathway either (Fig. 7C). Virtually identical results were 

obtained with the specific PTEN inhibitor bpV(HO)pic (Fig. 7B, C). Therefore, these data 

indicate that PTEN is required specifically for LTD, and not for other forms of NMDAR-

dependent synaptic plasticity. 



 16

In addition, we tested whether PTEN would be required for another prominent form of 

LTD in CA1 hippocampal synapses, which is dependent on the activation of metabotropic 

glutamate receptors (mGluRs) (Oliet et al., 1997; Palmer et al., 1997). mGluR-dependent LTD 

was induced by bath application of 50 μM DHPG (group I mGluR agonist) in the presence of 

100 μM AP5 (NMDAR antagonist) (see Methods). As shown in Fig. 7D, F, neurons expressing 

the catalytically dead PTEN-C124S displayed similar depression to the control, uninfected 

neurons. Again, identical results were obtained when blocking PTEN activity pharmacologically 

(Fig. 7E, F). Therefore, we conclude that PTEN is not required for mGluR-dependent LTD in 

CA1 neurons. 

 

Involvement of PDZ-dependent interactions of PTEN during NMDAR-dependent LTD  

Our electrophysiological data shown above indicate that PTEN activity is specifically 

required for NMDAR-dependent LTD, but not for basal synaptic transmission or for other forms 

of synaptic plasticity. In part, these conclusions are based on the observation that catalytically 

inactive forms of PTEN have a dominant negative effect on endogenous PTEN to block 

NMDAR-dependent LTD (Fig. 6B, C). In other words, these PTEN mutants appear to be 

competing with endogenous PTEN for some important interaction required for LTD. An obvious 

candidate for this interaction is the PDZ motif at the C-terminus of PTEN, which we have found 

mediates the anchoring of PTEN in the spine and its association with PSD-95 upon NMDAR 

activation (Fig. 2). 

In order to investigate whether PDZ-dependent interactions of PTEN are important for its 

role in LTD, we tested whether the dominant negative effect of PTEN-C124S requires its PDZ 

C-terminal motif. To this end, we generated a catalytically dead mutant (C124S) lacking the PDZ 
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ligand motif (-ITKV*). This mutant (PTEN-C124S-ΔPDZ) did not affect basal synaptic 

transmission mediate by AMPA or NMDA receptors (Fig. 8A-C), consistent with the results 

with PTEN-C124S (Fig. 5D-F). Then, we carried out LTD experiments in CA1 neurons 

expressing this truncated, catalytically dead mutant. Interestingly, neurons expressing PTEN-

C124S-ΔPDZ displayed normal LTD, undistinguishable from uninfected cells (Fig. 8D, E). 

Therefore, these results suggest that the C-terminal PDZ binding motif of PTEN is necessary for 

its function in LTD. 

 

DISCUSSION 

In this study we show that the lipid phosphatase PTEN, typically associated with cell 

growth and proliferation, is recruited to synapses and is required for the expression of NMDAR-

dependent LTD. This is based on three main lines of evidence. First, using electrophysiological 

assays on hippocampal slices, we have determined that enhancement of PTEN activity is 

sufficient to depress AMPAR-mediated synaptic transmission, and that PTEN lipid phosphatase 

activity is specifically required for NMDAR-dependent LTD. Second, a combination of live 

imaging, electron microscopy and biochemical assays indicate that NMDAR activation triggers a 

PDZ-dependent association between PTEN and the synaptic scaffold, which anchors PTEN at 

the postsynaptic terminal. And third, this PDZ-dependent interaction appears to be involved in 

PTEN’s action during LTD, since a dominant negative mutant of PTEN is ineffective when 

lacking its PDZ motif. These combined results reveal PTEN as a regulated signaling molecule at 

synapses, which is recruited to the postsynaptic membrane in an activity-dependent manner and 

is required for the modulation of synaptic activity during plasticity. 
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An important aspect of this work is the identification of a precise synaptic function for 

PTEN during plasticity. PTEN is a well-known negative regulator of PI3K signaling, and as 

such, it controls multiple aspects of neuronal development, including neurite growth, axon 

specification, dendritic arborization and growth cone dynamics (Chadborn et al., 2006; Jaworski 

et al., 2005; Kwon et al., 2006). In this context, it may not be surprising that previous studies 

using heterozygous or mosaic PTEN knock-out mice have reported multiple impairments in 

synaptic function, including basal transmission, paired-pulse facilitation, LTP and LTD (Fraser 

et al., 2008; Wang et al., 2006). These complex phenotypes are probably related to general 

neuronal dysfunctions caused by alterations in the PIP3 pathway during development. Our data 

presented here indicate that semi-acute (15 to 20 hours) blockade of PTEN activity, either 

through pharmacological or genetic approaches, results in a very specific impairment of 

NMDAR-dependent LTD, without affecting basal synaptic transmission, NMDAR function, 

LTP, mGluR-dependent LTD or presynaptic function. Therefore, we believe that these results 

are revealing an acute and distinct role of PTEN at otherwise unperturbed synapses. 

Perhaps one of the most surprising observations of this study is the recruitment of PTEN 

to the postsynaptic complex in response to NMDAR activation. PTEN was already known to 

interact with PDZ domain-containing proteins in different cell types (Bonifant et al., 2007). 

However, no such interaction had been reported in neurons before this work. We now identify 

PSD-95 as a potential PDZ synaptic partner for PTEN. This association is very low under basal 

conditions, but it is rapidly triggered upon NMDAR activation. We should also point out that our 

results do not prove a direct interaction between PTEN and PSD-95. Given the dense network of 

interactions present at the postsynaptic membrane, it is possible that the association between 

PTEN and PSD-95 is just reflecting the recruitment of PTEN to the postsynaptic scaffold. 
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Indeed, this recruitment may be maintained by different sets of interactions at different time 

points, since the anchoring of PTEN in spines and its presence at the postsynaptic density 

(fluorescence and electron microscopy data) appears to be longer lasting than its association with 

PSD-95 (co-immunoprecipitations). This interpretation would also fit with previous reports 

showing that PSD-95 is partially removed from spines during LTD (Bhattacharyya et al., 2009; 

Horne and Dell'Acqua, 2007; Sturgill et al., 2009). 

The regulation of PTEN interactions during LTD is likely to occur at multiple levels. For 

example, we have observed that NMDAR activation triggers a transient mobilization of PTEN 

within dendritic spines, which precedes its PDZ-dependent anchoring. Therefore, it is likely that 

the regulation of PTEN in response to NMDAR activation will involve release from basal 

retention interactions, as well as association with new synaptic partners. In fact, the initial 

mobilization of PTEN may facilitate its subsequent association with PSD-95 at the PSD. 

Undoubtedly, further work will be required to dissect the details of this dynamic behavior of 

PTEN within dendritic spines. Nevertheless, these new results strengthen the emerging notion 

that PSD-95 acts as an important organizer of synaptic signaling during LTD (Bhattacharyya et 

al., 2009; Xu et al., 2008). 

What are the functional consequences of this activity-dependent recruitment of PTEN to 

the postsynaptic complex? It is reasonable to hypothesize that binding of PTEN to the 

postsynaptic complex positions PTEN in close proximity to the postsynaptic membrane, which 

in turn would facilitate access to its PIP3 substrate during NMDAR-dependent LTD. On the one 

hand, the stabilization of PTEN in close proximity to its substrate could have significant effects 

on its catalytic efficiency. But perhaps more importantly, this mechanism would also restrict 

PTEN action to the postsynaptic membrane of the synapses being activated. In other words, this 
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regulated PDZ-dependent recruitment of PTEN may provide the means to achieve synapse-

specific modulation of PIP3 signaling during plasticity. 

And finally, how does PTEN activity lead to LTD expression? We have recently 

described that downregulation of PIP3 leads to the redistribution of AMPARs from the 

postsynaptic membrane into the extrasynaptic surface of the spine (Arendt et al., 2010). On the 

one hand, this short-range movement is expected to depress synaptic transmission, as 

perisynaptic AMPARs will not be significantly activated by synaptically released glutamate 

(Raghavachari and Lisman, 2004). On the other hand, this redistribution of AMPARs may 

facilitate their access to perisynaptic endocytic hotspots (Blanpied et al., 2002; Petralia et al., 

2003; Racz et al., 2004), and therefore may act as an initial step preceding AMPAR 

internalization. 

A downstream effector of the PIP3 pathway is glycogen synthase kinase-3 β (GSK-3β). 

Upregulation of PIP3 levels leads to activation of the Ser/Thr kinase Akt, which in turns 

phosphorylates and inactivates GSK-3β (Cross et al., 1995). Therefore, PTEN will act as a 

positive regulator of GSK-3β, by reducing PIP3 levels with the concomitant decrease in Akt 

activation and dephosphorylation (activation) of GSK-3β. Interestingly, GSK-3β has been 

recently shown to be activated (dephosphorylated) upon LTD induction and this activation was 

required for the specific expression of LTD (versus LTP) (Peineau et al., 2007). Therefore, it is 

possible that the recruitment of PTEN to the postsynaptic membrane during LTD is relayed 

through the PIP3 pathway to activate GSK-3β at specific synapses. This mechanism would be 

consistent with the presence of GSK-3β in synaptosomal preparations and dendritic spines 

(Hooper et al., 2007; Peineau et al., 2007). Therefore, our results propose a specific mechanism 

for the synaptic compartmentalization of PIP3 signaling during plasticity. 
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In addition, it has been recently shown that LTD requires PIP2 turnover by phospholipase 

C (PLC), which leads to the loss of the scaffolding molecules AKAP79 and PSD-95 from 

synapses and initiates the structural remodeling of the spine (Horne and Dell'Acqua, 2007). 

Taking together, Dell’Acqua’s study and ours would suggest an interesting relay of 

phosphoinositide metabolism during LTD, which would involve degradation of PIP3 into PIP2 

(via PTEN) for initial AMPAR depression, and subsequent PIP2 turnover (via PLC) for further 

structural and functional changes in the spine. 

In summary, this work has offered new insights into the organization of synaptic 

signaling during plasticity, and has revealed distinct roles for the tumor suppressor PTEN as a 

critical mediator of long-term depression in hippocampal neurons. 
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MATERIALS AND METHODS 

 

Expression of recombinant proteins and antibodies used in this study are described in 

Supplementary Methods. 

 

Co-immunoprecipitations and pharmacological treatments 

Hippocampal slices were transferred to a submersion-type holding chamber containing 

artificial cerebrospinal fluid (ACSF, composition described in Supplementary Information), 

gassed with 5% CO2 / 95% O2 at 30°C. Slices were equilibrated in the holding chamber for 10 

minutes prior to each experiment and were transferred to a separate chamber containing ACSF 

plus 20 μM NMDA, 100 μM AMPA or 50 mM KCl, where they remained for 5 minutes. 

Following these treatments, some slices were taken immediately for homogenization in a buffer 

containing: 10 mM HEPES, 150 mM NaCl, 10 mM EDTA, 0.1 mM 

phenylmethanesulphonylfluoride (PMSF), 2 μg/ml of chymostatin, leupeptin, antipain and 

pepstatin, 10 mM NaF, 1 μM microcystin LR, 0.5 μM calyculin A and 1 % Triton X-100. Other 

slices were transferred to another chamber containing ACSF, for variable recovery times, as 

indicated in each experiment. Total protein extracts were prepared in the buffer described above. 

For immunoprecipitations, 200-300 μg of protein extracts were incubated with the corresponding 

antibodies and with 40 μl of protein G-sepharose beads (50%) (Amersham Biosciences), for 4 

hours at 4°C. These samples were then washed and immunoprecipitated proteins were eluted by 

boiling in 1x Laemmli sample buffer and separated by SDS-PAGE. Visualization of 

immunoprecipitated proteins was done by western blot developed with chemiluminescence or 

with the Odyssey fluorescence system, and quantified with Image J under linear conditions. 
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Electrophysiology 

Voltage-clamp whole cell recordings were obtained from nearby infected and uninfected 

CA1 pyramidal neurons, under visual guidance using fluorescence and transmitted light 

illumination. Composition of ACSF and internal solution, and description of synaptic plasticity 

protocols are included in Supplementary Methods. Bipolar stimulating electrodes were placed 

over Schaffer collateral fibers between 250 and 300 μm from the CA1 recorded cells, and 

synaptic responses were evoked with single voltage pulses (200 μs, up to 30 V). Responses were 

collected at -60 mV and +40 mV and averaged over 50-100 trials. All electrophysiological data 

were collected with pCLAMP software (Molecular Devices). 

 

Fluorescent Recovery After Photobleaching (FRAP)  

Hippocampal slices (5-7 DIV) were perfused with ACSF for 15-30 minutes. Confocal 

images of dendritic spines were obtained on an Olympus FV500 confocal microscope using a 

60x oil immersion objective. Digital images were acquired using the FluoView software. 

Following acquisition of baseline images, dendritic spines where photobleached for 5 seconds 

(approximate time to completely bleach fluorescence signal in the spine). Recovery of 

fluorescence in the spine was measured from images acquired up to 50 seconds after the 

photobleaching. After collecting several images from dendritic spines under baseline conditions, 

the perfusion solution was switched to an ACSF containing 20 μM NMDA. After 5 minutes of 

NMDA treatment, the slices were washed again with standard ACSF. Further FRAP images 

were acquired after 10, 20 and 30 minutes of the NMDA treatment. Images were reconstructed 

and analyzed using NIH Image J software.  
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Electron Microscopy 

Rat hippocampus was fixed, dehydrated, and processed for postembedding immunogold 

labeling as previously described (Phend et al., 1995). Immunostaining was with anti-PTEN 

antibody (Neomarkers) followed by an anti-mouse secondary antibody coupled to 10 nm gold 

particles (Electron Microscopy Sciences). Images were acquired with a Philips CM-100 

transmission electron microscope coupled to a Kodak 1.6 Megaplus digital camera. 

Quantification of gold particles and distance measurements were carried out on the digital 

images using NIH Image J software. 

 

Statistical analysis 

Statistical differences were calculated according to non-parametric tests. Comparisons between 

multiple groups were carried out with the Kruskal-Wallis ANOVA. When significant differences 

were observed, p values for pairwise comparisons were calculated according to two-tailed Mann-

Whitney tests (for unpaired data) or Wilcoxon tests (for paired data). Comparisons between 

cumulative distributions (Fig. 4C) were calculated with the Kolmogorov-Smirnov test. 
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FIGURE LEGENDS 

 

Figure 1. NMDA receptor-dependent association between PTEN and PSD-95. A. Total 

protein extracts from hippocampal slices were immunoprecipitated with anti-PTEN or with a 

non-immune (“n.i”) antibody (“Control” lanes). Some slices were treated with 20 μM NMDA for 

5 min before the immunoprecipitation (“NMDA” lanes). For all western blots, 

immunoprecipitated proteins are shown in the right panels, and 10% of the inputs in the left 

panels. B. Similar to A, but some slices were preincubated with the NMDAR antagonist AP5 

before and during the NMDA treatment (“NMDA+AP5”). C. Similar to A, with slices pre-

treated for 5 min with 20 μM NMDA, 100 μM AMPA, 50 mM KCl, or left untreated 

(“Control”), as indicated. D. Similar to A, with untreated slices (”Control”), treated with 20 μM 

NMDA for 5 min (”NMDA”), or transferred to regular ACSF for 10 min (+10’) or 25 min (+25’) 

after the NMDA treatment. Star (*) indicates the position of the IgG used for 

immunoprecipitation. E. Quantification of the fraction of PSD-95 co-precipitated with PTEN (as 

percentage from the total PSD-95 amount in the input), from 5 independent experiments as the 

one shown in D. The 5 min NMDA treatment is represented with a black bar. F. Representative 

confocal image showing the distribution of recombinant GFP-PTEN in soma, dendrites and 

spines in a hippocampal neuron from organotypic slice cultures. G. Hippocampal slices 

expressing GFP-PTEN were treated for 5 min with 20 μM NMDA, 100 μM AMPA, 50 mM KCl 

or left untreated (“Control”), as indicated. Total protein extracts were immunoprecipitated with 

anti-GFP and analyzed by western blot with anti-PSD95 (upper panels) or anti-GFP antibodies 

(lower panels). Star (*) indicates the position of the IgG used for immunoprecipitation. H. 

Hippocampal slices expressing GFP or GFP-PTEN, as indicated, were left untreated (”Ctrl.”), or 
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were treated with 20 μM NMDA for 5 min (”NMDA”), or were transferred to regular ACSF for 

10 min after the NMDA treatment (+10’). Total protein extracts were immunoprecipitated with 

anti-GFP and analyzed as in D. Star (*) indicates the position of the IgG used for 

immunoprecipitation.  

 

Figure 2. PDZ-dependent interactions and anchoring of PTEN in spines. A. 

Coimmunoprecipitation experiments were similar to those in Fig. 1H, with slices expressing 

GFP, GFP-PTEN or the PDZ truncated mutant GFP-PTEN-ΔPDZ. Slices were treated with 20 

μM NMDA for 5 min (“+NMDA”) or left untreated (“Control”). Western blot is representative 

of 3 independent experiments. B. Representative confocal images from a FRAP experiment. Left 

panel (“baseline”) shows GFP-PTEN expression in a dendritic branch and its spines. A specific 

spine (white dashed circle) was bleached (“bleaching”) and its fluorescence partially recovered 

40 s later (“recovery”). C. Quantitative analysis of FRAP experiments as the one shown in A. 

“Baseline” (white symbols) represents FRAP experiments on GFP-PTEN-expressing slices 

perfused with ACSF (untreated). The perfusion solution was then switched to ACSF containing 

20 μM NMDA. 5 minutes later, the slices were washed again with standard ACSF. Further 

FRAP images were acquired after 5, 15 and 25 minutes of ACSF wash (“+5 min”, red symbols; 

“+25 min”, dark red symbols; the “+15 min” time courses are similar to the “+25 min” ones, and 

are only represented in the summary plot in F, for simplicity). GFP fluorescence in the spine was 

normalized to the fluorescence in the unbleached dendritic shaft to correct for ongoing bleaching 

during imaging. Average values ± s.e.m. are plotted normalized to the baseline before bleaching. 

Number of spines analyzed were 12 (“baseline”), 8 (“+5 min”) and 9 (“+25 min”) (different 

spines are imaged at each time point). D, E. Similar to C, with slices expressing GFP-PTEN-
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ΔPDZ (D) or plain GFP (E). Number of spines analyzed for GFP-PTEN-ΔPDZ were 7 at each 

time point, and for GFP 6 (“baseline”), 5 (“+5 min”) and 5 (“+25 min”). F. Recovery fractions 

from experiments shown in C-E were calculated from the fraction of fluorescence recovered 40 s 

(GFP-PTEN and GFP-PTEN-ΔPDZ) or 4 s (GFP) after photobleaching. These values are plotted 

for untreated slices (0 min) or at different times after the 5 min NMDA treatment (the “+15 min” 

is not plotted in panels C-E for simplicity). Average values ± s.e.m. are plotted for GFP-PTEN 

(black symbols), GFP-PTEN-ΔPDZ (grey symbols) and GFP (white symbols). Statistical 

significance was calculated with respect to the recovery fractions before NMDA treatment. 

There was no significant difference in the case of GFP-expressing neurons. 

 

Figure 3. Enrichment of PTEN at the postsynaptic density fraction after NMDA receptor 

activation. A. Representative western blot analysis of PSD fractionations from synaptosomal 

preparations after NMDA receptor activation (“+NMDA”) or untreated controls (“−NMDA”). A 

duplicate of separately treated or untreated samples is presented. The starting material 

(synaptosomal fraction) is shown in the left lane. B. Quantification of PSD enrichment in NMDA 

treated samples normalized to the untreated controls, from experiments as the one shown in A. 

“n” represents number of independent experiments. Statistical significance was determined 

according to the Wilcoxon test for pairs of treated-untreated samples. 

 

Figure 4. Local redistribution of PTEN to the postsynaptic density after NMDA receptor 

activation. A. Representative micrographs of CA1 stratum radiatum excitatory synapses after 

postembedding labeling with anti-PTEN immunogold (arrows). Presynaptic terminal is marked 

with an asterisk (*). Note accumulation of PTEN labeling at the PSD after 5 min NMDA 
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treatment and 25 min recovery in ACSF (“+25 min”), with respect to untreated slices 

(“Baseline”). B. Quantification of PTEN immunogold labeling at different compartments from 

electron micrographs as the ones shown in A. “PRE”: presynaptic terminal; “POST”: 

postsynaptic terminal; “PSD”: postsynaptic density; “Extra”: perisynaptic membrane lateral from 

the PSD; “Intra”: intracellular space within the spine. Percentage of immunogold labeling per 

synapse was calculated as the number of gold particles at each compartment divided by the total 

number of gold particles in each synaptic terminal (only gold particles within 1 μm of the 

synaptic membrane were used for this analysis). Average values ± s.e.m. are plotted for untreated 

slices (“Baseline”, white columns) or for slices treated for 5 min with NMDA and recovered for 

25 min in ACSF (“+25 min”, black columns). “n” represents number of synaptic terminals. 

Statistical significance was calculated according to the Mann-Whitney test. C. Quantification of 

PTEN distribution within the spine. The distance to the synaptic cleft was calculated for each 

immunogold particle before (“Baseline”, black line) or after NMDA treatment (“+25 min”, grey 

line), and plotted as cumulative distributions. The average thickness of the PSD from our 

micrographs (37 nm) is indicated in the plot as a vertical grey bar. “n” represents number of gold 

particles. Statistical significance was calculated according to the Kolmogorov-Smirnov test. 

 

Figure 5. Effects of GFP-PTEN expression on synaptic transmission. A. Sample traces of 

evoked AMPAR- and NMDAR-mediated synaptic responses recorded at -60 mV or +40 mV, 

respectively, from CA1 neurons expressing GFP-PTEN and neighboring control (uninfected) 

neurons. B. Average AMPAR-mediated current amplitude (peak of the synaptic response 

recorded at -60 mV) from pairs of uninfected and GFP-PTEN-expressing neurons. For B, C, E, 

F, H and I, “n” represents number of pairs of cells, and statistical significance was determined 
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with the Wilcoxon test for paired data. C. Average NMDAR-mediated current amplitude 

(recorded at +40 mV and measured at a latency of 60 ms) from pairs of uninfected and GFP-

PTEN-expressing neurons. D-F. Similar to A-C, with infected neurons expressing GFP-PTEN-

C124S. G-I. Similar to A-C, with infected neurons expressing GFP-PTEN-ΔPDZ. J. Time 

course of AMPAR-mediated synaptic responses recorded from CA1 neurons expressing GFP-

PTEN or from control (uninfected) neurons, during whole-cell pipette infusion of the GluA2-

NSF interfering peptide (pep2m). Response amplitude is normalized to a 2 min baseline from the 

beginning of the recording. “n” represents number of cells. Inset: sample traces averaged from 

the first 5 min of the recording (thin lines) or from the last 5 min of the time course (thick lines). 

K. Paired-pulse facilitation (PPF) recorded from control (uninfected) neurons or from neurons 

expressing GFP-PTEN. PPF is calculated as the ratio of the amplitude of the second response 

versus that of the first one. “n” represents number of cells. Inset: representative traces of evoked 

AMAR-mediated responses with an interstimulus interval of 200 ms. 

 

Figure 6. PTEN lipid phosphatase activity is required for LTD. A-C. LTD was induced in 

CA1 hippocampal neurons pre-treated with the PTEN inhibitor bpV(HO)pic (A) or expressing 

the PTEN point mutants C124S (B) or G129E (C). Results from control neurons (uninfected or 

untreated) were carried out in an interleaved manner with their corresponding infected or treated 

neurons. Amplitude of the synaptic responses is normalized to a 10 min baseline. Insets: sample 

traces averaged from the baseline (thin lines) or from the last 10 min of the recording (thick 

lines). D. Average of AMPAR-mediated responses collected from the last 10 min of the 

recording and normalized to the baseline. Left columns (LTD, paired) correspond to the 

stimulation pathway in which postsynaptic depolarization (-40 mV) was paired to low-frequency 
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stimulation (1 Hz). Right columns (control, unpaired) correspond to the pathway that was not 

stimulated during depolarization. “n” represents number of cells. 

 

Figure 7. PTEN activity is not required for LTP or for mGluR-dependent LTD. A. LTP was 

induced in CA1 hippocampal neurons expressing GFP-PTEN-C124S (black symbols) or in 

control (uninfected) neurons (white symbols). Amplitude of the synaptic response is normalized 

to a 2 min baseline. Inset: sample traces averaged from the baseline (thin lines) or from the last 

10 min of the recording (thick lines). B. Similar to A, using slices pre-treated with the PTEN 

inhibitor bpV(HO)pic or control (untreated) slices. C. Average of AMPAR-mediated responses 

collected from the last 10 min of the recording (25-35 min in A, 40-50 min in B) and normalized 

to the baseline. Left and right columns (LTP, paired) correspond to the stimulation pathway in 

which postsynaptic depolarization (0 mV) was paired to presynaptic stimulation (3 Hz). Middle 

columns (control, unpaired) correspond to the pathway that was not stimulated during 

depolarization. “n” represents number of cells. D. mGluR-dependent LTD was induced by bath-

application of 50 μM DHPG (agonist of type I mGluR receptors). Recordings were carried out in 

the presence of 100 μM AP5 (NMDAR antagonist) (see Methods). Synaptic responses were 

normalized to a 10 min baseline before DHPG application for uninfected neurons (white 

symbols) and for GFP-PTEN-C124S-expressing neurons (black symbols). Inset: sample traces 

averaged from the baseline (thin lines) or from the last 10 min of the recording (thick lines). E. 

Similar to D, using slices pre-treated with the PTEN inhibitor bpV(HO)pic or control (untreated) 

slices. F. Average of AMPAR-mediated responses collected from the last 10 min of the 

recording (50-60 min in D, 35-45 in E) and normalized to the baseline. 
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Figure 8. Involvement of the PDZ motif of PTEN in LTD. A. Sample traces of evoked 

AMPAR- and NMDAR-mediated synaptic responses recorded at -60 mV or +40 mV, 

respectively, from CA1 neurons expressing GFP-PTEN-C124S-ΔPDZ and neighboring control 

(uninfected) neurons. B. Average AMPAR-mediated current amplitude (peak of the synaptic 

response recorded at -60 mV) from pairs of uninfected and GFP-PTEN-C124S-ΔPDZ-expressing 

neurons. For B and C, “n” represents number of pairs of cells, and statistical significance was 

determined with the Wilcoxon test. C. Average NMDAR-mediated current amplitude (recorded 

at +40 mV and measured at a latency of 60 ms) from pairs of uninfected and GFP-PTEN-C124S-

ΔPDZ-expressing neurons. D. LTD was induced in CA1 hippocampal neurons expressing GFP-

PTEN-C124S-ΔPDZ (black symbols) or in control (uninfected) neurons (white symbols). 

Amplitude of the synaptic responses is normalized to a 10 min baseline. Insets: sample traces 

averaged from the baseline (thin lines) or from the last 10 min of the recording (thick lines). E. 

Average of AMPAR-mediated responses collected from the last 10 min of the recording and 

normalized to the baseline. Left columns (LTD, paired) correspond to the stimulation pathway in 

which postsynaptic depolarization (-40 mV) was paired to low-frequency stimulation (1 Hz). 

Right columns (control, unpaired) correspond to the pathway that was not stimulated during 

depolarization. “n” represents number of cells. 
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SUPPLEMENTARY METHODS 

Construction of recombinant proteins and expression 

The different GFP-tagged versions of PTEN were made by in-frame ligation of the EGFP 

coding sequence (Clontech) with the amino terminus of rat PTEN. The truncated form of PTEN 

(PTEN-�PDZ), lacking the C-terminal residues Ile400-Thr401-Lys402-Val403, the point mutants 

C124S and G129E, and the double mutant C124S-�PDZ were made by site-directed PCR 

mutagenesis. The catalytically inactive PTEN mutants (C124S and G129E) have been 

characterized previously (Myers et al., Proc Natl Acad Sci USA, 95, 13513-13518, 1998). All 

constructs were prepared in pSinRep5 for expression using Sindbis virus. Recombinant proteins 

were expressed in hippocampal CA1 pyramidal neurons from organotypic slice cultures. Slices 

were prepared from postnatal day 5-7 rats and cultured from 5 to 10 days. Expression of the 

recombinant proteins was for 15 to 20 hours. All biosafety procedures and animal care protocols 

were approved by the University of Michigan Committee on Use and Care of Animals and the 

bioethics committee of the Consejo Superior de Investigaciones Científicas (CSIC). 

Antibodies

Antibodies used in this study were: PTEN (Neomarkers -mouse, Cell Signalling -rabbit); PSD-95 

(Neuromab -mouse, Abcam -rabbit); MAGI-2 and �CaMKII (Sigma); Akt, phospho-Akt 

(Ser473) and phospho-Tyrosine (Cell Signalling); GluA1, phospho-GluA1 (Ser831 and Ser845), 

GluA2, phospho-GluA2 (Ser880) and GluN1 (Millipore); GFP (Roche). 
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Synaptosomal/PSD fractionations and in vitro activation of NMDA receptors 

Biochemical isolation of synaptosomes and PSD fractions were carried out essentially as 

previously described (Carlin et al., J Cell Biol, 86, 831-845, 1980). Briefly, hippocampi from 3-4 

week rats were homogenize in a Dounce glass homogenizer with buffer A (0.32 M sucrose, 1 

mM MgCl2, 0.5 mM CaCl2, 10 mM HEPES, 1 mM EGTA, 1 mM dithiothreitol and a cocktail of 

protease inhibitors from Roche –“Complete Mini EDTA-free”). This homogenate was spun down 

at 1400g for 10 min at 4°C. The supernatant was kept and the pellet was resuspended in buffer A 

and spun again at 710g for 10 min at 4°C. Both supernatants were mixed and spun down at 

11,600g for 12 min at 4°C. The pellet (crude synaptosomal fraction) was resupended in buffer B 

(10 mM HEPES, 1 mM dithiothreitol, protease inhibitor cocktail) plus 0.32 M sucrose, and 

overlaid on a discontinuous density gradient containing two layers of buffer B plus 1.0 M and 1.4 

M sucrose. After centrifugation at 82,500g for 1 hour at 4°C, the interphase between 1.0 M and 

1.4 M was collected (synaptosomal fraction). 

 The NMDA receptor activation was induced on the purified synaptosomes by adding 1.2 

mM MgCl2, 2.5 mM CaCl2, 20 μM of NMDA and 10 μM glycine, and incubating for 5 min at 

room temperature. The reaction was stopped by addition of 100 μM DL-2-Amino-5-

phosphonovaleric acid (AP-5) and 1 mM EDTA. After 10 min incubation at room temperature, 

the fractionation was continued by adding 0.5% Triton X-100 and stirring for 15 min at 4 °C. 

Then, samples were spun down at 165,000g for 2h at 4°C to obtain the Triton insoluble pellet 

(PSD fraction). This pellet was resuspended in 5% SDS and analyzed by 7% PAGE-SDS and 

western blot. 
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Electrophysiology methods

Solutions: The recording chamber was perfused with ACSF: 119 mM NaCl, 2.5 mM KCl, 4 mM 

CaCl2, 4 mM MgCl2, 26 mM NaHCO3, 1 mM NaH2PO4, 11 mM glucose, 0.1 mM picrotoxin, 

and 4 �M 2-chloroadenosine (pH 7.4), gassed with 5% CO2 / 95% O2. Patch recording pipettes 

(3-6 M�) were filled with 115 mM cesium methanesulfonate, 20 mM CsCl, 10 mM HEPES, 2.5 

mM MgCl2, 4 mM Na2ATP, 0.4 mM Na3GTP, 10 mM sodium phosphocreatine, 0.6 mM EGTA 

(pH 7.25). In experiments with intracellular perfusion of peptide pep2m/G10 (Tocris; 0.5 mM 

final concentration), the patch recording pipette solution was supplemented with protease 

inhibitors leupeptin and pepstatin (100 mM each). 

Synaptic plasticity methods: NMDAR-dependent LTD was induced by pairing low-frequency 

presynaptic stimulation (500 pulses at 1 Hz) with moderate postsynaptic depolarization (�40 

mV). LTP was induced by pairing 3 Hz presynaptic stimulation (300 pulses) with postsynaptic 

depolarization at 0 mV. In LTD and LTP experiments, one pathway did not receive stimulation 

during depolarization, and therefore was used as a control pathway. mGluR-dependent LTD was 

induced by bath application of 50 �M (RS)-3,5-dihydroxyphenylglycine (DHPG) for 5 min. Cells 

were held under current clamp without synaptic stimulation during DHPG application and 5 

minutes afterwards (Huber et al., J Neurophysiol, 86, 321-325, 2001). These recordings were 

carried out in the presence of 100 �M (2R)-amino-5-phosphonovaleric acid (APV), to prevent 

any contribution to synaptic plasticity from NMDARs. When blocking PTEN activity, slices were 

incubated with 15 nM bpV(HO)pic for 15-20 hours before LTD or LTP induction. bpV(HO)pic 

was also present during the recordings. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1. Specificity of the NMDA receptor-dependent association between 

PTEN and PSD-95. A. Total protein extracts from hippocampal slices were immunoprecipitated 

with anti-PSD95 antibody. Some slices were treated with 20 �M NMDA for 5 min before the 

immunoprecipitation and transferred to regular ACSF for 15, 25 or 60 min (+15’, +25’ or +60’, 

as indicated). For the two right-most lanes, slices were preincubated with the NMDA receptor 

antagonist AP5 (100 �M) before and during the NMDA treatment (+AP5). Input lanes (left) 

contain 10% of the input from the baseline condition (without NMDA treatment). 

Coimmunoprecipitations were analyzed by western blot using PTEN and GluN1 antibodies, as 

indicated. B. Similar to A, with slices pretreated for 5 min with 20 �M NMDA, and transferred 

to regular ACSF for 15 min (+15’) or 25 min (+25’) after the NMDA treatment. Differences in 

protein migration between panels A and B can be explained by the different types of gels used 

(4–12% gradient Bis-Tris gels from Invitrogen –A–, versus custom-made gradient 

polyacrylamide gels –B–). Appropriate protein markers were used to estimate the molecular 

weight in each case. Star (*) indicates the position of the IgG used for immunoprecipitation in 

both experiments. 

Supplementary Figure 2. Expression of recombinant PTEN variants and effect on the PI3K 

pathway. A. Western blot analysis of the phosphorylation of Akt at Ser473 from hippocampal 

slices expressing GFP, wild-type GFP-PTEN or the catalytically dead mutant GFP-PTEN-

C124S. B. Quantification of Akt phosphorylation from three experiments as the one shown in A. 

Akt phosphorylation relative to total Akt levels was normalized to the values obtained from 
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GFP-expressing slices. C. Western blot analysis of the expression of recombinant GFP-PTEN, 

the point mutants C124S and G129E, the truncated mutant �PDZ and the double mutant C124S-

�PDZ. Recombinant (GFP-fused) and endogenous PTEN were detected with an anti-PTEN 

antibody. 

Supplementary Figure 3. FRAP fluorescence recovery rates and PTEN distribution 

between spines and dendrites are not altered by NMDA receptor activation. A. Fluorescence 

recovery time constants were estimated by exponential fits to the time courses shown in Fig. 2C-

E. Values are plotted for untreated slices (0 min) or at different times after the 5 min NMDA 

treatment (black bar). Average values � s.e.m. are plotted for GFP-PTEN (black symbols), GFP-

PTEN-�PDZ (grey symbols) and GFP (white symbols). There was no significant change in 

FRAP time constant before and after NMDA treatment. B. Net GFP signal from GFP-PTEN 

(black symbols), GFP-PTEN-�PDZ (grey symbols) and GFP (white symbols) was quantified at 

spines and the adjacent dendritic shafts at different times, as described in A. The partition of 

these proteins between spines and dendrites (spine/dendrite ratio) was not significantly altered 

along the course of the experiment. 

 

Supplementary Figure 4. Effects of recombinant PTEN expression on passive membrane 

properties of CA1 hippocampal neurons. A-C. The expression of GFP-PTEN, the point 

mutant C124S, the truncated mutant �PDZ and the double mutant C124S-�PDZ in CA1 

hippocampal neurons did not alter input resistance (A), holding current (B) or whole-cell 

capacitance (C) when compared with uninfected control neurons. “n” represents number of cells. 
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Supplementary Figure 5. Overexpression of wild-type or dominant negative (C124S) PTEN 

does not alter GluA1 or GluA2 phosphorylation. A. Western blot analysis of GluA1, GluA2 

and their phosphorylated forms (p-S880 for GluA2, p-S831 and p-S845 for GluA1) from 

hippocampal slices expressing GFP, GFP-PTEN or GFP-PTEN-C124S. B. Quantification of 

total and phosphorylated GluA1 and GluA2 from three experiments as the one shown in A. 

Values are normalized to GFP-infected slices (dashed line).

Supplementary Figure 6. Characterization of bpV(HO)pic as a specific PTEN inhibitor. A. 

Hippocampal slices expressing GFP-PTEN or uninfected were treated with different 

concentrations of bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate (bpV(HO)pic) (Schmid 

et al., FEBS Lett. 566, 35-38, 2004), as indicated. After 16 hours, total protein extracts were 

prepared and analyzed by western blot with antibodies for phospho-Akt (Ser473), total Akt and 

phospho-tyrosine. Note the decrease in phospho-Akt in GFP-PTEN-expressing neurons, which is 

recovered with low (15 nM) concentrations of bpV(HO)pic. Phospho-tyrosine signal is only 

apparent at much higher (500 nM) concentrations. B. Quantification of phospho-Akt and 

phospho-tyrosine signal from three experiments as the one shown in A. The decrease in P-Akt 

signal in GFP-PTEN overexpressing slices is indicated with a star (*). P-Akt signal is recovered 

with 15 nM bpV(HO)pic, without affecting phospho-Tyr signal, indicating that low nanomolar 

concentrations of this compound selectively inhibit PTEN over phospho-Tyr phosphatases. 

These results essentially replicate previously published ones (Schmid et al., FEBS Lett. 566, 35-

38, 2004). 
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Supplementary Figure 7. PTEN activity during LTD induction is necessary for LTD 

expression. LTD was induced in CA1 hippocampal neurons by pairing presynaptic stimulation 

(1 Hz, 500 pulses) with moderate postsynaptic depolarization (-40 mV) (black bar below graph). 

On some slices, the PTEN inhibitor bpV(HO)pic was applied 5 min before LTD induction and 

was washed out 5 min after the induction (black bar above graph). Treated slices are represented 

with white symbols, and untreated controls with black symbols. Amplitude of the synaptic 

response is normalized to a 5 min baseline. “n” represents number of cells. Statistical 

significance was calculated according to the Mann-Whitney test. 

 

Supplementary Figure 8. PTEN overexpression does not affect LTD. A. LTD was induced in 

CA1 hippocampal neurons overexpressing wild-type PTEN (black symbols) or control, 

uninfected neurons (white symbols). Amplitude of the synaptic responses is normalized to a 10 

min baseline. Insets: sample traces averaged from the baseline (thin lines) or from the last 10 min 

of the recording (thick lines). B. Average of AMPAR-mediated responses collected from the last 

10 min of the recording and normalized to the baseline. Left columns (Paired, LTD) correspond 

to the stimulation pathway in which postsynaptic depolarization (-40 mV) was paired to low-

frequency stimulation (1 Hz). Right columns (Control, unpaired) correspond to the pathway that 

was not stimulated during depolarization. “n” represents number of cells.
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