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I. INTRODUCTIONPairing 
orrelations of nu
leons of the same 
harge have been extensively studied in vari-ous physi
al 
ontexts [1{6℄. Many properties of atomi
 nu
lei like gap parameters, momentsof inertia in deformed nu
lei, spe
tros
opi
 fa
tors are ni
ely explained by 
onsidering thepairing intera
tion among alike nu
leons. The standard way to treat the pairing 
orrelationsin nu
lei is the BCS approa
h. In su
h a formalism symmetries like gauge and isospin invari-an
e are broken. Sin
e there are physi
al observables whi
h are sensitive to the departurefrom these symmetries, several groups worked on restoring these symmetries [7{10℄.Though not so extensively, the proton-neutron Cooper pairs have been also investigated[11{26℄. In
luding the proton neutron pairing, various phenomena like stability of the groundstate against the parti
le parti
le proton-neutron intera
tion, the stru
ture of nu
lei lying
lose to the proton drip line, the stru
ture of the N = Z nu
lei and the stru
ture of super-dense nu
lear matter might be realisti
ally approa
hed. The proton-neutron pairing has thepe
uliarity, 
omparing it to the proton-proton and neutron-neutron pairing, that besidesthe T = 1 pairs there might exist also T = 0 pairing and the 
orresponding pairs may playan important role in some phenomena like the stru
ture of the N = Z nu
lei [16,20℄ or theGamow Teller beta transitions [21,22℄. The 
ompetition of the T = 1 and T = 0 pairinghas been 
onsidered by several authors [17,20,23,24℄ parti
ularly in the 
ontext of high spinstates.The BCS formalism for alike nu
leons has the salient feature that the ground state isdes
ribed by a 
oherent state for the SU(2) group asso
iated to the quasi-spin algebra. Thisprovides not only some beauty to the mathemati
al framework but also a great te
hni
alsimpli�
ations. In a time dependent variational treatment, it is relatively easy to �nd out aset of 
anoni
ally 
onjugate 
oordinates in the 
lassi
al phase spa
e [27℄. Su
h a property islost when besides this pairing intera
tion the proton-neutron pairing is swit
hed on. Guidedby previous experien
e, the ansatz for the variational state des
ribing the ground stateof a system with pp, pn and pn pairing is 
hosen to be a va
uum for the quasiparti
le2



operators de�ned by a generalized Bogoliubov-Valatin (BV) transformation appropriate forthe parti
ular problem under 
onsideration.The aim of the present paper is to study a many body Hamiltonian, 
ommonly usedto study the beta transitions of Fermi type [26,28,29℄, whi
h involves the proton-neutronmonopole parti
le-hole and parti
le-parti
le two body intera
tion. In the remaining of thetext we refer to these intera
tions as to the ph and pp intera
tions, respe
tively. Sin
ethe pp intera
tion used in the model Hamiltonian is the T = 1 proton-neutron pairing, itis worthwhile to treat it on an equal footing with the proton-proton and neutron-neutronpairing. This allows to investigate the point whether one may 
ure the long standing problemof the ground state instability rea
hed at a 
ertain 
riti
al value of the pp intera
tion strength.We state from the beginning that there is no attempt here to dis
uss generalized BVtransformations that are relevant for the study of other problems like deformed nu
lei andhigh spin states. Indeed, many a
hievements on this line have been reported, in the liter-ature. Our work here is motivated by a well known problem found in the des
ription ofthe nu
lei undergoing a double beta de
ay. Sin
e 1983, when Cha [30℄ noti
ed that the�+ transition rates are very sensitive to the strength of the pp intera
tion, all studies ofdouble beta de
ay based on pnQRPA formalism, or related formalisms, where in
ludingthe pp intera
tion, although in the standard RPA 
al
ulations su
h terms of the two bodyintera
tion are ignored. Su
h studies show that as a fun
tion of the pp intera
tion strength,the transition amplitude has a plateau and then de
reases very fast to zero (see for instan
e[31℄). In this interval of fast de
rease, the transition amplitude rea
hes values 
ompatiblewith experimental data, soon the amplitude vanishes and immediately after the pnQRPAbreaks down. A lot of work has been devoted to 
ure the instability of the ground statearound the 
riti
al value of the strength of the pp intera
tion. Here we propose a solution to
ure this ill-behavior of the QRPA ground state. Our point here is that the proton-neutronintera
tion is 
ontributing �rst to the mean �eld and therefore it is taken into a

ount inthe minimization pro
edure used to �nd the stati
 ground state. Furthermore the residualintera
tion is treated by the usual QRPA pro
edure.3



The ground state is the stati
 solution of a time dependent variational prin
iple (TDVP)set of equations and in
ludes 
orrelations due to both the proton-proton, neutron-neutronpairing and the proton-neutron ph and pp intera
tion. The variational state is taken as aprodu
t of three 
oherent states des
ribing the proton-proton, neutron-neutron and proton-neutron T=1 pairing. We determine not only the ground state properties by solving thegeneralized pairing equations but also the small os
illations around the stati
 ground state.This proje
t is a
hieved in several steps a

ording to the following plan. In Se
tion 2we de�ne our model Hamiltonian, formulate the time dependent formalism and derive the
lassi
al equations of motion. The stati
 solution is dis
ussed in Se
tion 3. The equationsof motion are linearized around the point where the energy is minimum and RPA likeequations are derived in Se
tion 4. Besides the energy there are another two 
onstants ofmotion, therefore there are two spurious states of vanishing solutions whi
h are 
ompletelyde
oupled from the physi
al solutions. This property is also dis
ussed in Se
tion 4. Some�nal 
on
lusions are analyti
ally obtained for the 
ase of a single j in Se
tion 5. Numeri
alappli
ation refers to a single j and is analyzed in Se
tion 6. The �nal 
on
lusions are drawnin Se
tion 7.II. THE MODEL HAMILTONIAN AND THE CLASSICAL EQUATIONS OFMOTIONIn the present paper we shall deal with a heterogeneous system of nu
leons whi
h movein a spheri
al shell model mean �eld and intera
t among themselves in the following man-ner. Nu
leons of similar 
harge intera
t through monopole pairing for
es while protons andneutrons intera
t by a monopole parti
le-hole and a monopole parti
le-parti
le two bodyterm. The many body Hamiltonian des
ribing su
h a system reads:H = X�;j;m(�� � �� )
y�jm
�jm � Gp4 Xj;m;j0;m0 
ypjm
ygpjm
gpj0m0
pj0m0 � Gn4 Xj;m;j0;m0 
ynjm
ygnjm
 gnj0m0
nj0m0+ 2�(
ypj
nj)0(
ynj0
pj0)0 � 2�1(
ypj
ynj)0(
nj0
pj0)0: (2.1)4




y�jm(
�jm) denotes the 
reation (annihilation) operator of one parti
le of �(= p; n) type inthe spheri
al shell model state j� ;nljmi � j�jmi. The time reversed state 
orrespondingto j� ;nljmi is denoted by j g� ; jmi = (�)j�mj� ; j �mi. This Hamiltonian is very often usedin the literature to des
ribe single and double beta Fermi transitions within a pnQRPAformalism [26,28,29℄.The model Hamiltonian will be treated within a time dependent variational formalism.Thus we are looking for the solutions of the following variational equation [27,32,33℄:Æ Z t0 h	jH � i ��t0 j	idt0 = 0: (2.2)If the state j	i spans the whole Hilbert spa
e for the many nu
leons system, solving theequation (2.2) is equivalent to solving the time dependent S
hroedinger equation. Thatwould mean that we repla
ed one very diÆ
ult problem with one with similar degree ofdiÆ
ulty. Sin
e we are interested to study not only the properties of the stati
 ground statebut also the small os
illations around it we 
hoose a variational state of the following form:j	i = 	(zp; z�p; zn; z�n; zpn; z�pn) = eTpneTpeTn j0i: (2.3)where the transformations spe
i�ed by the operators T are given by:Tpn =Xjm (zpnj
ypjm
ygnjm � z�pnj
gnjm
pjm); (2.4)Tp =Xjm (zpj
ypjm
ygpjm � z�pj
gpjm
pjm); (2.5)Tn =Xjm (znj
ynjm
ygnjm � z�nj
gnjm
njm): (2.6)and j0i stands for the parti
le va
uum state. These transformations depend on the parame-ters z whi
h are 
omplex fun
tions of time. The 
orresponding 
omplex 
onjugate fun
tionsare denoted by z�. The parameters (z; z�) play the role of 
lassi
al 
oordinates and 
onjugatemomenta, respe
tively. We re
ognize immediately the Bogoliubov-Valatin transformationsfor proton-proton, neutron-neutron and proton-neutron pairing intera
tions, respe
tively:bypjm � eTp
ypjme�Tp = Upj
ypjm � Vpj
gpjm; (2.7)bynjm � eTn
ynjme�Tn = Unj
ynjm � Vnj
gnjm; (2.8)5



aypjm � eTpn
ypjme�Tpn = Uj
ypjm � Vj
gnjm; (2.9a)aynjm � eTpn
ynjme�Tpn = Uj
ynjm � Vj
gpjm (2.9b)The 
oeÆ
ients U; V entering the above equations are related with the parameters z, de�ningthe variational state j	i, by the equations:zpj = �pjei'pj ; Upj = 
os 2�pj; Vpj = e�i'pj sin 2�pj;znj = �njei'nj ; Unj = 
os 2�nj; Vnj = e�i'nj sin 2�nj;zpnj = �pnjei'pnj ; Uj = 
os �pnj; Vj = e�i'pnj sin �pnj: (2.10)It is worthwhile to remark on a very important feature of the state 	. Using the Cambel-Hausdorf fa
torization [35℄ for the �rst two exponential operators and then bringing theoperator exp(Tpn) near the parti
le va
uum state one obtains:j	i = NpNneTpnePjm Apj
ypjm
yfpjmePjm Anj
ynjm
ygnjm j0i= NpNnePjm ApjaypjmayfpjmePjm AnjaynjmaygnjmeTpn j0i = eT 0peT 0njBCSipn: (2.11)with the notations: N� =Yj (U�j)
j ; A�j = V�j�U�j ; � = p; n: (2.12)The notation jBCSipn stands for the va
uum state of the quasiparti
le operators a�jm de�nedby eqs. (2.9), i.e. the BCS state for the proton-neutron pairing intera
tion alone. Theoperators T 0p; T 0n are obtained from the 
orresponding operators Tp; Tn de�ned by eqs. (2.5,2.6) by repla
ing the parti
le operators 
y; 
 with the 
orresponding quasiparti
le operatorsay; a. This new form of the trial fun
tion shows that it is more general than the variationalstate used in ref. [26℄. The expression (2.11) shows that our variational state 
an be writtenas a produ
t of two BCS-like operators of quasiparti
les a
ting on a standard proton-neutronBCS state. From this fun
tion one 
an immediately obtain an equivalent form:6



j	i = Yj;mi0 �f0 + fp
ypjm
ygpjm + fn
ynjm
ygnjm + fpn(
ypjm
ygnjm + 
ynjm
ygpjm)� j0i; (2.13)where the amplitudes f have simple expressions in terms of the U and V 
oeÆ
ients de�nedabove. Equation (2.13) has the form of the general BCS wave fun
tion for T = 1 (J = 0)pairing. Denoting by Û the unitary transformation (2.3) and by � the images of the fermionoperators through Û 0BBBBBBBB��y1jm�y2jm�g1jm�g2jm
1CCCCCCCCA = Û 0BBBBBBBB� 
ypjm
ynjm
gpjm
gnjm

1CCCCCCCCA Û y; (2.14)
and taking into a

ount the BV equations (2.7-9) we obtain the total quasiparti
le transfor-mation: 0BBBBBBBB��y1jm�y2jm�g1jm�g2jm

1CCCCCCCCA = 0BBBBBBBB� UpjUj �VpjV �j �VpjUj �UpjVj�VnjV �j UnjUj �UnjVj �VnjUjV �pjUj UpjV �j UpjUj �V �pjVjUnjV �j V �njUj �V �njVj UnjUj
1CCCCCCCCA
0BBBBBBBB� 
ypjm
ynjm
gpjm
gnjm

1CCCCCCCCA : (2.15)This is our BV matrix for generalized monopole pairing. It 
an be written as a produ
t ofthree matri
es des
ribing one BV transformation and two Hartree Fo
k transformations inthe isospin spa
e [25℄. The transformation 
oeÆ
ients are de�ned as fun
tions of the U andV 
oeÆ
ients given by the equations (2.10). Thus, although the fa
torised form involvesthree distin
t BV transformations, this 
an be written in an alternative form whi
h agreeswith the Blo
h-Messiah theorem [25℄. The transformation (2.14) does not mix states ofdi�erent angular momentum sin
e our model Hamiltonian involves only monopole pairingintera
tions.In order to write the equations of motion provided by the variational prin
iple (2.2),one needs to know the expression for the expe
tation values of the model Hamiltonianand the 
lassi
al a
tion. By a dire
t 
al
ulation one �nds for the expe
tation value ofH the expression given in the Appendix A. In the present paper we shall negle
t the re-7



normalization of the single parti
le energies due to the two body terms, in the spirit of thestandard BCS approa
h. Therefore the 
lassi
al energy will be taken as:H =Xj (�pj � �p)(2j + 1)V 2e�;pj +Xj (�nj � �n)(2j + 1)V 2e�;nj�j�pj2Gp � j�nj2Gn + 2j��j2� � 2j�pnj2�1 ; (2.16)where the following notations have been used:V 2e� ;pj = (U2j jVpjj2 + jVjj2U2nj);V 2e�;nj = (U2j jVnjj2 + jVjj2U2pj);�p � Gp2 h	jXj;m 
ypjm
ygpjmj	i = Gp2 Xj (U2j UpjVpj � V 2j UnjVnj�);�n � Gn2 h	jXj;m 
ynjm
ygnjmj	i = Gn2 Xj (U2j UnjVnj � V 2j UpjVpj�);�� � �h	jXj (
ypj
nj)0j	i = �Xj ĵ(UjV �j UpjVpj + UjVjUnjVnj�);�+ � (��)� = �h	jXj (
ynj
pj)0j	i;�pn � �1h	jXj (
ypj
ynj)0j	i = �1Xj ĵUjVj(U2pj � jVnjj2); ĵ = q2j + 1: (2.17)The Fermi level energies �p and �n are determined so that the average number of protonsand neutrons are equal to Z and N , respe
tively:Z =Xj (2j + 1)V 2e� ;pj;N =Xj (2j + 1)V 2e�;nj: (2.18)The 
lassi
al a
tion has the expression:h	j � i ��t j	i =Xj 
j[V 2pj �'pj +V 2nj �'nj +2V 2j (1� V 2pj � V 2nj) �'pnj℄; (2.19)where � stands for the time derivative.Having in mind the aim of quantizing the 
lassi
al traje
tories it is useful to have theequations of motion in the 
anoni
al Hamilton form. To this aim we 
hange the 
lassi
algeneralized 
oordinates by the following transformation:8



r0j = 
j(2 sin2 �pnj � 1)(1� sin2 2�pj � sin2 2�nj); '0j = 'pnj; 
j = 2j + 12 ;r�j = 12
j(sin2 2�pj � sin2 2�nj); '�j = 'pj � 'nj;r+j = 12
j(sin2 2�pj + sin2 2�nj); '+j = 'pj + 'nj � 2'pnj; (2.20)In terms of the new 
oordinates, the equations of motion provided by the variational prin
iple(2.2) have the 
anoni
al form:�H�r0j = � �'0j; �H�'0j =�r0j;�H�r�j = � �'�j; �H�'�j =�r�j;�H�r+j = � �'+j; �H�'+j =�r+j : (2.21)These equations suggest that the variables r0j; r�j; r+j play the role of 
lassi
al 
oordinateswhile '0j; '�j; '+j are their 
orresponding 
onjugate momenta. Two of the 
hosen 
oordi-nates have a ni
e physi
al meaning. Indeed, denoting by N̂�j the � -parti
le number operatorfor the shell j: N̂�j =Xm 
y�jm
�jm; (2.22)one easily 
he
ks that the following equations hold:r0j = h	j � 
j + N̂pj + N̂nj2 j	i � h	jM̂zjj	i;2r�j = h	jN̂pj � N̂nj2 j	i � h	jT̂zjj	i: (2.23)These equations indi
ate that r0j; 2r�j are 
lassi
al variables asso
iated to the z-
omponentsof the pn quasi-spin ( M̂zj ) and isospin ( T̂zj ) , for ea
h shell j, respe
tively. In terms ofthe new 
oordinates the e�e
tive o

upation probabilities are:V 2e� ;pj = 12 + 2r�j + r0j2
j ;V 2e� ;nj = 12 + �2r�j + r0j2
j : (2.24)The equations of motion are written expli
itly in Appendix B. From the results presentedthere one �nds: 9



Xj �r0j = 0;Xj �r�j = 0: (2.25)whi
h results in having two 
onstants of motion:Mz =Xj h	jM̂zjj	i;Tz =Xj h	jT̂zjj	i: (2.26)This is a remarkable result. Indeed, although the trial fun
tion breaks gauge and isospinsymmetries, the 
lassi
al traje
tories 
onserve these symmetries. This is a reminis
en
e ofthe fa
t that the quantum me
hani
al operator H 
ommutes with Pj M̂zj and Pj T̂zj. Aswe shall see later on, the ni
e 
onsequen
e of this property is that the spurious solutions ofthe RPA equations are fully separated from the physi
al ones. Of 
ourse there exists a third
onstant of motion whi
h is the 
lassi
al energy. Indeed, using the equations of motion, oneeasily 
he
ks that �H= 0: (2.27)This feature is spe
i�
 to any system governed by equations of motion derived from avariational prin
iple. Therefore the 
lassi
al traje
tories are lying on the surfa
eH = 
onst; (2.28)whi
h is 
onventionally 
alled the energy surfa
e. Note that the minima of this surfa
e
orrespond to the potential energy of the system, sin
e there the system has vanishingkineti
 energy. III. THE STATIC GROUND STATEThe equations of motion (2.18) are highly non-linear and therefore 
an not be solvedanalyti
ally. However a good deal of information about the lo
al behavior of the solution10



of the non-linear equations 
an be drawn from the analysis of the solution of the linearizedequations. Su
h a solution des
ribes small os
illations around a stati
 ground state. There-fore we have �rst to sear
h for the stationary points, where the time derivatives of thegeneralized 
oordinates vanish. The equations (2.18) show that they are also stationarypoints for the energy surfa
e. We 
onsider the 
lassi
al system at rest whi
h implies that'0j = '�j = '+j = 0. Consequently �p;�n;�pn; �� are real quantities and the equations
orresponding to the time derivatives of the 
oordinates, are automati
ally obeyed. For agiven j-shell, the remaining equations are:�pj � �p + �nj � �n � UpjVpj + UnjVnjV 2pj � U2nj (�p +�n)� 2̂j U2j � V 2jUjVj UpjVpj + UnjVnjV 2pj � U2nj �� � 2̂j U2j � V 2jUjVj �pn = 0; (3.1a)�pj � �p � (�nj � �n)� U2pj � V 2pj2UpjVpj  U2j�p � V 2j �n � 4̂j UjVj��!�U2nj � V 2nj2UnjVnj  V 2j �p � U2j�n + 4̂j UjVj��! = 0; (3.1b)U2pj � V 2pj2UpjVpj  U2j�p � V 2j �n � 4̂j UjVj��!� U2nj � V 2nj2UnjVnj  V 2j �p � U2j�n + 4̂j UjVj��!+V 2j � U2jUjVj UpjVpj + UnjVnjV 2pj � U2nj "(�p +�n)UjVj + 2̂j (U2j � V 2j )��#� 2̂j 1UjVj�pn = 0: (3.1
)From (3.1) one 
an easily express the quantities U2; V 2 in terms of �p;�n;�pn; �p; �n; �� :0BB� V 2pjU2pj 1CCA = 12 0�1� SpjU2j (�pj � �p)� V 2j (�nj � �n) + 4̂jUjVj�pnjq[U2j (�pj � �p)� V 2j (�nj � �n) + 4̂jUjVj�pn℄2 + (U2j�p � V 2j �n � 4̂jUjVj��)21A ;(3.2)0BB� V 2njU2nj 1CCA = 12 0�1� SnjU2j (�nj � �n)� V 2j (�pj � �p) + 4̂jUjVj�pnjq[U2j (�nj � �n)� V 2j (�pj � �p) + 4̂jUjVj�pn℄2 + (U2j�n � V 2j �p � 4̂jUjVj��)21A ;(3.3)11



0BB� V 2jU2j 1CCA = 12 0BB�1� Sj�pj � �p + �nj � �n � UpVp+UnVnV 2p �U2n (�p +�n)jr[�pj � �p + �nj � �n � UpVp+UnVnV 2p �U2n (�p +�n)℄2 + 162j+1(�pn + UpVp+UnVnV 2p �U2n ��)21CCA :(3.4)The fa
tors Sp; Sn; S are phases determined in the following way. The three equations from(3.1) 
an be written in the alternative form:AjCj = U2j � V 2j2UjVj ;A�jC�j = U2�j � V 2�j2U�jV�j ; � = p; n: (3.5)with obvious notations for the terms from the left hand sides. The phases entering theequations de�ning the U and V 
oeÆ
ients are given by :S = sign AjCj ! ; S� = sign A�jC�j ! ; � = p; n: (3.6)Note that the equations de�ning U and V 
oeÆ
ients are 
oupled with ea
h other. Howeverin the single j 
ase, equation (3.4) is very mu
h simpli�ed due to the following equality :UpVp + UnVnV 2p � U2n = ��1����pn : (3.7)In this way the 
oeÆ
ients U; V depend ex
lusively on gaps, Fermi energies and ��. Insertingtheir expression into the eqs (3.2) and (3.3) one �nds that the above statement is also truefor Vpj; Upj; Vnj; Unj.The three square root quantities involved in the equations de�ning the U and V 
oeÆ-
ients de�ne three quasiparti
le energies. None of them is of pure neutron or pure protontype. For ea
h of them both the proton and neutron from the given shell parti
ipate. Whilein two of these energies the single parti
le energies enter through the di�eren
e of the weight-ed single parti
le proton and neutron energies in the remaining 
ase the sum of the protonand neutron energies appears. The �rst two 
ases di�er from the standard quasiparti
lesappearing in homogeneous systems where the single parti
le energies are normalized by the12



two body intera
tion only by additive terms. Indeed, here also a 
ontra
tion, due to themultipli
ative U2j and V 2j fa
tors, appears.Denoting by Ns the number of the single parti
le levels taken into 
onsideration, andassuming the same single parti
le spa
e for protons and neutrons, there are 3Ns+2 equationsfor 3Ns + 2 unknowns (Vpj; Vnj; Vj; �p; �n): 3Ns stati
 equations (3.1) and two 
onstraintsproviding equations for the number of protons and the number of neutrons. The solutionsof these equations are known on
e we solve the six equations de�ning the gaps, ��, thenumber of protons and the number of neutrons. Indeed these equations, after repla
ingthe U and V 
oeÆ
ients with their expressions in terms of gaps, �� and �p; �n, be
ome6 nonlinear equations for the unknowns: �p;�n;�pn; ��; �p; �n. Solving these equationsand 
al
ulating the 
oeÆ
ients for the BV transformation one obtains the values for the
anoni
al 
oordinates. It is worth mentioning that the stationary equations are ne
essarybut not suÆ
ient 
onditions for minima of H. A rigorous test for minima stems from theproperties of the RPA equations. Indeed, if the stationary point, found in the way des
ribedabove, is a minimum then all solutions of the equations linearized around that point arereal. We address this problem in the next Se
tion.IV. THE RPA EQUATIONSLet us denote by (q; p) the deviations of the 
urrent variables from their stationary values,denoted by Ær0j; Æ'0j; Ær�j; Æ'�j; Ær+j; Æ'+j; respe
tively:q1j = r0j� Ær0j; p1j = '0j� Æ'0j;q2j = r�j� Ær�j; p2j = '�j� Æ'�j;q3j = r+j� Ær+j; p3j = '+j� Æ'+j : (4.1)Expanding the right hand side of equations (2.18) around the minimum point and keepingonly the linear terms in deviations one obtains:�pkj=Xk0j0 Akj;k0j0qk0j0;13



�qkj=Xk0j0 Bkj;k0j0pk0j0: (4.2)To save spa
e we don't give the expli
it expressions for the matri
es Akj;k0j0 and Bkj;k0j0.For the spe
ial 
ase of a single level we give in Appendix C only two 
oeÆ
ients, A33and B33, whi
h are needed to 
al
ulate the frequen
y of the harmoni
 mode. Note thatthe 
oeÆ
ients of the expansion in eqs. (4.2) are just the se
ond order derivatives of the
lassi
al Hamiltonian taken in the 
onsidered stationary point. Therefore, to the linear termsin the equations of motion 
orrespond the quadrati
 terms of the 
lassi
al energy expansion.Note that in the �rst equation (4.2) linear terms in p do not appear while in the se
ondequation the linear terms in q are missing. Their presen
e would violate the time reversalinvarian
e of H. The 
ondition for the existen
e of the minimum value for H is that theasso
iated Hessian be positive, whi
h results in having a positive de�nite quadrati
 form forH. As a matter of fa
t this assures that frequen
ies for the 
lassi
al traje
tories are all realnumbers. It is worth mentioning that the linearized equations of motion 
an be written inthe Hamilton 
anoni
al form (2.18) with H expanded up to the se
ond order. Therefore the
anoni
al form is not altered by the linearization pro
ess. Moreover the equations admit as
onstants of motion: Mz =Xj q1j;Tz =Xj q2j: (4.3)This is implied by the following property of the matrix Bkj;k0j0:Xj Bkj;k0j0 = 0; k = 1; 2; k0 = 1; 2; 3: (4.4)A. Equations of motion in the RPA formIn what follows we write the equations of motion in a standard RPA form. To this aimwe look for the transformation to a new set of generalized 
oordinates:14



0BB� QiPi 1CCA = 0BB�Xi YiZi Wi 1CCA0BB� qp 1CCA: (4.5)
hosen so that the following equations are ful�lled:�Qi= !Pi; �P i= �!iQi: (4.6)The index "i" labels the solutions of the equations written above, if they exist. The equa-tions (4.5) and (4.6) provide four sets of equations relating the matrix elements X; Y;W;Z.Only two of them are independent, the other two being obtained from the �rst ones byrepla
ements: Zi = �Xi; Wi = Yi: (4.7)The independent equations read:BTX = !Y; ATY = �!X: (4.8)It is easy to 
he
k that the new 
anoni
al 
oordinates satisfy the equations:fQk;Hg = �Qk; fPk;Hg = �P k; (4.9)where f; g denotes the Poisson bra
ket de�ned in the standard way. To any two fun
tions fand g, de�ned in the 
lassi
al phase spa
e, spanned by the 
onjugate 
oordinates (q; p), oneasso
iates the Poisson bra
ket:ff; gg = �f�qk �g�pk � �f�pk �g�qk : (4.10)The matrix elements X; Y de�ning the transformation (4.5) are related to the "forward"and "ba
kward" phonon amplitudes in the quantum me
hani
al pi
ture. To prove this wequantize [27,34℄ the 
lassi
al motion. This 
an be a
hieved by the following algebra mappingfqkj; pkj; f; gg ! fq̂; p̂; 1i [; ℄g, where the inner multipli
ation operation is the Poisson bra
ketin the 
lassi
al algebra while in the quantal algebra it is the 
ommutator. By this mapping to15



the 
anoni
al 
onjugate variables (qkj; pkj) 
orrespond the 
oordinate and linear momentumoperators obeying the 
ommutation relations:[q̂; p̂℄ = i: (4.11)Similarly one de�nes the operators Q̂; P̂ by quantizing the 
lassi
al 
onjugate 
oordinates,Q;P . To these operators one asso
iates the boson operators,hCk; Cyk0i = Æk;k0;h
kj; 
yk0j0i = Æk;k0Æj;j0: (4.12)by the transformation:q̂kj = 1p2(
ykj + 
kj); p̂kj = 1ip2(�
ykj + 
kj);Q̂k = 1p2(Cyk + Ck); P̂k = 1ip2(�Cyk + Ck): (4.13)Quantizing the equation (4.5) relating the (q; p) 
oordinates to the (Q;P ) ones and thenusing the equations (4.13) one obtains an equation relating the bosons C;Cy and 
; 
y:Cyk = 1 + ip2 X"Xk;lj + Yk;ljp2 
ylj � �Xk;lj + Yk;ljp2 
lj# : (4.14)From this equation one obtains the relation between the forward (fX) and ba
kward ( eY )amplitudes and the amplitudes de�ning the transformation (4.5) in the phase spa
e:fXk;lj = Xk;lj + Yk;ljp2 ; eYk;lj = �Xk;lj + Yk;ljp2 : (4.15)Repla
ing X and Y by their expressions in terms of fX and eY , using the inverse transforma-tion (4.15), the equations (4.8) 
an be written in an alternative form:0BB� �AT�BT2 �AT+BT2AT+BT2 AT�BT2 1CCA0BB� ~X~Y 1CCA = !0BB� ~X~Y 1CCA: (4.16)This equation is nothing else but the RPA equation for the generalized pairing vibrationwith the standard normalization for the amplitudes ~X and ~Y :Xlj ����fXk;lj���2 � ��� eYk;lj���2� = 1: (4.17)16



B. Spurious statesAs we have seen the system admits three 
onstants of motion and two of them re
e
tthe invarian
e of the model Hamiltonian against the rotations around z axis in the spa
esof the pn quasi-spin and isospin, respe
tively. These two symmetries are 
onsequen
es ofthe equation (4.4). This equation determines important features for the solutions of theequations (4.8), i.e, the RPA equations. Indeed, there are two independent solutions ofvanishing energies: X1;1j = A1; 8j; X1;kj = 0; k = 2; 3; 8j;Y1;kj = 0; 8(k; j);X2;2j = A2; 8j; X2;kj = 0; k = 1; 3; 8j;Y2;kj = 0; 8(k; j): (4.18)where A1 and A2 are 
onstants with respe
t to the index j. In both 
ases, fX = eY and theRPA equations be
ome: BT fX = 0 (4.19)Sin
e for the !k = 0; (k = 1; 2) states Y = 0, the equation (4.5) yields:P = �Q: (4.20)and therefore fQ;Pg = 0. On the 
ontrary for physi
al solutions the Poisson bra
ket is anon-vanishing quantity fQk; Pkg = 2Xk0j0 Xk;k0j0Yk;k0j0 = 1; (4.21)whi
h results in having the 
orresponding boson normalized to unity.V. THE SINGLE J CASEIn this 
ase many simpli�
ations appear and several �nite analyti
al results 
an be ob-tained. In what follows we shall omit the index j spe
ifying the single parti
le orbit. Even17



if we are in a simple situation, it is 
onvenient to 
onsider some extreme 
ases whi
h willde�ne some referen
e features with respe
t to whi
h the more general 
ases may be studied.From the parti
le number equations one easily derives very simple equations:V 2p � V 2n = Z �N2
 ;V 2p + V 2n = 11� 2V 2 �Z +N2
 � 2V 2� ; (5.1)whi
h allows one to determine Vp and Vn in terms of V0�V 2pV 2n 1A = 12 �Z �N2
 � 11� 2V 2 (Z +N2
 � 2V 2)� : (5.2)Therefore, in order to solve the stati
 equations one has to use the equation for V 2 and thenthe equations (5.2) whi
h express V 2p and V 2n in terms of V 2, in 
onne
tion with the gaps,�� and parti
le number equations. In this way one obtains a set of 6 equations for the sixunknowns �p;�n;�pn; ��; �p; �n.Let us now 
onsider some parti
ular 
ases:I) � = �1 = 0. This is the standard 
ase, when only the nu
leons of similar 
hargeare paired. From the formulae presented in the previous se
tions by 
onsidering vanishingvalues for � and �1, we obtain de
oupled pairing equations for protons and neutrons.�� = G�
U�V� ;N� � ZÆ�;p +NÆ�;n = 2
V 2� ; � = p; n: (5.3)From here the standard equations for the gap and the Fermi level are analyti
ally obtained:�� = G� �12N�
(1� N�2
)� 12 ;j�� � �� j = G�
�14 � N�2
(1� N�2
)� 12 : (5.4)Note that if the input data are so that Z = N = 
 then�p � �p = �n � �n = 0;�� = 12G�
: (5.5)18



while for empty or �lled shell one automati
ally gets �� = 0:II) We 
onsider now the same strength for the pp and nn pairing intera
tions andnon-vanishing �; �1: Gp = Gn � G;�; �1 6= 0: (5.6)In what follows we shall dis
uss the stati
 equations in terms of two parameters q and Pde�ned as follows: q � Z �N2
 = V 2p � V 2n ;P � 1� Z +N2
 = (1� 2V 2)(1� V 2n � V 2p ): (5.7)These quantities are related to the 
onstants of motion r0 and r� by simple relations:P = �r0
 ;q = 2r�
 : (5.8)From the gap's equations one derives a useful relation between all three gap's.�pn(�p +�n)�� = G�1� 
P: (5.9)Let us 
onsider the 
ase q=0. Con
erning P , the following extreme 
ases are interesting:a) P = 0, whi
h 
orresponds to a half �lled shell,b) P = �1, the shell is 
ompletely �lled,
) P = 1, empty shell and,d) P = 12 , one quarter �lled shell.If q = 0 and �p = �n � ep + �p, then several simpli�
ations in the equations for the Uand V 
oeÆ
ients appear. Sin
e from q = 0 we get V 2p = V 2n and with the 
onvention thatU 's and V 's are positive we get that the signs in the eqs (3.2-3.4) are related by Sp = Sn,the gaps are given by: 19



�n = �p = G
(1� 2V 2)UpVp;�pn = �1p2
(1� 2V 2p )UV;�� = 2 ��1 �p�pn
PG : (5.10)The equation for U 0s and V 0s 
an be written in a very symmetri
 form:U2p � V 2p = Sp jep + 2
�1 �2pnP jr[ep + 2
�1 �2pnP ℄2 + [�p � �p�2pnP 2 �G( 2
�1 )2℄2 ;U2 � V 2 = S jep + 2
G �2pP jr[ep + 2
G �2pP ℄2 + 2
 [�pn � �2p�pnP 2 ��1 ( 2
G)2℄2 (5.11)Denoting the quantities under the square root signs in equations (5.11) by A and B respe
-tively, and multiplying the two equations (5.11) side by side one obtains:P [AB℄ 12 = SpS ����� ep + 2�2pnP
�1! ep + 2�2pP
G!����� (5.12)From the above equation and the de�nition of P ( see eq. (5.7)) one may 
on
lude thatSp = S; for 0 < P < 1 (the shell is less than half �lled);Sp = �S; for � 1 < P < 0 (the shell is more than half �lled): (5.13)The equation P = 0 is ful�lled when either V 2p = 12 and/or V 2 = 12 . From the gap'sequation one obtains �pn = 0 for the �rst 
ase while for the se
ond solution the proton gapis vanishing. For what follows it is 
onvenient to write the equations (5.11) in the equivalentform:24 epP + 2�2pn
�1 !2 +  �pP � 2�pn��
�1 !235 12 = �����(1� 2V 2)ep + 4p2
UV�pn����� ;24 epP + 2�2p
G !2 + 2
  �pnP � 2�p��
G !235 12 = j(1� 2V 2p )ep + 2G
(1� 2V 2)U2pV 2p j: (5.14)For the �rst solution mentioned above, i.e. V 2p = 12 , we noti
e that the above equations aresatis�ed provided V 2 = 12 , whi
h results in having �p = 0. Con
luding for q = 0; P = 0one has the solution V 2 = V 2p = 12 and �p = �pn = 0.20



For the general 
ase of P 6= 0, eqs. (5.11) 
ould be written, after some algebrai
 ma-nipulations, in a suitable form whi
h allows to express analyti
ally the gaps �p and �pn interms of P : epP + 2�1
�2pn = �P 2G
2 ������1�  2�1
!2 �G ��pnP �2������epP + 2G
�2p = �P 2�1 �����1� � 2G
�2 ��1 ��pP �2����� (5.15)When the spa
e of single parti
le states is restri
ted to one level, the RPA equationsare very simple and moreover analyti
ally solvable. Indeed, sin
e we have two 
onstants ofmotion the equations for q3, p3 are de
oupled. Moreover they 
an be easily integrated withthe result of a harmoni
 motion with the frequen
y! = q�A33B33: (5.16)where the involved matrix elements are given in Appendix C.VI. NUMERICAL APPLICATIONFor illustration, the formalism developed in the previous se
tions is applied here for the
ase of a single j = 192 shell of energies �p = �n = 3 MeV. First, we 
onsider a system of 4protons and 12 neutrons. The strengths of the two body intera
tions are as follows:Gp = 0:25MeV; Gn = 0:12MeV; � = 0:2MeV: (6.1)The strength for the pp intera
tion �1 is 
onsidered as a free parameter and varied in theinterval from 0 to 5 MeV. We solve �rst the generalized pairing equations and determine thegaps and the Fermi levels. We note that having r0; r� as 
onstants of motion, the numbersof protons and neutrons are 
onserved along a given 
lassi
al traje
tory. There is no need foradditional 
onstraints for parti
le number 
onservation. However we keep these 
onstraintson the Fermi level energies, in order to �x the values of the two 
onstants of motion. Theresults are 
olle
ted in Figs. 1 and 2. From Fig. 1a one sees that the �� values are almost21



insensitive to �1 and the neutron gap is slightly 
hanging at the variation of �1. The protongap is however in
reasing rapidly with �1. The reason is that in the de
oupling regime(small �1) the o

upation probability for protons is small, whi
h results in a small protongap parameter. This 
auses a relatively larger e�e
t of the perturbation produ
ed by the ppintera
tion. For large values of �1, the proton and neutron gaps are similar. The dependen
eof proton and neutron gaps on �1, as well as the independen
e of ��, are related to the fa
tthat while the proton-proton, neutron-neutron and proton-neutron intera
tion of strength�1, are all of parti
le-parti
le type, �� 
hara
terizes the parti
le-hole intera
tion. The phasespa
e 
oordinates 
orresponding to the solutions of the pairing equations de�ne stationarypoints of the energy surfa
e. The 
orresponding energies are plotted by solid line in Fig. 2.These points are minima points sin
e the RPA equations have a real positive root, as shownin Fig. 1b.It is worth 
ommenting on the behavior of ! as a fun
tion of �1. Indeed it is in
reasingwith �1 in the same way as �pn. This behavior is in 
ontrast to the standard one where theRPA energy de
reases with in
reasing strength of the attra
tive for
e. The reason is thatin the present work the attra
tive for
e modi�es the mean �eld for the quasiparti
le motionand therefore the RPA ground state does not 
ollapse with in
reasing �1.In addition to the �1 dependent BCS solution shown in Fig. 1, there is another one thatis independent of �1 and has the following values�p = 1:0MeV;�n = 0:588MeV; �� = �pn = 0:0 MeV;H = �5:32MeV: (6.2)The energy 
orresponding to this solution is shown in Fig. 2 by dotted line. This solutionis of a di�erent nature. Sin
e for this 
ase one has U = 1; V = 0, r0 and r+ are, upto an additive 
onstant, identi
al. Therefore the state des
ribed by r+ is spurious and
orresponds to ! = 0. In this 
ase the ground state is degenerate. The full and dottedenergy lines 
annot be 
ompared with ea
h other sin
e they 
orrespond to di�erent phases.The Goldstone mode is a bridge between two modes of di�erent nature, or in other words, itseparates two distin
t nu
lear phases. In the present study the phase with all gaps di�erent22



from zero is well de�ned while the se
ond phase is not. The RPA mode asso
iated to thelatter phase is 
ollapsing to a Goldstone mode in the single shell 
ase. In order to rea
hanother stable phase one has to in
lude more shells and to 
hange also the strength of theother two body terms.Next we 
onsider the 
ase N = Z. As we said before, for N=Z the T = 0 pn pairingis expe
ted to be important. Su
h a pairing intera
tion a�e
ts mainly the Gamow-Tellerbeta transitions and not the Fermi ones. Therefore the isos
alar pairing is ignored in thepresent work, due to the spe
i�
 stru
ture of the model Hamiltonian. It is remarkable thateven in the absen
e of the T = 0 pairing, the probability to have a proton paired with aneutron 
omes out to be 
omparable to or larger than the probability for having it pairedwith another proton depending on the �1 value (likewise for neutrons). This 
ase is analyzedusing the following input data:Z = N = 8; Gp = Gn = 0:125MeV; � = 0:20MeV: (6.3)The results are shown in Figs. 3 and 4. Sin
e the strengths of pairing for alike nu
leons areequal and are 
lose to the monopole parti
le-hole strength, the gaps �p = �n and �� arenot very di�erent. The solutions of the stati
 equations are minima points for the 
lassi
alenergy. Indeed, as shown in Fig 3b the RPA equation has positive roots. The minimalenergies are plotted in Fig. 4 by full line. For ea
h value of �1 there are another twosolutions of the stati
 equations. One is 
hara
terized by �� = �p = �n = 0 and �pn 6= 0.The non-vanishing values for �pn and H are shown in Fig. 3b and 4, respe
tively, by dashedlines. The other solution 
onsists of�� = �pn = 0; �p = �n = 0:612 MeV; H = �4:0 MeV: (6.4)and does not depend on �1. The 
onstant energy is presented, for the sake of 
ompletenessin Fig. 4. The RPA modes on these two stati
 solutions are spurious and 
onsequently have! values equal to zero. Indeed, in ea
h of these two 
ases the 
oordinate r+ be
omes equalto one of the 
oordinates whi
h are 
onstants of motion. This will 
ertainly not happen in23



the multilevel situation but they will de�ne distin
t phases, whi
h will persist for a manifoldin the strength parameters spa
e.The advantage of using the single j 
ase is the possibility of testing the semi-
lassi
alapproa
h by 
omparing the predi
tions with the 
orresponding exa
t result. Therefore wediagonalize the model Hamiltonian in the non-orthogonal basis:jn1; n2; n3i = Nn1;n2;n3(Aypp)n1(Aynn)n2(Aypn)n3 j0i; (6.5)where j0i denotes the va
uum andAy�� =Xm 
y�jm
yg�jm; � = p; n;Aypn =Xm 
ypjm
ygnjm: (6.6)The integers n1; n2; n3 are subje
t to the 
onstraints:2n1 + n3 = Z; 2n2 + n3 = N (6.7)As in the numeri
al appli
ation des
ribed before we 
onsider the 
ase (Z;N) = (4; 12) inthe j = 192 shell. The equations (6.7) have three solutions whi
h determine the followingbasis states: j1i � j2; 6; 0i; j2i � j1; 5; 2i; j3i � j0; 4; 4i: (6.8)We note that in our basis states all nu
leons are paired. Moreover these states are 
ompo-nents of the trial fun
tion (see eq. 2.13). In
lusion of some broken pairs is straightforwardbut it is not ne
essary sin
e the states with broken pairs are not linked to the basis states(6.5) by the model Hamiltonian. With some e�orts the matrix elements of the model Hamil-tonian, in the above basis, 
an be derived analyti
ally. Although it is apparently simple wegive, for the sake of 
ompleteness, few details about the diagonalization pro
edure. Basi
allywe aim at solving the eigenvalue equationsHj�i = Ej�i; (6.9)24



with the ansatz: j�i =Xk Ckjki; (6.10)where the non-orthogonal states jki are de�ned by the equation (6.5). Denoting by C the
olumn ve
tor with the 
omponents Ck and by O the overlap matrix, the equation (6.9) 
anbe written as: �HC = EOC; (6.11)with �H standing for the matrix of H in the basis (6.5). Consider now the eigenvalue equationasso
iated to O Ovi = aivi; i = 1; 2; 3; (6.12)and denote the eigenve
tors matrix byW = (v1; v2; v3): (6.13)The overlap matrix is positive de�nite and therefore the following diagonal matrix 
an bede�ned M = 0BBBB�pa1 0 00 pa2 00 0 pa31CCCCA : (6.14)The overlap matrix O may be written in the fa
torised formO = UUT ; (6.15)with U = WM; (6.16)and T standing for the transposition operation. Transforming the ve
tor C intoX = UTC; (6.17)25



equation (6.11) is transformed into an ordinary eigenvalue equation for a symmetri
 matrix:fHX = EX; (6.18)where fH = U�1 �H(U�1)T : (6.19)The results of the exa
t diagonalization are shown and 
ompared to the results of thesemi-
lassi
al approa
h in Figures 5,6,7. In FIG. 5, the energy of the ground state obtainedby diagonalization is 
ompared to the predi
tions of the approa
h used in the present paper.We note that although, as expe
ted, the exa
t ground state energy is lower than the oneobtained with the semi-
lassi
al method, the energy variations with respe
t to �1 followthe same trend. In Fig. 6 we plot the energies of the �rst ex
ited state yielded by thediagonalization pro
edure and by the semi-
lassi
al pro
edure(eq. 5.16) by dashed and solidlines, respe
tively.Usually the model Hamiltonian (2.1) is treated as follows: First it is written in termsof quasiparti
les, using independent BV transformations for protons and neutrons. Then,the resulting Hamiltonian is treated by the QRPA approa
h. As a result three independentmodes are obtained: a proton-proton, a neutron-neutron and a proton-neutron QRPA mode.In Fig. 6 we also plot, for 
omparison, the energies of the proton-proton and proton-neutronmodes as fun
tions of �1 by dash-dotted and dotted lines, respe
tively. The energy of theproton-proton mode is not 
ollapsing sin
e the proton-proton pairing is in
luded in the mean�eld. However this is not the 
ase for the proton-neutron mode that, as already mentioned,de
reases fast and 
ollapses with in
reasing �1. The standard pnQRPA mode, representedby dotted line in Fig. 6, des
ribes os
illations around dotted line ground state in Fig. 2.From the latter �gure it is obvious that starting from �1 � 0:2 the true stati
 ground state
orresponds to the situation where �pn 6= 0.At low �1, the �rst exa
t ex
ited state is higher in energy. For �1 = 0 its energy is 
loseto the 4 quasiparti
le energies 2Ep + 2En with Ep,En standing for the proton and neutron26



quasiparti
le energies respe
tively. This 
an be understood better from Fig. 7. Indeedthe stru
ture of the states given by diagonalization 
an be seen either by looking at the
omponents of the 
orresponding eigenve
tors or 
omparing the diagonal terms of the modelHamiltonian. Thus one notes that for �1 < 1:9, the lowest state is j1i. To ex
ite the systemto the state j2i one has to break one proton-proton pair and one neutron-neutron pair and
reate instead 2 proton-neutron pairs. The ex
itation energy shown in Fig. 6 should be
lose to the energy spa
ing between the lowest two lines shown in Fig. 7. This spa
ing isde
reasing up to �1 � 1:9 and then it is in
reasing. This explains the minimum value of theex
itation energy at about �1 = 1:6, from Fig.6. This re
e
ts indeed a transition from thephase where the dominant ground state 
omponent has only like nu
leons paired to a newphase with a dominant ground state 
omponent having no proton-proton pairs, all protonsparti
ipating in proton-neutron pairs. For the above mentioned value of �1 the three statesare quasi-degenerate and apparently the system might be ex
ited at an almost vanishing
ost. As a matter of fa
t that happens in the standard pnQRPA treatment (see the dottedline in Fig. 6). However in the exa
t 
al
ulation the minimum ex
itation energy 
ausedby the o�-diagonal matrix elements and shown in Fig. 6 is very 
lose to twi
e the proton-neutron gap shown in Fig.1 at �1 � 1:6. This is nothing else but a beautiful 
on�rmationprovided by the exa
t 
al
ulation for the me
hanism whi
h prevents the ground state to
ollapse. It is interesting to see that there are two values for �1 where the predi
tion of thepresent approa
h 
oin
ides with the exa
t result. This is an indi
ation that for these valuesthe 
omponents of alpha-like (two proton-neutron pairs) ex
itations prevail.Of 
ourse there are di�eren
es between the 
urves shown by full and dashed lines in Fig.6
aused mainly by the fa
t that while the exa
t eigenstates have de�nite numbers of protonsand neutrons, in the semi-
lassi
al approa
h these numbers are 
onserved only in average, inthe stati
 ground state. Therefore in the present approa
h the phonon operator 
an 
onne
tthe ground state of a (N,Z) nu
leus with ex
ited states in the neighboring odd-odd as well aseven-even nu
lei. Su
h a transition operator was 
onstru
ted within a di�erent approa
h anddi�erent arguments in ref. [36℄. In order to obtain a detail stru
ture of the phonon operator27



obtained by quantizing the 
lassi
al motion of the independent degrees of freedom additionalinvestigations are ne
essary. They are under progress and will be published elsewhere.The os
illating sign of the deviations of the exa
t ex
itation energy from the value of !(5.16) re
e
ts the fa
t that the semi-
lassi
al approa
h a

ounts for the average propertiesof the many body system. VII. CONCLUSIONSIn the previous Se
tions we developed a semi-
lassi
al formalism to treat a many bodyHamiltonian whi
h is often used in the literature to study the single and double beta Fermitransitions. Usually su
h a Hamiltonian is treated in two steps. First one treats the pairingintera
tion de�ning a BCS ground state where alike nu
leons are paired to vanishing angularmomentum. In the next step the monopole parti
le-hole and parti
le-parti
le proton-neutronintera
tions are treated by the proton neutron quasiparti
le RPA (pnQRPA). In su
h atreatment the ground state is 
ollapsing for a 
riti
al value of the strength of the parti
leparti
le intera
tion(see for instan
e [28,29℄). This feature is troublesome sin
e a) the realisti
value of the strength for the pp intera
tion is 
lose to its 
riti
al value, and b) the value ofthe strength that reprodu
es the experimental value of the double beta transition amplitudeis also 
lose to the value where the pnQRPA breaks down. The pp intera
tion is just theproton-neutron T=1 pairing intera
tion and therefore the instability of the pnQRPA groundstate is an indi
ation that there must exist a new stati
 ground state whi
h in
ludes theproton-neutron 
orrelations. If that ground state exists indeed, the residual pp intera
tiondoes not produ
e any longer instability of the RPA solutions sin
e the dangerous graphs havebeen already introdu
ed in the stati
 ground state. These ideas guided us in performing thepresent work.The model Hamiltonian has been treated within a semi-
lassi
al formalism. The vari-ational state is obtained by applying on the bare va
uum three BV transformations: forproton-proton, neutron-neutron and proton-neutron pairing. We have proved that this s-28



tate may be written as two BV transformations applied on the BCS va
uum for the proton-neutron pairing. For monopole pairing this is a general transformation mixing protons andneutrons. Indeed, it depends on 6 real parameters for ea
h j-shell. The 
lassi
al equations ofmotion are written in a Hamilton 
anoni
al form. The 
anoni
al 
oordinates have very ni
ephysi
al interpretation. Two of them des
ribe, 
lassi
ally, the rotation around the z axes inthe spa
e of the proton-neutron quasi-spin and the spa
e of isospin respe
tively. Moreoverthe r0 variable des
ribes rotations in the gauge spa
e. Three 
onstants of motion have beenfound. These are the third 
omponents of the total quasi-spin and isospin respe
tively andthe 
lassi
al energy. The stati
 equations are, in fa
t, the generalized pairing equations whosesolutions determine the stati
 ground state. Within this approximation one de�nes not onlythe stati
 ground state but also three quasiparti
le energies 
orresponding to the three BVtransformations. Although the 
orresponding quasiparti
les are independent modes, theirenergies are related through the parti
le-hole two body term -whi
h renormalizes the threegaps- and through a gap dependent re-normalization of the single parti
le energies.The proof that the found solutions 
orrespond to the minimum energy is given by thefa
t that the RPA equations have a real positive solution.Numeri
al appli
ations have been made for the 
ase of a single level. In this 
ase themodel is integrable sin
e we have three degrees of freedom and three 
onstants of motion.Yet, we use the BCS and RPA approximations to illustrate the improvement gained over theprevious attempts for the same Hamiltonian, where the self-
onsisten
y between the mean�eld and the RPA mode was not implemented. In the numeri
al 
ases 
onsidered here wefound a ground state with all gaps, i. e. �p;�n;�pn; ��, di�erent from zero. To this groundstate it 
orresponds a real positive RPA energy whi
h, 
ontrary to the up to date knowledge,is in
reasing with the strength of the parti
le-parti
le intera
tion.Several situations when a Goldstone mode appears have been found. This is a signaturefor a phase transition. An additional phase, distin
t from the one mentioned above, 
annotbe found in the one level 
ase sin
e when �pn = 0 the r+ 
oordinate be
omes a 
onstant ofmotion, and the ground state 
orresponding to the new phase be
omes degenerate.29



The results of the present paper are very important sin
e they elu
idate a long standingproblem in the many body treatment of the Fermi transitions whi
h in
ludes the parti
leparti
le intera
tion in the pnQRPA formalism.Several salient features of the present approa
h are pointed out by 
omparing its predi
-tions with those obtained by an exa
t treatment of the model Hamiltonian.VIII. APPENDIX AThe expli
it expression of the 
lassi
al energy is:H � h	jHj	i =Xj "(�pj � �p)� Gp2 (U2j jVpjj2 + jVjj2Unj2) + (2�+ �1)2j + 1 (U2j Unj2 + jVjj2jVpjj2)� �12j + 1(U2j jVnjj2 + jVjj2Upj2)# (U2j jVpjj2 + jVjj2Unj2)(2j + 1)+Xj "(�nj � �n)� Gn2 (U2j jVnjj2 + jVjj2Upj2) + (2�+ �1)2j + 1 (U2j Upj2 + jVjj2jVnjj2)� �12j + 1(U2j jVnjj2 + jVjj2Upj2)# (U2j jVnjj2 + jVjj2Upj2)(2j + 1)+(��+ �1)Xj (jVpjj2Unj2 + jVnjj2Upj2)� �Xj (jVnjj2 � jVpjj2)+2�1Xj (U2j V �j 2UpjjVpjjUnjjVnjj+ h:
:)��j�pj2Gp � j�nj2Gn + 2j��j2� � 2j�pnj2�1 : (A.1)IX. APPENDIX BTaking into a

ount the analyti
al expression of the 
lassi
al energy H one 
an easilyobtain the equations of motion in an expli
it form:�r0j = �i
j [(UnjV �njV 2j � UpjU2j Vpj)��p � (UnjVnjV �j 2 � UpjV �pjU2j )�p℄�i
j [(UpjV �pjV 2j � UnjVnjU2j )��n � (UpjVpjV �j 2 � UnjV �njU2j )�n℄�2iĵ(U2pj � jV 2njj)(V �j �pn � Vj��pn)Uj; (B.1)30



�r�j = i2
j[(UpjVpjU2j � UnjV 2j V �nj)��p � (UpjV �pjU2j � UnjVnjV �j 2)�p℄+ i2
j[(UpjV �pjV 2j � UnjVnjU2j )��n � (UpjVpjV �j 2 � UnjV �njU2j )�n℄+iĵ[(UjVjUpjV �pj + UjV �j UnjVnj)�� � (UjV �j UpjVpj + UjVjUnjV �nj)���℄; (B.2)�r+j = i2
j[(UpjVpjU2j + UnjV �njV 2j )��p � (UpjV �pjU2j + UnjVnjV �j 2)�p℄+ i2
j[(UpjV �pjU2j + UnjVnjU2j )��n � (UpjVpjU2j + UnjV �njU2j )�n℄+iĵ[(UjVjUpjV �pj � UjV �j UnjVnj)�� � (UjV �j UpjVpj � UjVjUnjV �nj)���℄; (B.3)� �'0j = (�pj � �p) + (�nj � �n)�12 1jVpjj2 � U2nj " UpjVpj + UnjV �nj VjV �j !��p +  UpjV �pj + UnjVnjV �jVj !�p#�12 1jVpjj2 � U2nj " UnjVnj + UpjV �pj VjV �j !��n +  UnjV �nj + UpVpV �jVj !�n#� 1̂j U2j � jVjj2Uj  1V �j ��pn + 1Vj�pn!+1̂j U2j � jVjj2U2pj � jVnjj2 1UjjVjj2 [(UpjVpjVj + UnjVnjV �j )��� + (UpjV �pjV �j + UnjVnjVj)��℄; (B.4)� �'�j = 2[(�pj � �p)� (�nj � �n)℄�12 "U2j (U2pj � jVpjj2)Upj  ��pV �pj + �pVpj!+ U2nj � jVnjj2Unj  V 2jVnj��p + V �j 2V �nj �p!#+12 "U2j (U2nj � jVnjj2)Unj  ��nV �nj + �nVnj!+ U2pj � jVpjj2Upj  V 2jVpj��n + V �j 2V �pj �n!#+2̂j "Uj(U2pj � jVpjj2)Upj  V �jV �pj��� + VjVpj ��!� Uj(U2nj � jVnjj2)Unj  V �jV �nj �� + VjVnj ���!# ; (B.5)� �'+j = �12 "U2j (U2pj � jVpjj2)Upj  ��pV �pj + �pVpj!� U2nj � jVnjj2Unj  V 2jVnj��p + V �j 2V �nj �p!+2 jVjj2 � U2jjVpjj2 � U2nj " UpjVpj + UnjV �nj VjV �j !��p +  UpjV �pj + UnjV �njV �jVj !�p##�12 "U2j (U2nj � jVnjj2)Unj  ��nV �nj + �nVnj!� U2pj � jVpjj2Upj  V 2jVpj��n + V �j 2V �pj �n!+2 jVjj2 � U2jjVpjj2 � U2nj " UnjVnj + UpjV �pj VjV �j !��n +  UnjV �nj + UpjVpjV �jVj !�n##31



+2̂j "Uj(U2pj � jVpjj2)Upj  V �jV �pj ��� + VjVpj ���!+ Uj(U2nj � jVnjj2)Unj  V �jV �nj �� + VjVnj ���!�(U2j � jVjj2)2U2pj � jVnjj2 1UjjVjj2 h(UpjVpjVj + U�njV �njV �j )��� + (UpjV �pjV �j + UnjVnjVj)��i#+2̂j 1Uj  ��pnV �j + �pnVj ! : (B.6)X. APPENDIX CHere we give the analyti
al expressions for the 
oeÆ
ients A33 and B33 involved in theequations of motion 
hara
terizing the single j 
ase. These 
oeÆ
ients determine, by meansof (5.16), the energy of the harmoni
 mode.A33 = 12
j "4V 2 � U2V 2p � U2n   U2p � V 2pUpVp � U2n � V 2nUnVn ! �p +�n � 2̂j V 2 � U2UV ��!+ V 2 � U2U3V 3 �pnĵ !�16 V 2 � U2(V 2p � U2n)2  UpVp + UnVn)(�p +�n � 2V 2 � U2UV ��̂j !� 1U3pV 3p  U2�p � V 2�n � 4̂j UV ��!� 1U3nV 3n  U2�n � V 2�p � 4̂j UV ��!+Gp
j "U2(U2p � V 2p )UpVp � V 2(U2n � V 2n )UnVn + 2UpVp + UnVnV 2p � U2n (V 2 � U2)#2+Gn
j "U2(U2n � V 2n )UnVn � V 2(U2p � V 2p )UpVp + 2UpVp + UnVnV 2p � U2n (V 2 � U2)#2�4�U2V 2 "U2p � V 2pUpVp + U2n � V 2nUnVn + UpVp + UnVnV 2p � U2n (V 2 � U2)2U2V 2 #2 + 4 �1U2V 235B33 = �p22Gp + �n22Gn � 2��2� + 
j2 [�Gp
j(UpVpU2 + UnVnV 2)2�Gn
j(UpVpV 2 + UnVnU2)2 + 4�U2V 2(UpVp � UnVn)2)℄: (C.1)
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FIG. 1. The gap parameters �p;�n; ��; (a), �pn (b) obtained by solving the general-ized pairing equations (2.15), (2.16) and the energy of the RPA mode (b) given by eq.(5.17) are plotted as fun
tions of �1. The strengths for the two body intera
tion terms areGp = 0:25MeV; Gn = 0:12MeV; � = 0:20MeV. The parti
le numbers are Z = 4; N = 12:, inj = 192 shell.
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FIG. 2. The energy minima, 
orresponding to the solutions of the stati
 equations, are plottedas fun
tion of �1. The input data are the same as in Fig. 1. Intera
tion strengths are given inunits of MeV. The minimal 
lassi
al energy 
orresponding to the stati
 solution with �pn = 0 isalso plotted.
37



0 1 2 3 4 5
χ1 [MeV]

0

1

2

3

4

5

6

7

8

9

10

11

pn
−

ga
p 

an
d 

R
P

A
 e

ne
rg

y 
[M

eV
]

ω
∆pn

∆pn(β−=∆p=∆n=0)

0

0.1

0.2

0.3

0.4

0.5

ga
p 

[M
eV

]

∆p=∆n

β−

a)

b)

FIG. 3. The same as in Fig. 1) but for Z = N = 8; Gp = Gn = 0:125MeV. In this 
ase anadditional solution of the stati
 equation appears with �p = �n = �� = 0;�pn 6= 0 whi
h isplotted by a dashed line.
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FIG. 4. The same as in Fig. 2) but for the data of Fig. 3. An additional 
urve 
orrespondingto the stati
 solutions �p = �n = �� = 0 (dashed line) is presented.
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h are plotted as fun
tions of �1. The Fermi levels �p and �n for the exa
t 
al
ulation aretaken equal to those given by the semi-
lassi
al treatment. The input data are the same as in Fig.1.
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FIG. 6. The energy of the semi-
lassi
al mode is 
ompared with the ex
itation energy of the�rst ex
ited state obtained by diagonalization. Also shown are the energies of the standard pro-ton-proton and proton-neutron QRPA modes, when the proton-neutron pairing is not in
luded inthe mean �eld(�pn = 0). The input data are as shown in Fig. 1.
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