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Abstract

We apply a time dependent variational method to a many-body Hamiltoni-
an consisting of a spherical shell model term, a proton-proton and neutron-
neutron pairing interaction and a monopole particle-hole and particle-particle
proton-neutron interaction. The variational state is a generalized BCS state
where all 7' =1 Cooper pairs with 7, = 0,£1 are included. Stationary solu-
tions correspond to generalized BCS equations and define the static ground
state. The linearized equations of motion are of RPA type and describe small
oscillations of the nuclear system around the static ground state. Numerical
application is made for a one level case. In contrast to previous treatments,
the proton-neutron particle-particle interaction is included first in the mean
field equations, defining the quasiparticle approximation, And then the resid-
ual interaction is taken into account by the RPA approach. In this way one

obtains a non-collapsing RPA ground state.
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I. INTRODUCTION

Pairing correlations of nucleons of the same charge have been extensively studied in vari-
ous physical contexts [1-6]. Many properties of atomic nuclei like gap parameters, moments
of inertia in deformed nuclei, spectroscopic factors are nicely explained by considering the
pairing interaction among alike nucleons. The standard way to treat the pairing correlations
in nuclei is the BCS approach. In such a formalism symmetries like gauge and isospin invari-
ance are broken. Since there are physical observables which are sensitive to the departure
from these symmetries, several groups worked on restoring these symmetries [7-10].

Though not so extensively, the proton-neutron Cooper pairs have been also investigated
[11-26]. Including the proton neutron pairing, various phenomena like stability of the ground
state against the particle particle proton-neutron interaction, the structure of nuclei lying
close to the proton drip line, the structure of the N = Z nuclei and the structure of super-
dense nuclear matter might be realistically approached. The proton-neutron pairing has the
peculiarity, comparing it to the proton-proton and neutron-neutron pairing, that besides
the T' = 1 pairs there might exist also 7' = 0 pairing and the corresponding pairs may play
an important role in some phenomena like the structure of the N = Z nuclei [16,20] or the
Gamow Teller beta transitions [21,22]. The competition of the 7' =1 and T" = 0 pairing
has been considered by several authors [17,20,23,24] particularly in the context of high spin
states.

The BCS formalism for alike nucleons has the salient feature that the ground state is
described by a coherent state for the SU(2) group associated to the quasi-spin algebra. This
provides not only some beauty to the mathematical framework but also a great technical
simplifications. In a time dependent variational treatment, it is relatively easy to find out a
set of canonically conjugate coordinates in the classical phase space [27]. Such a property is
lost when besides this pairing interaction the proton-neutron pairing is switched on. Guided
by previous experience, the ansatz for the variational state describing the ground state

of a system with pp, pn and pn pairing is chosen to be a vacuum for the quasiparticle



operators defined by a generalized Bogoliubov-Valatin (BV) transformation appropriate for
the particular problem under consideration.

The aim of the present paper is to study a many body Hamiltonian, commonly used
to study the beta transitions of Fermi type [26,28,29], which involves the proton-neutron
monopole particle-hole and particle-particle two body interaction. In the remaining of the
text we refer to these interactions as to the ph and pp interactions, respectively. Since
the pp interaction used in the model Hamiltonian is the 7" = 1 proton-neutron pairing, it
is worthwhile to treat it on an equal footing with the proton-proton and neutron-neutron
pairing. This allows to investigate the point whether one may cure the long standing problem
of the ground state instability reached at a certain critical value of the pp interaction strength.

We state from the beginning that there is no attempt here to discuss generalized BV
transformations that are relevant for the study of other problems like deformed nuclei and
high spin states. Indeed, many achievements on this line have been reported, in the liter-
ature. Our work here is motivated by a well known problem found in the description of
the nuclei undergoing a double beta decay. Since 1983, when Cha [30] noticed that the
[T transition rates are very sensitive to the strength of the pp interaction, all studies of
double beta decay based on pnQRPA formalism, or related formalisms, where including
the pp interaction, although in the standard RPA calculations such terms of the two body
interaction are ignored. Such studies show that as a function of the pp interaction strength,
the transition amplitude has a plateau and then decreases very fast to zero (see for instance
[31]). In this interval of fast decrease, the transition amplitude reaches values compatible
with experimental data, soon the amplitude vanishes and immediately after the pnQRPA
breaks down. A lot of work has been devoted to cure the instability of the ground state
around the critical value of the strength of the pp interaction. Here we propose a solution to
cure this ill-behavior of the QRPA ground state. Our point here is that the proton-neutron
interaction is contributing first to the mean field and therefore it is taken into account in
the minimization procedure used to find the static ground state. Furthermore the residual

interaction is treated by the usual QRPA procedure.



The ground state is the static solution of a time dependent variational principle (TDVP)
set of equations and includes correlations due to both the proton-proton, neutron-neutron
pairing and the proton-neutron ph and pp interaction. The variational state is taken as a
product of three coherent states describing the proton-proton, neutron-neutron and proton-
neutron T=1 pairing. We determine not only the ground state properties by solving the
generalized pairing equations but also the small oscillations around the static ground state.
This project is achieved in several steps according to the following plan. In Section 2
we define our model Hamiltonian, formulate the time dependent formalism and derive the
classical equations of motion. The static solution is discussed in Section 3. The equations
of motion are linearized around the point where the energy is minimum and RPA like
equations are derived in Section 4. Besides the energy there are another two constants of
motion, therefore there are two spurious states of vanishing solutions which are completely
decoupled from the physical solutions. This property is also discussed in Section 4. Some
final conclusions are analytically obtained for the case of a single 7 in Section 5. Numerical
application refers to a single 7 and is analyzed in Section 6. The final conclusions are drawn

in Section 7.

II. THE MODEL HAMILTONIAN AND THE CLASSICAL EQUATIONS OF

MOTION

In the present paper we shall deal with a heterogeneous system of nucleons which move
in a spherical shell model mean field and interact among themselves in the following man-
ner. Nucleons of similar charge interact through monopole pairing forces while protons and
neutrons interact by a monopole particle-hole and a monopole particle-particle two body

term. The many body Hamiltonian describing such a system reads:

Gy
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cijm(cm-m) denotes the creation (annihilation) operator of one particle of 7(= p,n) type in
the spherical shell model state |7;nljm) = |7jm). The time reversed state corresponding
to |7;nljm) is denoted by |7; jm) = (—=)7~™|r;j — m). This Hamiltonian is very often used
in the literature to describe single and double beta Fermi transitions within a pnQRPA
formalism [26,28,29].

The model Hamiltonian will be treated within a time dependent variational formalism.

Thus we are looking for the solutions of the following variational equation [27,32,33]:

5/ (WIH — i wyar = o, (2.2)

ot
If the state |¥) spans the whole Hilbert space for the many nucleons system, solving the
equation (2.2) is equivalent to solving the time dependent Schroedinger equation. That
would mean that we replaced one very difficult problem with one with similar degree of
difficulty. Since we are interested to study not only the properties of the static ground state

but also the small oscillations around it we choose a variational state of the following form:

W) = Wz, 251 2,25 2 25) = €T ), (23)

where the transformations specified by the operators T are given by:

Tpn = Z(zpnjc;jmci% = ZpnjCiimCpim) (2.4)
jm

TP = Z(ijc;[)jmcz’)}}’n - Z;jcljj\;lcpjm)a (25)
jm

T, = Z(ancjzjmctj‘;l - z:zjcn]mcn]m) (26)
jm

and |0) stands for the particle vacuum state. These transformations depend on the parame-
ters z which are complex functions of time. The corresponding complex conjugate functions
are denoted by z*. The parameters (z, z*) play the role of classical coordinates and conjugate
momenta, respectively. We recognize immediately the Bogoliubov-Valatin transformations

for proton-proton, neutron-neutron and proton-neutron pairing interactions, respectively:

_ T

b;]m =e Pc;,]m Umcp]m V;Ucmm, (2.7)
— In ~Tn __

bfwm: e chme Un]cn]m Vn]cn]m, (2.8)



_ Ty Ty _

a;jm =e'r c;jme e ch;jm = Vicmms (2.9a)
_ Ty Ty _

a];jm =e'r chme o= chljm = Vicom (2.9b)

The coefficients U, V' entering the above equations are related with the parameters z, defining

the variational state |¥), by the equations:

Jp— R J— . — o pj o3 .
2pj = ppi€ P, Upj = cos2p,;, Vpj =e sin 2pp;,
— 1Pnj _ L —iPni o
Znj = Pn€™, Upj = c082py5, Vp; = €7 sin 2py;,

e _plPpnj — . o pnj o ,
Zpnj = Ppnji€ 7, Uj = €08 ppnj, Vj = €72 sin pyy,;. (2.10)

It is worthwhile to remark on a very important feature of the state W. Using the Cambel-
Hausdorf factorization [35] for the first two exponential operators and then bringing the

operator exp(7},) near the particle vacuum state one obtains:
A o
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with the notations:

*

Ujj , T =p,n. (2.12)

=

N,

H(UTj)QjJ ATj -

J
The notation | BC'S),, stands for the vacuum state of the quasiparticle operators a,;,, defined
by eqs. (2.9), i.e. the BCS state for the proton-neutron pairing interaction alone. The
operators 1, T, are obtained from the corresponding operators T}, T;, defined by egs. (2.5,
2.6) by replacing the particle operators cf, ¢ with the corresponding quasiparticle operators
a',a. This new form of the trial function shows that it is more general than the variational
state used in ref. [26]. The expression (2.11) shows that our variational state can be written
as a product of two BCS-like operators of quasiparticles acting on a standard proton-neutron

BCS state. From this function one can immediately obtain an equivalent form:



_ T T T T T T T T
W) = jl;[)o [fo + prpijE;L + fncnjmc% + fpn(cpjmcﬁ—j‘fn + anmc%) 0}, (2.13)

where the amplitudes f have simple expressions in terms of the U and V coefficients defined
above. Equation (2.13) has the form of the general BCS wave function for 7= 1 (J = 0)
pairing. Denoting by U the unitary transformation (2.3) and by « the images of the fermion

operators through U

T T
aljm ijm
Ii T
a2jm ~ anm ot
=U AR (2.14)
O‘fffn Cg/;—j\r/n
a2fj\n/z CT%

and taking into account the BV equations (2.7-9) we obtain the total quasiparticle transfor-

mation:
o jm UUi  =VoiVi =VosUi =UpVi\ ([ chim
o WY Ul UV =Vl Chim (2.15)
oG || VAU UV Ul Vi | e | |
Qs UnjV;-* Vn*jUj —VTZ‘jV} Un;U; Crim

This is our BV matrix for generalized monopole pairing. It can be written as a product of
three matrices describing one BV transformation and two Hartree Fock transformations in
the isospin space [25]. The transformation coefficients are defined as functions of the U and
V coefficients given by the equations (2.10). Thus, although the factorised form involves
three distinct BV transformations, this can be written in an alternative form which agrees
with the Bloch-Messiah theorem [25]. The transformation (2.14) does not mix states of
different angular momentum since our model Hamiltonian involves only monopole pairing
interactions.

In order to write the equations of motion provided by the variational principle (2.2),
one needs to know the expression for the expectation values of the model Hamiltonian
and the classical action. By a direct calculation one finds for the expectation value of

H the expression given in the Appendix A. In the present paper we shall neglect the re-



normalization of the single particle energies due to the two body terms, in the spirit of the

standard BCS approach. Therefore the classical energy will be taken as:

H= Z €pj — 2] + 1 eﬂpj + Z €nj — 2] + l)vﬂ nJ
A,l? A2 218 2 Apnl?
GP Gn X X1

where the following notations have been used:

V;}ffp] (U2|‘/;7]|2+|V| )
Vit = (U7 [Vas I + V312U,
_ Gp T G 2 2 *
3= SIS el ) = B S - Vi)
7,m J
G, Gy *
A, = 7<‘I’| chjmcjw 9 Z (U UniVaj = Vi Up V"),
7,m J
- = <\I’|Z CnJ XZ] V*UPJ%J"‘UVUMVM ),
mzoi>=wa:%%mwx

Ay = x1 (] Z ay m Z]U V( — Vi), 7= 1/25 + 1. (2.17)

J

The Fermi level energies A\, and A, are determined so that the average number of protons
and neutrons are equal to Z and N, respectively:

Z=3 25+ 1)V,
J

N =+ DV, (2.18)
J

The classical action has the expression:
(0| — 2— ZQ V2 @y V2 @y 2V = VE = V2) D], (2.19)

where e stands for the time derivative.
Having in mind the aim of quantizing the classical trajectories it is useful to have the
equations of motion in the canonical Hamilton form. To this aim we change the classical

generalized coordinates by the following transformation:
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2j + 1
2 )

roj = Q;(28in® ppuj — 1)(1 = sin® 2py; — sin®2p05),  0oj = Ppujs 2y =
1 ) )
rj = 5 (807 20y —SI0" 2p05),  0j = Ppy — Puj
1 . .
i = 55 2y + 502 200), D45 = 0+ s — 2o, (2.20)
In terms of the new coordinates, the equations of motion provided by the variational principle

(2.2) have the canonical form:

a—H _' aH .

Brog = 05> Dg0; =Ty,
aT_j N . aQO_j S
aH L aH °
__ 5 o 2.21
6T+j (’0+J7 680—1_] T+] ( )

These equations suggest that the variables ro;, 7_;,r; play the role of classical coordinates
while ¢y, 0 j, p4; are their corresponding conjugate momenta. Two of the chosen coordi-
nates have a nice physical meaning. Indeed, denoting by NTj the 7-particle number operator

for the shell j:

A~

Ny =Y el crim (2.22)

m

one easily checks that the following equations hold:

~ ~

N+ N, .
To; = (V] — Q; + %N’) = (V|M;|W),
N, — N, .
2r; = (‘H%M = (V|T%,|V¥). (2.23)

These equations indicate that ro;, 2r_; are classical variables associated to the z-components

~

of the pn quasi-spin ( sz ) and isospin ( T}, ) , for each shell j, respectively. In terms of

the new coordinates the effective occupation probabilities are:

1 2r_; 4+ ry;
2 _ j ]
‘/;ff’pj N 5 + QQ] ’
1 =2r_; + 1o,
2 _ j j
Veting =5+ 20, (2.24)

The equations of motion are written explicitly in Appendix B. From the results presented

there one finds:



S =0. (2.25)
which results in having two constants of motion:

M. = (¥ |L ),

J

T, = > (V|1 W). (2.26)

J

This is a remarkable result. Indeed, although the trial function breaks gauge and isospin
symmetries, the classical trajectories conserve these symmetries. This is a reminiscence of
the fact that the quantum mechanical operator H commutes with 3, sz and -; sz. As
we shall see later on, the nice consequence of this property is that the spurious solutions of
the RPA equations are fully separated from the physical ones. Of course there exists a third
constant of motion which is the classical energy. Indeed, using the equations of motion, one

easily checks that
H=0. (2.27)

This feature is specific to any system governed by equations of motion derived from a

variational principle. Therefore the classical trajectories are lying on the surface
‘H = const, (2.28)

which is conventionally called the energy surface. Note that the minima of this surface
correspond to the potential energy of the system, since there the system has vanishing

kinetic energy.

III. THE STATIC GROUND STATE

The equations of motion (2.18) are highly non-linear and therefore can not be solved

analytically. However a good deal of information about the local behavior of the solution

10



of the non-linear equations can be drawn from the analysis of the solution of the linearized
equations. Such a solution describes small oscillations around a static ground state. There-
fore we have first to search for the stationary points, where the time derivatives of the
generalized coordinates vanish. The equations (2.18) show that they are also stationary
points for the energy surface. We consider the classical system at rest which implies that
voj = ¢—j = p4; = 0. Consequently A,, Ay, A,,, S_ are real quantities and the equations
corresponding to the time derivatives of the coordinates, are automatically obeyed. For a

given j-shell, the remaining equations are:

_ UpiVpj + UnjVi
Vo — U
207 = VP UpVij + UV 5 _

~

7 UV, Vi = Usi

(A, +Ay)

Gpj — )‘p+€nj — )\n

202 V7
7 UV;

Apn = 0; (3.1&)

Uz — V2 4
= A — (€nj — ) — 2P (UA, — VA, — <U,;V;8-
Gp] 4 (6 J ) 2Up]‘/;;] < ] =P i j 7 ]/8

U2- _ VZ- ( 4
_Znj VA — UZA, + TU-VB_> =0, (3.1b)
2WpiVey \ 7P T gl

U2-—V2- 4 U2.—V2~ 4

P (2N~ VA, — U VB | — 2 M (VRN U2A, + U VB
2Up; Vs (‘7 v i’ i# WVog \ 27 20T #
Vit = U7 Uy Vi + Unj Vi

UiVi Vi = Ug

2 1

I

[(Ap + AUV + 207 - vfw_]

From (3.1) one can easily express the quantities U?, V2 in terms of A,, A, Ay, Apy Ay, B

sz . 1 (1 - Sp|sz(6pj —Ap) — ij(enj — ) + %UJ’VJ'APH

vz, ) 2\ Y0 = 2) = Vi(ews = ha) + TUViA P+ (U7, — VA, — JU;Vi50)?
(3.2)

Vil o1 (1 . SnlU7 (enj = An) = V(e = Ap) + 35UV A

Ugj 2 \/[Uyz(fnj - )‘n) - Vj2(6pj - )‘p) + %Ujv}AIm]z + (UyzAn - VjQAp - %UjVjﬁ,V

(3.3)

11
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Upvp UnVi
) Up Vot Un Vi Upvp UnVn
Uz R R e = L F AP + O+
(3.4)

The factors S,, Sy, S are phases determined in the following way. The three equations from

(3.1) can be written in the alternative form:

A U=V
c, 20y,
AT U2 ‘/;2
CJ_ U V] T =p,n. (3.5)
7j i Vrj

with obvious notations for the terms from the left hand sides. The phases entering the

equations defining the U and V coefficients are given by :

S = sign (%) , S, = sign (?T]) , T =D,n. (3.6)

J 7J
Note that the equations defining U and V coefficients are coupled with each other. However

in the single j case, equation (3.4) is very much simplified due to the following equality :

UPV;) + Unvn _ _Xlﬁf
‘/;;2 - Ug XApn

(3.7)

In this way the coefficients U, V' depend exclusively on gaps, Fermi energies and §_. Inserting
their expression into the eqs (3.2) and (3.3) one finds that the above statement is also true
for Vi, Upj, Vijy Unj-

The three square root quantities involved in the equations defining the U and V' coeffi-
cients define three quasiparticle energies. None of them is of pure neutron or pure proton
type. For each of them both the proton and neutron from the given shell participate. While
in two of these energies the single particle energies enter through the difference of the weight-
ed single particle proton and neutron energies in the remaining case the sum of the proton
and neutron energies appears. The first two cases differ from the standard quasiparticles

appearing in homogeneous systems where the single particle energies are normalized by the
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two body interaction only by additive terms. Indeed, here also a contraction, due to the
multiplicative U7 and V;? factors, appears.

Denoting by N, the number of the single particle levels taken into consideration, and
assuming the same single particle space for protons and neutrons, there are 3N;+2 equations
for 3N, + 2 unknowns (V;, Va;, Vi, Ap, An): 3N static equations (3.1) and two constraints
providing equations for the number of protons and the number of neutrons. The solutions
of these equations are known once we solve the six equations defining the gaps, S_, the
number of protons and the number of neutrons. Indeed these equations, after replacing
the U and V coefficients with their expressions in terms of gaps, S_ and A,, \,, become
6 nonlinear equations for the unknowns: A, , A,, Ay, B, Ay, A\p. Solving these equations
and calculating the coefficients for the BV transformation one obtains the values for the
canonical coordinates. It is worth mentioning that the stationary equations are necessary
but not sufficient conditions for minima of H. A rigorous test for minima stems from the
properties of the RPA equations. Indeed, if the stationary point, found in the way described
above, is a minimum then all solutions of the equations linearized around that point are

real. We address this problem in the next Section.

IV. THE RPA EQUATIONS

Let us denote by (g, p) the deviations of the current variables from their stationary values,
denoted by ;Oj, Q%Oj, 72_]-, sg_j, 72+j7 Q%Jrj, respectively:
dij = Toj— 720;'; P1j = Poj— 9%03',
425 = T—j— ;—j; D2j = ¥—j— SOO_j,
43j = T+j— 72—1—]’7 D3j = Q45— 900+j . (4.1)

Expanding the right hand side of equations (2.18) around the minimum point and keeping

only the linear terms in deviations one obtains:

L]
Prj= D Arjydhys
k/jl
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Qkj= D BhjpjiDjr- (4.2)
k/jl

To save space we don’t give the explicit expressions for the matrices Agjp i and By
For the special case of a single level we give in Appendix C only two coefficients, As3
and Bsz, which are needed to calculate the frequency of the harmonic mode. Note that
the coefficients of the expansion in eqs. (4.2) are just the second order derivatives of the
classical Hamiltonian taken in the considered stationary point. Therefore, to the linear terms
in the equations of motion correspond the quadratic terms of the classical energy expansion.
Note that in the first equation (4.2) linear terms in p do not appear while in the second
equation the linear terms in ¢ are missing. Their presence would violate the time reversal
invariance of H. The condition for the existence of the minimum value for H is that the
associated Hessian be positive, which results in having a positive definite quadratic form for
H. As a matter of fact this assures that frequencies for the classical trajectories are all real
numbers. It is worth mentioning that the linearized equations of motion can be written in
the Hamilton canonical form (2.18) with H expanded up to the second order. Therefore the
canonical form is not altered by the linearization process. Moreover the equations admit as

constants of motion:

Mz = Z(hja
J

J
This is implied by the following property of the matrix By ;-

> Bujwy =0, k=12 k'=1,2,3. (4.4)

J

A. Equations of motion in the RPA form

In what follows we write the equations of motion in a standard RPA form. To this aim

we look for the transformation to a new set of generalized coordinates:

14



Qi X Y q

= (4.5)
B Zy Wi |\ p
chosen so that the following equations are fulfilled:
éi: WP,  Pi=—wiQi. (4.6)

The index ”7” labels the solutions of the equations written above, if they exist. The equa-
tions (4.5) and (4.6) provide four sets of equations relating the matrix elements X, Y, W, Z.
Only two of them are independent, the other two being obtained from the first ones by

replacements:
Z;=-X;, W; =Y. (4.7)
The independent equations read:
B"X =wY, A'Y = —wX. (4.8)
It is easy to check that the new canonical coordinates satisfy the equations:

{Qu, 1} =Qy, {Py,H} =P, (4.9)

where {, } denotes the Poisson bracket defined in the standard way. To any two functions f
and g, defined in the classical phase space, spanned by the conjugate coordinates (¢, p), one

associates the Poisson bracket:

of 0g  Of Og
: _ _ _7 4.10
{f g} gy Opx; Opr. Oqi, ( )

The matrix elements X,Y defining the transformation (4.5) are related to the ”forward”
and ”backward” phonon amplitudes in the quantum mechanical picture. To prove this we
quantize [27,34] the classical motion. This can be achieved by the following algebra mapping
{arj, res, 4, Y — {4, p, %[, |}, where the inner multiplication operation is the Poisson bracket

in the classical algebra while in the quantal algebra it is the commutator. By this mapping to

15



the canonical conjugate variables (gx;, px;) correspond the coordinate and linear momentum

operators obeying the commutation relations:
[4,p] = 1. (4.11)

Similarly one defines the operators Q,P by quantizing the classical conjugate coordinates,

@, P. To these operators one associates the boson operators,

[Cl, CL] = Ok,

(kg hor| = Oz (4.12)
by the transformation:
Qrj = %(Cl];j + Ckj)y Drj = %(-C;ng + Crj),
Qr = L(C,I +Cy), B, = L(—C,i + Cy). (4.13)

V2 iv/2
Quantizing the equation (4.5) relating the (¢,p) coordinates to the (@), P) ones and then

using the equations (4.13) one obtains an equation relating the bosons C, CT and c, ¢f:

1+ > Xigj + Yiuj Jo —Xpyj + Yk,ljc .

Cl=—=
V2 vz vz

From this equation one obtains the relation between the forward (X) and backward (V)

(4.14)

amplitudes and the amplitudes defining the transformation (4.5) in the phase space:

~ Xeyi + Yoty o —Xegg + Yy

Xpij = 2 s Yeii = NG

Replacing X and Y by their expressions in terms of X and Y, using the inverse transforma-

(4.15)

tion (4.15), the equations (4.8) can be written in an alternative form:

_AT_BT _ AT4BT X X

S =w : (4.16)
A" +B A'—B ¥ ¥

+ - Y Y

This equation is nothing else but the RPA equation for the generalized pairing vibration

with the standard normalization for the amplitudes X and Y

3 U)?k,ljf - \f/k,lﬂ ~1. (4.17)
lj
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B. Spurious states

As we have seen the system admits three constants of motion and two of them reflect
the invariance of the model Hamiltonian against the rotations around z axis in the spaces
of the pn quasi-spin and isospin, respectively. These two symmetries are consequences of
the equation (4.4). This equation determines important features for the solutions of the
equations (4.8), i.e, the RPA equations. Indeed, there are two independent solutions of
vanishing energies:

Xy = A, Vi, Xigy =0,k =2,3,V5,

Yig; =0, V(k,7),

Xooj = As, V53 Xopj =0,k =1,3,Yy,

You; =0, (£, j). (4.18)
where A; and A, are constants with respect to the index j. In both cases, X =Y and the

RPA equations become:

BTX =0 (4.19)
Since for the wy = 0, (k = 1,2) states Y = 0, the equation (4.5) yields:

P=-Q. (4.20)

and therefore {@, P} = 0. On the contrary for physical solutions the Poisson bracket is a

non-vanishing quantity

{Qr, P} =2 Xiwj Yy = 1, (4.21)

k/jl

which results in having the corresponding boson normalized to unity.

V. THE SINGLE J CASE

In this case many simplifications appear and several finite analytical results can be ob-

tained. In what follows we shall omit the index j specifying the single particle orbit. Even
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if we are in a simple situation, it is convenient to consider some extreme cases which will
define some reference features with respect to which the more general cases may be studied.

From the particle number equations one easily derives very simple equations:

Z —N
2 _ 12
o=
1 Z+ N
LV = —2 2) 1
V= (G - 27) (5-1)
which allows one to determine V,, and V}, in terms of V'
VZ
P 1/Z—-N 1 Z+ N 9
= - + -2 ) 2
(VZ) 2( 2€) 1—2V2( 2Q2 V)> (5:2)

Therefore, in order to solve the static equations one has to use the equation for V2 and then
the equations (5.2) which express V;> and V;? in terms of V2, in connection with the gaps,
B_ and particle number equations. In this way one obtains a set of 6 equations for the six
unknowns A,, Ay, Apy, B2, Ap, An.

Let us now consider some particular cases:

I) x = x1 = 0. This is the standard case, when only the nucleons of similar charge
are paired. From the formulae presented in the previous sections by considering vanishing

values for x and x;, we obtain decoupled pairing equations for protons and neutrons.

A, =GQUV;,

N, = Z6;+ N6, = 2QV?, 7 =p,n. (5.3)
From here the standard equations for the gap and the Fermi level are analytically obtained:

1 N, \?
A, =G, <§NTQ(1 - ﬁ)) ,

1
1 N, N, \?2
|67' - )\T| - GTQ (Z - ﬁ(l - ﬁ)) . (54)
Note that if the input data are so that Z7 = N = ) then
€ —Ap =€ — Ay =0,
1
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while for empty or filled shell one automatically gets A, = 0.
IT) We consider now the same strength for the pp and nn pairing interactions and

non-vanishing vy, xi:

X, X1 # 0. (5.6)

In what follows we shall discuss the static equations in terms of two parameters ¢ and P

defined as follows:

Z-N .,
=50 = e

74N
P=1- 2ng — 12V (1 - V2 V). (5.7)

To
pP=——
Q Y
r_
=2—. 5.8
¢=27 (5.8)
From the gap’s equations one derives a useful relation between all three gap’s.
Apn (A, + A,
(S +80) _ Gy (5.9)

- X
Let us consider the case g=0. Concerning P, the following extreme cases are interesting:

a) P =0, which corresponds to a half filled shell,

b) P = —1, the shell is completely filled,
c) P=1, empty shell and,
d) P = 3, one quarter filled shell.

If ¢ =0 and ¢, = ¢, = ¢, + \,, then several simplifications in the equations for the U
and V coefficients appear. Since from ¢ = 0 we get Vf = V2 and with the convention that
U’s and Vs are positive we get that the signs in the eqs (3.2-3.4) are related by S, = S,

the gaps are given by:
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A, = A, =GO - 2VU,V,,

Apn = x1V2Q(1 = 2V UV,

5 =2 Sl

T (5.10)

The equation for U's and V's can be written in a very symmetric form:

A
|€p+QLX1T|

Zn A2n !
Vlew + o S + (8 — 255 ()70
A2
lep + QG i
AZA
\/[ep + & B+ A — SR X (L))

Denoting the quantities under the square root signs in equations (5.11) by A and B respec-

2 2
U, =V, =5

Ul—-v*=5

(5.11)

tively, and multiplying the two equations (5.11) side by side one obtains:

L 25 ELY
AN * PaG

From the above equation and the definition of P( see eq. (5.7)) one may conclude that

P[AB]z = 5,8 (5.12)

S, =S, for 0 < P <1 (the shell is less than half filled),

S, =—S, for —1 < P <0 (the shell is more than half filled). (5.13)

The equation P = 0 is fulfilled when either V? = 3

and/or V2 = L.

5. From the gap’s

equation one obtains A,, = 0 for the first case while for the second solution the proton gap

is vanishing. For what follows it is convenient to write the equations (5.11) in the equivalent

form:
[ 2AZ \ 2 oA, 5 \?]? 4
P4+ AP — =2 =|(1-2Vv? ——UVA,,
[<e” *gle) *( T oy ) ‘( Vet gtV e
Y
2A2\* 9 2A,8-\°|?
( p+m> +§<Apnp_ﬁ> = [(1—=2V2)e, + 2GQ1 — 2V UZV?|. (5.14)

For the first solution mentioned above, i.e. \/;,2 = %, we notice that the above equations are
satisfied provided V? = %, which results in having A, = 0. Concluding for ¢ =0, P =0
one has the solution V2

:%ZZ%andAp:Apn:O.

20



For the general case of P # 0, eqs. (5.11) could be written, after some algebraic ma-
nipulations, in a suitable form which allows to express analytically the gaps A, and A, in
terms of P:

2 P2GQ)
epP + Xl—QAfm =+ 9

(2 x (A)
XlQ G P

() ()
GS) X1 P

When the space of single particle states is restricted to one level, the RPA equations

2
ep P + — A2 = iP2X1

i (5.15)

are very simple and moreover analytically solvable. Indeed, since we have two constants of
motion the equations for g3, p3 are decoupled. Moreover they can be easily integrated with

the result of a harmonic motion with the frequency

W =/ —Agngg. (516)

where the involved matrix elements are given in Appendix C.

VI. NUMERICAL APPLICATION

For illustration, the formalism developed in the previous sections is applied here for the

case of a single 7 = % shell of energies ¢, = ¢, = 3 MeV. First, we consider a system of 4

protons and 12 neutrons. The strengths of the two body interactions are as follows:
G, = 0.25MeV, G, = 0.12MeV, x = 0.2MeV. (6.1)

The strength for the pp interaction y; is considered as a free parameter and varied in the
interval from 0 to 5 MeV. We solve first the generalized pairing equations and determine the
gaps and the Fermi levels. We note that having r, 7_ as constants of motion, the numbers
of protons and neutrons are conserved along a given classical trajectory. There is no need for
additional constraints for particle number conservation. However we keep these constraints
on the Fermi level energies, in order to fix the values of the two constants of motion. The

results are collected in Figs. 1 and 2. From Fig. la one sees that the 3 values are almost
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insensitive to y; and the neutron gap is slightly changing at the variation of y;. The proton
gap is however increasing rapidly with y;. The reason is that in the decoupling regime
(small x1) the occupation probability for protons is small, which results in a small proton
gap parameter. This causes a relatively larger effect of the perturbation produced by the pp
interaction. For large values of x;, the proton and neutron gaps are similar. The dependence
of proton and neutron gaps on i, as well as the independence of 5_, are related to the fact
that while the proton-proton, neutron-neutron and proton-neutron interaction of strength
X1, are all of particle-particle type, S_ characterizes the particle-hole interaction. The phase
space coordinates corresponding to the solutions of the pairing equations define stationary
points of the energy surface. The corresponding energies are plotted by solid line in Fig. 2.
These points are minima points since the RPA equations have a real positive root, as shown
in Fig. 1b.

It is worth commenting on the behavior of w as a function of y;. Indeed it is increasing
with x; in the same way as A,,. This behavior is in contrast to the standard one where the
RPA energy decreases with increasing strength of the attractive force. The reason is that
in the present work the attractive force modifies the mean field for the quasiparticle motion
and therefore the RPA ground state does not collapse with increasing x1.

In addition to the x; dependent BCS solution shown in Fig. 1, there is another one that

is independent of y; and has the following values
A, =1.0MeV, A, =0.588MeV, f_ = A, = 0.0 MeV,H = —5.32MeV. (6.2)

The energy corresponding to this solution is shown in Fig. 2 by dotted line. This solution
is of a different nature. Since for this case one has U = 1, V = 0, ry and r, are, up
to an additive constant, identical. Therefore the state described by r, is spurious and
corresponds to w = 0. In this case the ground state is degenerate. The full and dotted
energy lines cannot be compared with each other since they correspond to different phases.
The Goldstone mode is a bridge between two modes of different nature, or in other words, it

separates two distinct nuclear phases. In the present study the phase with all gaps different
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from zero is well defined while the second phase is not. The RPA mode associated to the
latter phase is collapsing to a Goldstone mode in the single shell case. In order to reach
another stable phase one has to include more shells and to change also the strength of the
other two body terms.

Next we consider the case N = Z. As we said before, for N=Z7 the T' = 0 pn pairing
is expected to be important. Such a pairing interaction affects mainly the Gamow-Teller
beta transitions and not the Fermi ones. Therefore the isoscalar pairing is ignored in the
present work, due to the specific structure of the model Hamiltonian. It is remarkable that
even in the absence of the 7' = 0 pairing, the probability to have a proton paired with a
neutron comes out to be comparable to or larger than the probability for having it paired
with another proton depending on the y; value (likewise for neutrons). This case is analyzed

using the following input data:
Z =N =8,G, =G, =0.125MeV, x = 0.20MeV. (6.3)

The results are shown in Figs. 3 and 4. Since the strengths of pairing for alike nucleons are
equal and are close to the monopole particle-hole strength, the gaps A, = A, and 3_ are
not very different. The solutions of the static equations are minima points for the classical
energy. Indeed, as shown in Fig 3b the RPA equation has positive roots. The minimal
energies are plotted in Fig. 4 by full line. For each value of y; there are another two
solutions of the static equations. One is characterized by f_ = A, = A, =0 and A, # 0.
The non-vanishing values for A, and H are shown in Fig. 3b and 4, respectively, by dashed

lines. The other solution consists of
B =240, =0, A, =A, =0.612MeV, H =—-4.0 MeV. (6.4)

and does not depend on ;. The constant energy is presented, for the sake of completeness
in Fig. 4. The RPA modes on these two static solutions are spurious and consequently have
w values equal to zero. Indeed, in each of these two cases the coordinate r, becomes equal

to one of the coordinates which are constants of motion. This will certainly not happen in
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the multilevel situation but they will define distinct phases, which will persist for a manifold
in the strength parameters space.

The advantage of using the single j case is the possibility of testing the semi-classical
approach by comparing the predictions with the corresponding exact result. Therefore we

diagonalize the model Hamiltonian in the non-orthogonal basis:
(11,12, 113) = Ny g g (AF)™ (AL (A],)™10), (6.5)
where |0) denotes the vacuum and

Aj"r = %:Cj'jmcj/—}\fn’ T=pn,

Al = e — (6.6)

PIM " im,

The integers ny, ny, n3 are subject to the constraints:
2%1 +ns = Z, 2’[’L2 +n3 = N (67)

As in the numerical application described before we consider the case (Z, N) = (4,12) in
the j = % shell. The equations (6.7) have three solutions which determine the following

basis states:
1) = 12,6,0), 12) =11,5,2), 3) = [0,4,4), (6.8)

We note that in our basis states all nucleons are paired. Moreover these states are compo-
nents of the trial function (see eq. 2.13). Inclusion of some broken pairs is straightforward
but it is not necessary since the states with broken pairs are not linked to the basis states
(6.5) by the model Hamiltonian. With some efforts the matrix elements of the model Hamil-
tonian, in the above basis, can be derived analytically. Although it is apparently simple we
give, for the sake of completeness, few details about the diagonalization procedure. Basically

we aim at solving the eigenvalue equations
H|®) = B|®), (6.9)
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with the ansatz:

|®) = %:CM% (6.10)

where the non-orthogonal states |k) are defined by the equation (6.5). Denoting by C' the
column vector with the components Cy and by O the overlap matrix, the equation (6.9) can

be written as:
HC = FEOC, (6.11)

with H standing for the matrix of H in the basis (6.5). Consider now the eigenvalue equation

associated to O
Ov; = a;v;,1 = 1,2, 3, (6.12)
and denote the eigenvectors matrix by
W = (vl,v2,v3). (6.13)

The overlap matrix is positive definite and therefore the following diagonal matrix can be
defined
Va0 0
M = 0 Vaz 0 |. (6.14)

0 0 a

The overlap matrix O may be written in the factorised form

O=UU", (6.15)
with

U=WNM, (6.16)
and 7' standing for the transposition operation. Transforming the vector C' into

X =U"C, (6.17)
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equation (6.11) is transformed into an ordinary eigenvalue equation for a symmetric matrix:
HX = EX, (6.18)

where

T T

H=U'HU™")". (6.19)

The results of the exact diagonalization are shown and compared to the results of the
semi-classical approach in Figures 5,6,7. In FIG. 5, the energy of the ground state obtained
by diagonalization is compared to the predictions of the approach used in the present paper.
We note that although, as expected, the exact ground state energy is lower than the one
obtained with the semi-classical method, the energy variations with respect to y; follow
the same trend. In Fig. 6 we plot the energies of the first excited state yielded by the
diagonalization procedure and by the semi-classical procedure(eq. 5.16) by dashed and solid
lines, respectively.

Usually the model Hamiltonian (2.1) is treated as follows: First it is written in terms
of quasiparticles, using independent BV transformations for protons and neutrons. Then,
the resulting Hamiltonian is treated by the QRPA approach. As a result three independent
modes are obtained: a proton-proton, a neutron-neutron and a proton-neutron QRPA mode.
In Fig. 6 we also plot, for comparison, the energies of the proton-proton and proton-neutron
modes as functions of y; by dash-dotted and dotted lines, respectively. The energy of the
proton-proton mode is not collapsing since the proton-proton pairing is included in the mean
field. However this is not the case for the proton-neutron mode that, as already mentioned,
decreases fast and collapses with increasing y;. The standard pn@Q RPA mode, represented
by dotted line in Fig. 6, describes oscillations around dotted line ground state in Fig. 2.
From the latter figure it is obvious that starting from x; & 0.2 the true static ground state
corresponds to the situation where A, # 0.

At low x, the first exact excited state is higher in energy. For x; = 0 its energy is close

to the 4 quasiparticle energies 2E, + 2E,, with E, F, standing for the proton and neutron
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quasiparticle energies respectively. This can be understood better from Fig. 7. Indeed
the structure of the states given by diagonalization can be seen either by looking at the
components of the corresponding eigenvectors or comparing the diagonal terms of the model
Hamiltonian. Thus one notes that for x; < 1.9, the lowest state is |1). To excite the system
to the state |2) one has to break one proton-proton pair and one neutron-neutron pair and
create instead 2 proton-neutron pairs. The excitation energy shown in Fig. 6 should be
close to the energy spacing between the lowest two lines shown in Fig. 7. This spacing is
decreasing up to y; &~ 1.9 and then it is increasing. This explains the minimum value of the
excitation energy at about x; = 1.6, from Fig.6. This reflects indeed a transition from the
phase where the dominant ground state component has only like nucleons paired to a new
phase with a dominant ground state component having no proton-proton pairs, all protons
participating in proton-neutron pairs. For the above mentioned value of y; the three states
are quasi-degenerate and apparently the system might be excited at an almost vanishing
cost. As a matter of fact that happens in the standard pnQRPA treatment (see the dotted
line in Fig. 6). However in the exact calculation the minimum excitation energy caused
by the off-diagonal matrix elements and shown in Fig. 6 is very close to twice the proton-
neutron gap shown in Fig.1 at x; ~ 1.6. This is nothing else but a beautiful confirmation
provided by the exact calculation for the mechanism which prevents the ground state to
collapse. It is interesting to see that there are two values for y; where the prediction of the
present approach coincides with the exact result. This is an indication that for these values
the components of alpha-like (two proton-neutron pairs) excitations prevail.

Of course there are differences between the curves shown by full and dashed lines in Fig.6
caused mainly by the fact that while the exact eigenstates have definite numbers of protons
and neutrons, in the semi-classical approach these numbers are conserved only in average, in
the static ground state. Therefore in the present approach the phonon operator can connect
the ground state of a (N,Z) nucleus with excited states in the neighboring odd-odd as well as
even-even nuclei. Such a transition operator was constructed within a different approach and

different arguments in ref. [36]. In order to obtain a detail structure of the phonon operator
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obtained by quantizing the classical motion of the independent degrees of freedom additional
investigations are necessary. They are under progress and will be published elsewhere.

The oscillating sign of the deviations of the exact excitation energy from the value of w
(5.16) reflects the fact that the semi-classical approach accounts for the average properties

of the many body system.

VII. CONCLUSIONS

In the previous Sections we developed a semi-classical formalism to treat a many body
Hamiltonian which is often used in the literature to study the single and double beta Fermi
transitions. Usually such a Hamiltonian is treated in two steps. First one treats the pairing
interaction defining a BCS ground state where alike nucleons are paired to vanishing angular
momentum. In the next step the monopole particle-hole and particle-particle proton-neutron
interactions are treated by the proton neutron quasiparticle RPA (pnQRPA). In such a
treatment the ground state is collapsing for a critical value of the strength of the particle
particle interaction(see for instance [28,29]). This feature is troublesome since a) the realistic
value of the strength for the pp interaction is close to its critical value, and b) the value of
the strength that reproduces the experimental value of the double beta transition amplitude
is also close to the value where the pnQRPA breaks down. The pp interaction is just the
proton-neutron T=1 pairing interaction and therefore the instability of the pnQRPA ground
state is an indication that there must exist a new static ground state which includes the
proton-neutron correlations. If that ground state exists indeed, the residual pp interaction
does not produce any longer instability of the RPA solutions since the dangerous graphs have
been already introduced in the static ground state. These ideas guided us in performing the
present work.

The model Hamiltonian has been treated within a semi-classical formalism. The vari-
ational state is obtained by applying on the bare vacuum three BV transformations: for

proton-proton, neutron-neutron and proton-neutron pairing. We have proved that this s-
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tate may be written as two BV transformations applied on the BCS vacuum for the proton-
neutron pairing. For monopole pairing this is a general transformation mixing protons and
neutrons. Indeed, it depends on 6 real parameters for each j-shell. The classical equations of
motion are written in a Hamilton canonical form. The canonical coordinates have very nice
physical interpretation. Two of them describe, classically, the rotation around the z axes in
the space of the proton-neutron quasi-spin and the space of isospin respectively. Moreover
the ry variable describes rotations in the gauge space. Three constants of motion have been
found. These are the third components of the total quasi-spin and isospin respectively and
the classical energy. The static equations are, in fact, the generalized pairing equations whose
solutions determine the static ground state. Within this approximation one defines not only
the static ground state but also three quasiparticle energies corresponding to the three BV
transformations. Although the corresponding quasiparticles are independent modes, their
energies are related through the particle-hole two body term -which renormalizes the three
gaps- and through a gap dependent re-normalization of the single particle energies.

The proof that the found solutions correspond to the minimum energy is given by the
fact that the RPA equations have a real positive solution.

Numerical applications have been made for the case of a single level. In this case the
model is integrable since we have three degrees of freedom and three constants of motion.
Yet, we use the BCS and RPA approximations to illustrate the improvement gained over the
previous attempts for the same Hamiltonian, where the self-consistency between the mean
field and the RPA mode was not implemented. In the numerical cases considered here we
found a ground state with all gaps, i. e. Ay, Ay, Apy, B, different from zero. To this ground
state it corresponds a real positive RPA energy which, contrary to the up to date knowledge,
15 increasing with the strength of the particle-particle interaction.

Several situations when a Goldstone mode appears have been found. This is a signature
for a phase transition. An additional phase, distinct from the one mentioned above, cannot
be found in the one level case since when A,, = 0 the r; coordinate becomes a constant of

motion, and the ground state corresponding to the new phase becomes degenerate.
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The results of the present paper are very important since they elucidate a long standing
problem in the many body treatment of the Fermi transitions which includes the particle
particle interaction in the pnQQRP A formalism.

Several salient features of the present approach are pointed out by comparing its predic-

tions with those obtained by an exact treatment of the model Hamiltonian.

VIII. APPENDIX A

The explicit expression of the classical energy is:

G (2x + x1)
f(Ufﬂ/})ﬂQ + |V [PUn%) + -

= (P|H|T) =) [(epj —Ap) —

J

T (U5 Vs [P + V3 U )l (U5 Vasl* + ViU (25 + 1)

2 +
(2x + x1)
[ an) = UV V0, + X a2y
J+1
L P + VPUA| G2V + VU223 + 1)

Hx o+ 30) T (Vi PU + Vs PU) = x S (1Vagl? = Vi)
’ J
20 Z(UJZVJ'*ZUPJ'|%J'|Unj|an| + h.c.) —
J
IR AP 28R 20AP
Gp GTZ X Xl

(A.1)

IX. APPENDIX B

Taking into account the analytical expression of the classical energy H one can easily

obtain the equations of motion in an explicit form:

Foj = =i [(Uns ViV = UpgUSVos) A = (UngVag Vi = Uy ViU A

py—J

—i€0[(Upj VoV = UngVigUD) Ay, = (Uyg Vg Vi = U Vs U7 ) Ay

ny=J

=2 (Upy = VgD (Vi Dp = VAU, (B.1)
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'i * * * *
ry = Sl U VU = UnViVi) A = (UpVigUf = Ung VsV A

P
Z’ * * * ES
+§Qj[(Uijijj2 — UpjVasUD)V AL = (Upi Vi Vi = U VisUD) A

nj=j

+ig (U ViUp Vit + UiV Ui Vig) B — U3V Upi Vs + U ViU Vi) B2, (B.2)

d Z * * * *
Py = gL,V U7 + Ung ViV Ay = Uy ViUs 4 UnVas Vi) A,
nj-j

+5 (U VisU5 + UnsVigUp) AL = (Up Vg Uf + Ung Vs U7 ) A

+if[(U;V;Up Vi = UV Ui Vg ) B — (U V5 Upi Vs — U ViU Vi) B2, (B.3)

— P05 = (€p5 — Ap) + (€nj — An)

_% |7ij|21_ 7 KU Vi + Unj V7, ‘V/> A+ (U V4 Un]vm“// ) A,,]
1 1 DAY . v
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X. APPENDIX C

Here we give the analytical expressions for the coefficients A3z and Bsz involved in the
equations of motion characterizing the single j case. These coefficients determine, by means

of (5.16), the energy of the harmonic mode.

1 2 7172 U2 — V2 2 2 2 1/2 2 2 2An
Asy = l4v U(<p p_Un— V><A+A AV Uﬂ_>+u+’>

2Qj ‘/;,2 — U,% Up‘/;, U, Vy, J Uuv Usys J
V2 - [ VE_U2 g
16— (U, V. U, Vi) (A A, —2——— —
(V,E—U%)2<”+ /(& v j>
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4 1 4
U2A, — V2A, — T,UVB> _ <U2An _VIA, - T,UVB>
( 8 j U3vp "
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+G,Q; lUQ(%}Z‘;p V) _ Vz(gi‘;n %) N QUPXX//;; t g:%‘/n v UQ)r
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FIG. 1. The gap parameters A, A,,(_, (a), Ay, (b) obtained by solving the general-
ized pairing equations (2.15), (2.16) and the energy of the RPA mode (b) given by eq.
(5.17) are plotted as functions of x;. The strengths for the two body interaction terms are
Gp = 0.250MeV,G,, = 0.12MeV, x = 0.20MeV. The particle numbers are Z = 4, N = 12., in

j = 12—9 shell.
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FIG. 2. The energy minima, corresponding to the solutions of the static equations, are plotted
as function of x;. The input data are the same as in Fig. 1. Interaction strengths are given in
units of MeV. The minimal classical energy corresponding to the static solution with A,, =0 is

also plotted.
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FIG. 3. The same as in Fig. 1) but for Z = N = 8,G, = G,, = 0.125MeV. In this case an
additional solution of the static equation appears with A, = A, = 8- = 0,A,, # 0 which is

plotted by a dashed line.
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FIG. 4. The same as in Fig. 2) but for the data of Fig. 3. An additional curve corresponding

to the static solutions A, = A, = f_ = 0 (dashed line) is presented.

39



g.S. energy [MeV]

X, [MeV]

FIG. 5. Ground state energies, produced by the diagonalization procedure and by the present
approach are plotted as functions of x1. The Fermi levels A, and A, for the exact calculation are

taken equal to those given by the semi-classical treatment. The input data are the same as in Fig.

1.
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FIG. 6. The energy of the semi-classical mode is compared with the excitation energy of the
first excited state obtained by diagonalization. Also shown are the energies of the standard pro-
ton-proton and proton-neutron QRPA modes, when the proton-neutron pairing is not included in

the mean field(Ap, = 0). The input data are as shown in Fig. 1.
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FIG. 7. The expectation values of the model Hamiltonian in the states |k) defined by (6.5) are

plotted as function of x4
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