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I. INTRODUCTIONPairing orrelations of nuleons of the same harge have been extensively studied in vari-ous physial ontexts [1{6℄. Many properties of atomi nulei like gap parameters, momentsof inertia in deformed nulei, spetrosopi fators are niely explained by onsidering thepairing interation among alike nuleons. The standard way to treat the pairing orrelationsin nulei is the BCS approah. In suh a formalism symmetries like gauge and isospin invari-ane are broken. Sine there are physial observables whih are sensitive to the departurefrom these symmetries, several groups worked on restoring these symmetries [7{10℄.Though not so extensively, the proton-neutron Cooper pairs have been also investigated[11{26℄. Inluding the proton neutron pairing, various phenomena like stability of the groundstate against the partile partile proton-neutron interation, the struture of nulei lyinglose to the proton drip line, the struture of the N = Z nulei and the struture of super-dense nulear matter might be realistially approahed. The proton-neutron pairing has thepeuliarity, omparing it to the proton-proton and neutron-neutron pairing, that besidesthe T = 1 pairs there might exist also T = 0 pairing and the orresponding pairs may playan important role in some phenomena like the struture of the N = Z nulei [16,20℄ or theGamow Teller beta transitions [21,22℄. The ompetition of the T = 1 and T = 0 pairinghas been onsidered by several authors [17,20,23,24℄ partiularly in the ontext of high spinstates.The BCS formalism for alike nuleons has the salient feature that the ground state isdesribed by a oherent state for the SU(2) group assoiated to the quasi-spin algebra. Thisprovides not only some beauty to the mathematial framework but also a great tehnialsimpli�ations. In a time dependent variational treatment, it is relatively easy to �nd out aset of anonially onjugate oordinates in the lassial phase spae [27℄. Suh a property islost when besides this pairing interation the proton-neutron pairing is swithed on. Guidedby previous experiene, the ansatz for the variational state desribing the ground stateof a system with pp, pn and pn pairing is hosen to be a vauum for the quasipartile2



operators de�ned by a generalized Bogoliubov-Valatin (BV) transformation appropriate forthe partiular problem under onsideration.The aim of the present paper is to study a many body Hamiltonian, ommonly usedto study the beta transitions of Fermi type [26,28,29℄, whih involves the proton-neutronmonopole partile-hole and partile-partile two body interation. In the remaining of thetext we refer to these interations as to the ph and pp interations, respetively. Sinethe pp interation used in the model Hamiltonian is the T = 1 proton-neutron pairing, itis worthwhile to treat it on an equal footing with the proton-proton and neutron-neutronpairing. This allows to investigate the point whether one may ure the long standing problemof the ground state instability reahed at a ertain ritial value of the pp interation strength.We state from the beginning that there is no attempt here to disuss generalized BVtransformations that are relevant for the study of other problems like deformed nulei andhigh spin states. Indeed, many ahievements on this line have been reported, in the liter-ature. Our work here is motivated by a well known problem found in the desription ofthe nulei undergoing a double beta deay. Sine 1983, when Cha [30℄ notied that the�+ transition rates are very sensitive to the strength of the pp interation, all studies ofdouble beta deay based on pnQRPA formalism, or related formalisms, where inludingthe pp interation, although in the standard RPA alulations suh terms of the two bodyinteration are ignored. Suh studies show that as a funtion of the pp interation strength,the transition amplitude has a plateau and then dereases very fast to zero (see for instane[31℄). In this interval of fast derease, the transition amplitude reahes values ompatiblewith experimental data, soon the amplitude vanishes and immediately after the pnQRPAbreaks down. A lot of work has been devoted to ure the instability of the ground statearound the ritial value of the strength of the pp interation. Here we propose a solution toure this ill-behavior of the QRPA ground state. Our point here is that the proton-neutroninteration is ontributing �rst to the mean �eld and therefore it is taken into aount inthe minimization proedure used to �nd the stati ground state. Furthermore the residualinteration is treated by the usual QRPA proedure.3



The ground state is the stati solution of a time dependent variational priniple (TDVP)set of equations and inludes orrelations due to both the proton-proton, neutron-neutronpairing and the proton-neutron ph and pp interation. The variational state is taken as aprodut of three oherent states desribing the proton-proton, neutron-neutron and proton-neutron T=1 pairing. We determine not only the ground state properties by solving thegeneralized pairing equations but also the small osillations around the stati ground state.This projet is ahieved in several steps aording to the following plan. In Setion 2we de�ne our model Hamiltonian, formulate the time dependent formalism and derive thelassial equations of motion. The stati solution is disussed in Setion 3. The equationsof motion are linearized around the point where the energy is minimum and RPA likeequations are derived in Setion 4. Besides the energy there are another two onstants ofmotion, therefore there are two spurious states of vanishing solutions whih are ompletelydeoupled from the physial solutions. This property is also disussed in Setion 4. Some�nal onlusions are analytially obtained for the ase of a single j in Setion 5. Numerialappliation refers to a single j and is analyzed in Setion 6. The �nal onlusions are drawnin Setion 7.II. THE MODEL HAMILTONIAN AND THE CLASSICAL EQUATIONS OFMOTIONIn the present paper we shall deal with a heterogeneous system of nuleons whih movein a spherial shell model mean �eld and interat among themselves in the following man-ner. Nuleons of similar harge interat through monopole pairing fores while protons andneutrons interat by a monopole partile-hole and a monopole partile-partile two bodyterm. The many body Hamiltonian desribing suh a system reads:H = X�;j;m(�� � �� )y�jm�jm � Gp4 Xj;m;j0;m0 ypjmygpjmgpj0m0pj0m0 � Gn4 Xj;m;j0;m0 ynjmygnjm gnj0m0nj0m0+ 2�(ypjnj)0(ynj0pj0)0 � 2�1(ypjynj)0(nj0pj0)0: (2.1)4



y�jm(�jm) denotes the reation (annihilation) operator of one partile of �(= p; n) type inthe spherial shell model state j� ;nljmi � j�jmi. The time reversed state orrespondingto j� ;nljmi is denoted by j g� ; jmi = (�)j�mj� ; j �mi. This Hamiltonian is very often usedin the literature to desribe single and double beta Fermi transitions within a pnQRPAformalism [26,28,29℄.The model Hamiltonian will be treated within a time dependent variational formalism.Thus we are looking for the solutions of the following variational equation [27,32,33℄:Æ Z t0 h	jH � i ��t0 j	idt0 = 0: (2.2)If the state j	i spans the whole Hilbert spae for the many nuleons system, solving theequation (2.2) is equivalent to solving the time dependent Shroedinger equation. Thatwould mean that we replaed one very diÆult problem with one with similar degree ofdiÆulty. Sine we are interested to study not only the properties of the stati ground statebut also the small osillations around it we hoose a variational state of the following form:j	i = 	(zp; z�p; zn; z�n; zpn; z�pn) = eTpneTpeTn j0i: (2.3)where the transformations spei�ed by the operators T are given by:Tpn =Xjm (zpnjypjmygnjm � z�pnjgnjmpjm); (2.4)Tp =Xjm (zpjypjmygpjm � z�pjgpjmpjm); (2.5)Tn =Xjm (znjynjmygnjm � z�njgnjmnjm): (2.6)and j0i stands for the partile vauum state. These transformations depend on the parame-ters z whih are omplex funtions of time. The orresponding omplex onjugate funtionsare denoted by z�. The parameters (z; z�) play the role of lassial oordinates and onjugatemomenta, respetively. We reognize immediately the Bogoliubov-Valatin transformationsfor proton-proton, neutron-neutron and proton-neutron pairing interations, respetively:bypjm � eTpypjme�Tp = Upjypjm � Vpjgpjm; (2.7)bynjm � eTnynjme�Tn = Unjynjm � Vnjgnjm; (2.8)5



aypjm � eTpnypjme�Tpn = Ujypjm � Vjgnjm; (2.9a)aynjm � eTpnynjme�Tpn = Ujynjm � Vjgpjm (2.9b)The oeÆients U; V entering the above equations are related with the parameters z, de�ningthe variational state j	i, by the equations:zpj = �pjei'pj ; Upj = os 2�pj; Vpj = e�i'pj sin 2�pj;znj = �njei'nj ; Unj = os 2�nj; Vnj = e�i'nj sin 2�nj;zpnj = �pnjei'pnj ; Uj = os �pnj; Vj = e�i'pnj sin �pnj: (2.10)It is worthwhile to remark on a very important feature of the state 	. Using the Cambel-Hausdorf fatorization [35℄ for the �rst two exponential operators and then bringing theoperator exp(Tpn) near the partile vauum state one obtains:j	i = NpNneTpnePjm ApjypjmyfpjmePjm Anjynjmygnjm j0i= NpNnePjm ApjaypjmayfpjmePjm AnjaynjmaygnjmeTpn j0i = eT 0peT 0njBCSipn: (2.11)with the notations: N� =Yj (U�j)
j ; A�j = V�j�U�j ; � = p; n: (2.12)The notation jBCSipn stands for the vauum state of the quasipartile operators a�jm de�nedby eqs. (2.9), i.e. the BCS state for the proton-neutron pairing interation alone. Theoperators T 0p; T 0n are obtained from the orresponding operators Tp; Tn de�ned by eqs. (2.5,2.6) by replaing the partile operators y;  with the orresponding quasipartile operatorsay; a. This new form of the trial funtion shows that it is more general than the variationalstate used in ref. [26℄. The expression (2.11) shows that our variational state an be writtenas a produt of two BCS-like operators of quasipartiles ating on a standard proton-neutronBCS state. From this funtion one an immediately obtain an equivalent form:6



j	i = Yj;mi0 �f0 + fpypjmygpjm + fnynjmygnjm + fpn(ypjmygnjm + ynjmygpjm)� j0i; (2.13)where the amplitudes f have simple expressions in terms of the U and V oeÆients de�nedabove. Equation (2.13) has the form of the general BCS wave funtion for T = 1 (J = 0)pairing. Denoting by Û the unitary transformation (2.3) and by � the images of the fermionoperators through Û 0BBBBBBBB��y1jm�y2jm�g1jm�g2jm
1CCCCCCCCA = Û 0BBBBBBBB� ypjmynjmgpjmgnjm

1CCCCCCCCA Û y; (2.14)
and taking into aount the BV equations (2.7-9) we obtain the total quasipartile transfor-mation: 0BBBBBBBB��y1jm�y2jm�g1jm�g2jm

1CCCCCCCCA = 0BBBBBBBB� UpjUj �VpjV �j �VpjUj �UpjVj�VnjV �j UnjUj �UnjVj �VnjUjV �pjUj UpjV �j UpjUj �V �pjVjUnjV �j V �njUj �V �njVj UnjUj
1CCCCCCCCA
0BBBBBBBB� ypjmynjmgpjmgnjm

1CCCCCCCCA : (2.15)This is our BV matrix for generalized monopole pairing. It an be written as a produt ofthree matries desribing one BV transformation and two Hartree Fok transformations inthe isospin spae [25℄. The transformation oeÆients are de�ned as funtions of the U andV oeÆients given by the equations (2.10). Thus, although the fatorised form involvesthree distint BV transformations, this an be written in an alternative form whih agreeswith the Bloh-Messiah theorem [25℄. The transformation (2.14) does not mix states ofdi�erent angular momentum sine our model Hamiltonian involves only monopole pairinginterations.In order to write the equations of motion provided by the variational priniple (2.2),one needs to know the expression for the expetation values of the model Hamiltonianand the lassial ation. By a diret alulation one �nds for the expetation value ofH the expression given in the Appendix A. In the present paper we shall neglet the re-7



normalization of the single partile energies due to the two body terms, in the spirit of thestandard BCS approah. Therefore the lassial energy will be taken as:H =Xj (�pj � �p)(2j + 1)V 2e�;pj +Xj (�nj � �n)(2j + 1)V 2e�;nj�j�pj2Gp � j�nj2Gn + 2j��j2� � 2j�pnj2�1 ; (2.16)where the following notations have been used:V 2e� ;pj = (U2j jVpjj2 + jVjj2U2nj);V 2e�;nj = (U2j jVnjj2 + jVjj2U2pj);�p � Gp2 h	jXj;m ypjmygpjmj	i = Gp2 Xj (U2j UpjVpj � V 2j UnjVnj�);�n � Gn2 h	jXj;m ynjmygnjmj	i = Gn2 Xj (U2j UnjVnj � V 2j UpjVpj�);�� � �h	jXj (ypjnj)0j	i = �Xj ĵ(UjV �j UpjVpj + UjVjUnjVnj�);�+ � (��)� = �h	jXj (ynjpj)0j	i;�pn � �1h	jXj (ypjynj)0j	i = �1Xj ĵUjVj(U2pj � jVnjj2); ĵ = q2j + 1: (2.17)The Fermi level energies �p and �n are determined so that the average number of protonsand neutrons are equal to Z and N , respetively:Z =Xj (2j + 1)V 2e� ;pj;N =Xj (2j + 1)V 2e�;nj: (2.18)The lassial ation has the expression:h	j � i ��t j	i =Xj 
j[V 2pj �'pj +V 2nj �'nj +2V 2j (1� V 2pj � V 2nj) �'pnj℄; (2.19)where � stands for the time derivative.Having in mind the aim of quantizing the lassial trajetories it is useful to have theequations of motion in the anonial Hamilton form. To this aim we hange the lassialgeneralized oordinates by the following transformation:8



r0j = 
j(2 sin2 �pnj � 1)(1� sin2 2�pj � sin2 2�nj); '0j = 'pnj; 
j = 2j + 12 ;r�j = 12
j(sin2 2�pj � sin2 2�nj); '�j = 'pj � 'nj;r+j = 12
j(sin2 2�pj + sin2 2�nj); '+j = 'pj + 'nj � 2'pnj; (2.20)In terms of the new oordinates, the equations of motion provided by the variational priniple(2.2) have the anonial form:�H�r0j = � �'0j; �H�'0j =�r0j;�H�r�j = � �'�j; �H�'�j =�r�j;�H�r+j = � �'+j; �H�'+j =�r+j : (2.21)These equations suggest that the variables r0j; r�j; r+j play the role of lassial oordinateswhile '0j; '�j; '+j are their orresponding onjugate momenta. Two of the hosen oordi-nates have a nie physial meaning. Indeed, denoting by N̂�j the � -partile number operatorfor the shell j: N̂�j =Xm y�jm�jm; (2.22)one easily heks that the following equations hold:r0j = h	j � 
j + N̂pj + N̂nj2 j	i � h	jM̂zjj	i;2r�j = h	jN̂pj � N̂nj2 j	i � h	jT̂zjj	i: (2.23)These equations indiate that r0j; 2r�j are lassial variables assoiated to the z-omponentsof the pn quasi-spin ( M̂zj ) and isospin ( T̂zj ) , for eah shell j, respetively. In terms ofthe new oordinates the e�etive oupation probabilities are:V 2e� ;pj = 12 + 2r�j + r0j2
j ;V 2e� ;nj = 12 + �2r�j + r0j2
j : (2.24)The equations of motion are written expliitly in Appendix B. From the results presentedthere one �nds: 9



Xj �r0j = 0;Xj �r�j = 0: (2.25)whih results in having two onstants of motion:Mz =Xj h	jM̂zjj	i;Tz =Xj h	jT̂zjj	i: (2.26)This is a remarkable result. Indeed, although the trial funtion breaks gauge and isospinsymmetries, the lassial trajetories onserve these symmetries. This is a reminisene ofthe fat that the quantum mehanial operator H ommutes with Pj M̂zj and Pj T̂zj. Aswe shall see later on, the nie onsequene of this property is that the spurious solutions ofthe RPA equations are fully separated from the physial ones. Of ourse there exists a thirdonstant of motion whih is the lassial energy. Indeed, using the equations of motion, oneeasily heks that �H= 0: (2.27)This feature is spei� to any system governed by equations of motion derived from avariational priniple. Therefore the lassial trajetories are lying on the surfaeH = onst; (2.28)whih is onventionally alled the energy surfae. Note that the minima of this surfaeorrespond to the potential energy of the system, sine there the system has vanishingkineti energy. III. THE STATIC GROUND STATEThe equations of motion (2.18) are highly non-linear and therefore an not be solvedanalytially. However a good deal of information about the loal behavior of the solution10



of the non-linear equations an be drawn from the analysis of the solution of the linearizedequations. Suh a solution desribes small osillations around a stati ground state. There-fore we have �rst to searh for the stationary points, where the time derivatives of thegeneralized oordinates vanish. The equations (2.18) show that they are also stationarypoints for the energy surfae. We onsider the lassial system at rest whih implies that'0j = '�j = '+j = 0. Consequently �p;�n;�pn; �� are real quantities and the equationsorresponding to the time derivatives of the oordinates, are automatially obeyed. For agiven j-shell, the remaining equations are:�pj � �p + �nj � �n � UpjVpj + UnjVnjV 2pj � U2nj (�p +�n)� 2̂j U2j � V 2jUjVj UpjVpj + UnjVnjV 2pj � U2nj �� � 2̂j U2j � V 2jUjVj �pn = 0; (3.1a)�pj � �p � (�nj � �n)� U2pj � V 2pj2UpjVpj  U2j�p � V 2j �n � 4̂j UjVj��!�U2nj � V 2nj2UnjVnj  V 2j �p � U2j�n + 4̂j UjVj��! = 0; (3.1b)U2pj � V 2pj2UpjVpj  U2j�p � V 2j �n � 4̂j UjVj��!� U2nj � V 2nj2UnjVnj  V 2j �p � U2j�n + 4̂j UjVj��!+V 2j � U2jUjVj UpjVpj + UnjVnjV 2pj � U2nj "(�p +�n)UjVj + 2̂j (U2j � V 2j )��#� 2̂j 1UjVj�pn = 0: (3.1)From (3.1) one an easily express the quantities U2; V 2 in terms of �p;�n;�pn; �p; �n; �� :0BB� V 2pjU2pj 1CCA = 12 0�1� SpjU2j (�pj � �p)� V 2j (�nj � �n) + 4̂jUjVj�pnjq[U2j (�pj � �p)� V 2j (�nj � �n) + 4̂jUjVj�pn℄2 + (U2j�p � V 2j �n � 4̂jUjVj��)21A ;(3.2)0BB� V 2njU2nj 1CCA = 12 0�1� SnjU2j (�nj � �n)� V 2j (�pj � �p) + 4̂jUjVj�pnjq[U2j (�nj � �n)� V 2j (�pj � �p) + 4̂jUjVj�pn℄2 + (U2j�n � V 2j �p � 4̂jUjVj��)21A ;(3.3)11



0BB� V 2jU2j 1CCA = 12 0BB�1� Sj�pj � �p + �nj � �n � UpVp+UnVnV 2p �U2n (�p +�n)jr[�pj � �p + �nj � �n � UpVp+UnVnV 2p �U2n (�p +�n)℄2 + 162j+1(�pn + UpVp+UnVnV 2p �U2n ��)21CCA :(3.4)The fators Sp; Sn; S are phases determined in the following way. The three equations from(3.1) an be written in the alternative form:AjCj = U2j � V 2j2UjVj ;A�jC�j = U2�j � V 2�j2U�jV�j ; � = p; n: (3.5)with obvious notations for the terms from the left hand sides. The phases entering theequations de�ning the U and V oeÆients are given by :S = sign AjCj ! ; S� = sign A�jC�j ! ; � = p; n: (3.6)Note that the equations de�ning U and V oeÆients are oupled with eah other. Howeverin the single j ase, equation (3.4) is very muh simpli�ed due to the following equality :UpVp + UnVnV 2p � U2n = ��1����pn : (3.7)In this way the oeÆients U; V depend exlusively on gaps, Fermi energies and ��. Insertingtheir expression into the eqs (3.2) and (3.3) one �nds that the above statement is also truefor Vpj; Upj; Vnj; Unj.The three square root quantities involved in the equations de�ning the U and V oeÆ-ients de�ne three quasipartile energies. None of them is of pure neutron or pure protontype. For eah of them both the proton and neutron from the given shell partiipate. Whilein two of these energies the single partile energies enter through the di�erene of the weight-ed single partile proton and neutron energies in the remaining ase the sum of the protonand neutron energies appears. The �rst two ases di�er from the standard quasipartilesappearing in homogeneous systems where the single partile energies are normalized by the12



two body interation only by additive terms. Indeed, here also a ontration, due to themultipliative U2j and V 2j fators, appears.Denoting by Ns the number of the single partile levels taken into onsideration, andassuming the same single partile spae for protons and neutrons, there are 3Ns+2 equationsfor 3Ns + 2 unknowns (Vpj; Vnj; Vj; �p; �n): 3Ns stati equations (3.1) and two onstraintsproviding equations for the number of protons and the number of neutrons. The solutionsof these equations are known one we solve the six equations de�ning the gaps, ��, thenumber of protons and the number of neutrons. Indeed these equations, after replaingthe U and V oeÆients with their expressions in terms of gaps, �� and �p; �n, beome6 nonlinear equations for the unknowns: �p;�n;�pn; ��; �p; �n. Solving these equationsand alulating the oeÆients for the BV transformation one obtains the values for theanonial oordinates. It is worth mentioning that the stationary equations are neessarybut not suÆient onditions for minima of H. A rigorous test for minima stems from theproperties of the RPA equations. Indeed, if the stationary point, found in the way desribedabove, is a minimum then all solutions of the equations linearized around that point arereal. We address this problem in the next Setion.IV. THE RPA EQUATIONSLet us denote by (q; p) the deviations of the urrent variables from their stationary values,denoted by Ær0j; Æ'0j; Ær�j; Æ'�j; Ær+j; Æ'+j; respetively:q1j = r0j� Ær0j; p1j = '0j� Æ'0j;q2j = r�j� Ær�j; p2j = '�j� Æ'�j;q3j = r+j� Ær+j; p3j = '+j� Æ'+j : (4.1)Expanding the right hand side of equations (2.18) around the minimum point and keepingonly the linear terms in deviations one obtains:�pkj=Xk0j0 Akj;k0j0qk0j0;13



�qkj=Xk0j0 Bkj;k0j0pk0j0: (4.2)To save spae we don't give the expliit expressions for the matries Akj;k0j0 and Bkj;k0j0.For the speial ase of a single level we give in Appendix C only two oeÆients, A33and B33, whih are needed to alulate the frequeny of the harmoni mode. Note thatthe oeÆients of the expansion in eqs. (4.2) are just the seond order derivatives of thelassial Hamiltonian taken in the onsidered stationary point. Therefore, to the linear termsin the equations of motion orrespond the quadrati terms of the lassial energy expansion.Note that in the �rst equation (4.2) linear terms in p do not appear while in the seondequation the linear terms in q are missing. Their presene would violate the time reversalinvariane of H. The ondition for the existene of the minimum value for H is that theassoiated Hessian be positive, whih results in having a positive de�nite quadrati form forH. As a matter of fat this assures that frequenies for the lassial trajetories are all realnumbers. It is worth mentioning that the linearized equations of motion an be written inthe Hamilton anonial form (2.18) with H expanded up to the seond order. Therefore theanonial form is not altered by the linearization proess. Moreover the equations admit asonstants of motion: Mz =Xj q1j;Tz =Xj q2j: (4.3)This is implied by the following property of the matrix Bkj;k0j0:Xj Bkj;k0j0 = 0; k = 1; 2; k0 = 1; 2; 3: (4.4)A. Equations of motion in the RPA formIn what follows we write the equations of motion in a standard RPA form. To this aimwe look for the transformation to a new set of generalized oordinates:14



0BB� QiPi 1CCA = 0BB�Xi YiZi Wi 1CCA0BB� qp 1CCA: (4.5)hosen so that the following equations are ful�lled:�Qi= !Pi; �P i= �!iQi: (4.6)The index "i" labels the solutions of the equations written above, if they exist. The equa-tions (4.5) and (4.6) provide four sets of equations relating the matrix elements X; Y;W;Z.Only two of them are independent, the other two being obtained from the �rst ones byreplaements: Zi = �Xi; Wi = Yi: (4.7)The independent equations read:BTX = !Y; ATY = �!X: (4.8)It is easy to hek that the new anonial oordinates satisfy the equations:fQk;Hg = �Qk; fPk;Hg = �P k; (4.9)where f; g denotes the Poisson braket de�ned in the standard way. To any two funtions fand g, de�ned in the lassial phase spae, spanned by the onjugate oordinates (q; p), oneassoiates the Poisson braket:ff; gg = �f�qk �g�pk � �f�pk �g�qk : (4.10)The matrix elements X; Y de�ning the transformation (4.5) are related to the "forward"and "bakward" phonon amplitudes in the quantum mehanial piture. To prove this wequantize [27,34℄ the lassial motion. This an be ahieved by the following algebra mappingfqkj; pkj; f; gg ! fq̂; p̂; 1i [; ℄g, where the inner multipliation operation is the Poisson braketin the lassial algebra while in the quantal algebra it is the ommutator. By this mapping to15



the anonial onjugate variables (qkj; pkj) orrespond the oordinate and linear momentumoperators obeying the ommutation relations:[q̂; p̂℄ = i: (4.11)Similarly one de�nes the operators Q̂; P̂ by quantizing the lassial onjugate oordinates,Q;P . To these operators one assoiates the boson operators,hCk; Cyk0i = Æk;k0;hkj; yk0j0i = Æk;k0Æj;j0: (4.12)by the transformation:q̂kj = 1p2(ykj + kj); p̂kj = 1ip2(�ykj + kj);Q̂k = 1p2(Cyk + Ck); P̂k = 1ip2(�Cyk + Ck): (4.13)Quantizing the equation (4.5) relating the (q; p) oordinates to the (Q;P ) ones and thenusing the equations (4.13) one obtains an equation relating the bosons C;Cy and ; y:Cyk = 1 + ip2 X"Xk;lj + Yk;ljp2 ylj � �Xk;lj + Yk;ljp2 lj# : (4.14)From this equation one obtains the relation between the forward (fX) and bakward ( eY )amplitudes and the amplitudes de�ning the transformation (4.5) in the phase spae:fXk;lj = Xk;lj + Yk;ljp2 ; eYk;lj = �Xk;lj + Yk;ljp2 : (4.15)Replaing X and Y by their expressions in terms of fX and eY , using the inverse transforma-tion (4.15), the equations (4.8) an be written in an alternative form:0BB� �AT�BT2 �AT+BT2AT+BT2 AT�BT2 1CCA0BB� ~X~Y 1CCA = !0BB� ~X~Y 1CCA: (4.16)This equation is nothing else but the RPA equation for the generalized pairing vibrationwith the standard normalization for the amplitudes ~X and ~Y :Xlj ����fXk;lj���2 � ��� eYk;lj���2� = 1: (4.17)16



B. Spurious statesAs we have seen the system admits three onstants of motion and two of them reetthe invariane of the model Hamiltonian against the rotations around z axis in the spaesof the pn quasi-spin and isospin, respetively. These two symmetries are onsequenes ofthe equation (4.4). This equation determines important features for the solutions of theequations (4.8), i.e, the RPA equations. Indeed, there are two independent solutions ofvanishing energies: X1;1j = A1; 8j; X1;kj = 0; k = 2; 3; 8j;Y1;kj = 0; 8(k; j);X2;2j = A2; 8j; X2;kj = 0; k = 1; 3; 8j;Y2;kj = 0; 8(k; j): (4.18)where A1 and A2 are onstants with respet to the index j. In both ases, fX = eY and theRPA equations beome: BT fX = 0 (4.19)Sine for the !k = 0; (k = 1; 2) states Y = 0, the equation (4.5) yields:P = �Q: (4.20)and therefore fQ;Pg = 0. On the ontrary for physial solutions the Poisson braket is anon-vanishing quantity fQk; Pkg = 2Xk0j0 Xk;k0j0Yk;k0j0 = 1; (4.21)whih results in having the orresponding boson normalized to unity.V. THE SINGLE J CASEIn this ase many simpli�ations appear and several �nite analytial results an be ob-tained. In what follows we shall omit the index j speifying the single partile orbit. Even17



if we are in a simple situation, it is onvenient to onsider some extreme ases whih willde�ne some referene features with respet to whih the more general ases may be studied.From the partile number equations one easily derives very simple equations:V 2p � V 2n = Z �N2
 ;V 2p + V 2n = 11� 2V 2 �Z +N2
 � 2V 2� ; (5.1)whih allows one to determine Vp and Vn in terms of V0�V 2pV 2n 1A = 12 �Z �N2
 � 11� 2V 2 (Z +N2
 � 2V 2)� : (5.2)Therefore, in order to solve the stati equations one has to use the equation for V 2 and thenthe equations (5.2) whih express V 2p and V 2n in terms of V 2, in onnetion with the gaps,�� and partile number equations. In this way one obtains a set of 6 equations for the sixunknowns �p;�n;�pn; ��; �p; �n.Let us now onsider some partiular ases:I) � = �1 = 0. This is the standard ase, when only the nuleons of similar hargeare paired. From the formulae presented in the previous setions by onsidering vanishingvalues for � and �1, we obtain deoupled pairing equations for protons and neutrons.�� = G�
U�V� ;N� � ZÆ�;p +NÆ�;n = 2
V 2� ; � = p; n: (5.3)From here the standard equations for the gap and the Fermi level are analytially obtained:�� = G� �12N�
(1� N�2
)� 12 ;j�� � �� j = G�
�14 � N�2
(1� N�2
)� 12 : (5.4)Note that if the input data are so that Z = N = 
 then�p � �p = �n � �n = 0;�� = 12G�
: (5.5)18



while for empty or �lled shell one automatially gets �� = 0:II) We onsider now the same strength for the pp and nn pairing interations andnon-vanishing �; �1: Gp = Gn � G;�; �1 6= 0: (5.6)In what follows we shall disuss the stati equations in terms of two parameters q and Pde�ned as follows: q � Z �N2
 = V 2p � V 2n ;P � 1� Z +N2
 = (1� 2V 2)(1� V 2n � V 2p ): (5.7)These quantities are related to the onstants of motion r0 and r� by simple relations:P = �r0
 ;q = 2r�
 : (5.8)From the gap's equations one derives a useful relation between all three gap's.�pn(�p +�n)�� = G�1� 
P: (5.9)Let us onsider the ase q=0. Conerning P , the following extreme ases are interesting:a) P = 0, whih orresponds to a half �lled shell,b) P = �1, the shell is ompletely �lled,) P = 1, empty shell and,d) P = 12 , one quarter �lled shell.If q = 0 and �p = �n � ep + �p, then several simpli�ations in the equations for the Uand V oeÆients appear. Sine from q = 0 we get V 2p = V 2n and with the onvention thatU 's and V 's are positive we get that the signs in the eqs (3.2-3.4) are related by Sp = Sn,the gaps are given by: 19



�n = �p = G
(1� 2V 2)UpVp;�pn = �1p2
(1� 2V 2p )UV;�� = 2 ��1 �p�pn
PG : (5.10)The equation for U 0s and V 0s an be written in a very symmetri form:U2p � V 2p = Sp jep + 2
�1 �2pnP jr[ep + 2
�1 �2pnP ℄2 + [�p � �p�2pnP 2 �G( 2
�1 )2℄2 ;U2 � V 2 = S jep + 2
G �2pP jr[ep + 2
G �2pP ℄2 + 2
 [�pn � �2p�pnP 2 ��1 ( 2
G)2℄2 (5.11)Denoting the quantities under the square root signs in equations (5.11) by A and B respe-tively, and multiplying the two equations (5.11) side by side one obtains:P [AB℄ 12 = SpS ����� ep + 2�2pnP
�1! ep + 2�2pP
G!����� (5.12)From the above equation and the de�nition of P ( see eq. (5.7)) one may onlude thatSp = S; for 0 < P < 1 (the shell is less than half �lled);Sp = �S; for � 1 < P < 0 (the shell is more than half �lled): (5.13)The equation P = 0 is ful�lled when either V 2p = 12 and/or V 2 = 12 . From the gap'sequation one obtains �pn = 0 for the �rst ase while for the seond solution the proton gapis vanishing. For what follows it is onvenient to write the equations (5.11) in the equivalentform:24 epP + 2�2pn
�1 !2 +  �pP � 2�pn��
�1 !235 12 = �����(1� 2V 2)ep + 4p2
UV�pn����� ;24 epP + 2�2p
G !2 + 2
  �pnP � 2�p��
G !235 12 = j(1� 2V 2p )ep + 2G
(1� 2V 2)U2pV 2p j: (5.14)For the �rst solution mentioned above, i.e. V 2p = 12 , we notie that the above equations aresatis�ed provided V 2 = 12 , whih results in having �p = 0. Conluding for q = 0; P = 0one has the solution V 2 = V 2p = 12 and �p = �pn = 0.20



For the general ase of P 6= 0, eqs. (5.11) ould be written, after some algebrai ma-nipulations, in a suitable form whih allows to express analytially the gaps �p and �pn interms of P : epP + 2�1
�2pn = �P 2G
2 ������1�  2�1
!2 �G ��pnP �2������epP + 2G
�2p = �P 2�1 �����1� � 2G
�2 ��1 ��pP �2����� (5.15)When the spae of single partile states is restrited to one level, the RPA equationsare very simple and moreover analytially solvable. Indeed, sine we have two onstants ofmotion the equations for q3, p3 are deoupled. Moreover they an be easily integrated withthe result of a harmoni motion with the frequeny! = q�A33B33: (5.16)where the involved matrix elements are given in Appendix C.VI. NUMERICAL APPLICATIONFor illustration, the formalism developed in the previous setions is applied here for thease of a single j = 192 shell of energies �p = �n = 3 MeV. First, we onsider a system of 4protons and 12 neutrons. The strengths of the two body interations are as follows:Gp = 0:25MeV; Gn = 0:12MeV; � = 0:2MeV: (6.1)The strength for the pp interation �1 is onsidered as a free parameter and varied in theinterval from 0 to 5 MeV. We solve �rst the generalized pairing equations and determine thegaps and the Fermi levels. We note that having r0; r� as onstants of motion, the numbersof protons and neutrons are onserved along a given lassial trajetory. There is no need foradditional onstraints for partile number onservation. However we keep these onstraintson the Fermi level energies, in order to �x the values of the two onstants of motion. Theresults are olleted in Figs. 1 and 2. From Fig. 1a one sees that the �� values are almost21



insensitive to �1 and the neutron gap is slightly hanging at the variation of �1. The protongap is however inreasing rapidly with �1. The reason is that in the deoupling regime(small �1) the oupation probability for protons is small, whih results in a small protongap parameter. This auses a relatively larger e�et of the perturbation produed by the ppinteration. For large values of �1, the proton and neutron gaps are similar. The dependeneof proton and neutron gaps on �1, as well as the independene of ��, are related to the fatthat while the proton-proton, neutron-neutron and proton-neutron interation of strength�1, are all of partile-partile type, �� haraterizes the partile-hole interation. The phasespae oordinates orresponding to the solutions of the pairing equations de�ne stationarypoints of the energy surfae. The orresponding energies are plotted by solid line in Fig. 2.These points are minima points sine the RPA equations have a real positive root, as shownin Fig. 1b.It is worth ommenting on the behavior of ! as a funtion of �1. Indeed it is inreasingwith �1 in the same way as �pn. This behavior is in ontrast to the standard one where theRPA energy dereases with inreasing strength of the attrative fore. The reason is thatin the present work the attrative fore modi�es the mean �eld for the quasipartile motionand therefore the RPA ground state does not ollapse with inreasing �1.In addition to the �1 dependent BCS solution shown in Fig. 1, there is another one thatis independent of �1 and has the following values�p = 1:0MeV;�n = 0:588MeV; �� = �pn = 0:0 MeV;H = �5:32MeV: (6.2)The energy orresponding to this solution is shown in Fig. 2 by dotted line. This solutionis of a di�erent nature. Sine for this ase one has U = 1; V = 0, r0 and r+ are, upto an additive onstant, idential. Therefore the state desribed by r+ is spurious andorresponds to ! = 0. In this ase the ground state is degenerate. The full and dottedenergy lines annot be ompared with eah other sine they orrespond to di�erent phases.The Goldstone mode is a bridge between two modes of di�erent nature, or in other words, itseparates two distint nulear phases. In the present study the phase with all gaps di�erent22



from zero is well de�ned while the seond phase is not. The RPA mode assoiated to thelatter phase is ollapsing to a Goldstone mode in the single shell ase. In order to reahanother stable phase one has to inlude more shells and to hange also the strength of theother two body terms.Next we onsider the ase N = Z. As we said before, for N=Z the T = 0 pn pairingis expeted to be important. Suh a pairing interation a�ets mainly the Gamow-Tellerbeta transitions and not the Fermi ones. Therefore the isosalar pairing is ignored in thepresent work, due to the spei� struture of the model Hamiltonian. It is remarkable thateven in the absene of the T = 0 pairing, the probability to have a proton paired with aneutron omes out to be omparable to or larger than the probability for having it pairedwith another proton depending on the �1 value (likewise for neutrons). This ase is analyzedusing the following input data:Z = N = 8; Gp = Gn = 0:125MeV; � = 0:20MeV: (6.3)The results are shown in Figs. 3 and 4. Sine the strengths of pairing for alike nuleons areequal and are lose to the monopole partile-hole strength, the gaps �p = �n and �� arenot very di�erent. The solutions of the stati equations are minima points for the lassialenergy. Indeed, as shown in Fig 3b the RPA equation has positive roots. The minimalenergies are plotted in Fig. 4 by full line. For eah value of �1 there are another twosolutions of the stati equations. One is haraterized by �� = �p = �n = 0 and �pn 6= 0.The non-vanishing values for �pn and H are shown in Fig. 3b and 4, respetively, by dashedlines. The other solution onsists of�� = �pn = 0; �p = �n = 0:612 MeV; H = �4:0 MeV: (6.4)and does not depend on �1. The onstant energy is presented, for the sake of ompletenessin Fig. 4. The RPA modes on these two stati solutions are spurious and onsequently have! values equal to zero. Indeed, in eah of these two ases the oordinate r+ beomes equalto one of the oordinates whih are onstants of motion. This will ertainly not happen in23



the multilevel situation but they will de�ne distint phases, whih will persist for a manifoldin the strength parameters spae.The advantage of using the single j ase is the possibility of testing the semi-lassialapproah by omparing the preditions with the orresponding exat result. Therefore wediagonalize the model Hamiltonian in the non-orthogonal basis:jn1; n2; n3i = Nn1;n2;n3(Aypp)n1(Aynn)n2(Aypn)n3 j0i; (6.5)where j0i denotes the vauum andAy�� =Xm y�jmyg�jm; � = p; n;Aypn =Xm ypjmygnjm: (6.6)The integers n1; n2; n3 are subjet to the onstraints:2n1 + n3 = Z; 2n2 + n3 = N (6.7)As in the numerial appliation desribed before we onsider the ase (Z;N) = (4; 12) inthe j = 192 shell. The equations (6.7) have three solutions whih determine the followingbasis states: j1i � j2; 6; 0i; j2i � j1; 5; 2i; j3i � j0; 4; 4i: (6.8)We note that in our basis states all nuleons are paired. Moreover these states are ompo-nents of the trial funtion (see eq. 2.13). Inlusion of some broken pairs is straightforwardbut it is not neessary sine the states with broken pairs are not linked to the basis states(6.5) by the model Hamiltonian. With some e�orts the matrix elements of the model Hamil-tonian, in the above basis, an be derived analytially. Although it is apparently simple wegive, for the sake of ompleteness, few details about the diagonalization proedure. Basiallywe aim at solving the eigenvalue equationsHj�i = Ej�i; (6.9)24



with the ansatz: j�i =Xk Ckjki; (6.10)where the non-orthogonal states jki are de�ned by the equation (6.5). Denoting by C theolumn vetor with the omponents Ck and by O the overlap matrix, the equation (6.9) anbe written as: �HC = EOC; (6.11)with �H standing for the matrix of H in the basis (6.5). Consider now the eigenvalue equationassoiated to O Ovi = aivi; i = 1; 2; 3; (6.12)and denote the eigenvetors matrix byW = (v1; v2; v3): (6.13)The overlap matrix is positive de�nite and therefore the following diagonal matrix an bede�ned M = 0BBBB�pa1 0 00 pa2 00 0 pa31CCCCA : (6.14)The overlap matrix O may be written in the fatorised formO = UUT ; (6.15)with U = WM; (6.16)and T standing for the transposition operation. Transforming the vetor C intoX = UTC; (6.17)25



equation (6.11) is transformed into an ordinary eigenvalue equation for a symmetri matrix:fHX = EX; (6.18)where fH = U�1 �H(U�1)T : (6.19)The results of the exat diagonalization are shown and ompared to the results of thesemi-lassial approah in Figures 5,6,7. In FIG. 5, the energy of the ground state obtainedby diagonalization is ompared to the preditions of the approah used in the present paper.We note that although, as expeted, the exat ground state energy is lower than the oneobtained with the semi-lassial method, the energy variations with respet to �1 followthe same trend. In Fig. 6 we plot the energies of the �rst exited state yielded by thediagonalization proedure and by the semi-lassial proedure(eq. 5.16) by dashed and solidlines, respetively.Usually the model Hamiltonian (2.1) is treated as follows: First it is written in termsof quasipartiles, using independent BV transformations for protons and neutrons. Then,the resulting Hamiltonian is treated by the QRPA approah. As a result three independentmodes are obtained: a proton-proton, a neutron-neutron and a proton-neutron QRPA mode.In Fig. 6 we also plot, for omparison, the energies of the proton-proton and proton-neutronmodes as funtions of �1 by dash-dotted and dotted lines, respetively. The energy of theproton-proton mode is not ollapsing sine the proton-proton pairing is inluded in the mean�eld. However this is not the ase for the proton-neutron mode that, as already mentioned,dereases fast and ollapses with inreasing �1. The standard pnQRPA mode, representedby dotted line in Fig. 6, desribes osillations around dotted line ground state in Fig. 2.From the latter �gure it is obvious that starting from �1 � 0:2 the true stati ground stateorresponds to the situation where �pn 6= 0.At low �1, the �rst exat exited state is higher in energy. For �1 = 0 its energy is loseto the 4 quasipartile energies 2Ep + 2En with Ep,En standing for the proton and neutron26



quasipartile energies respetively. This an be understood better from Fig. 7. Indeedthe struture of the states given by diagonalization an be seen either by looking at theomponents of the orresponding eigenvetors or omparing the diagonal terms of the modelHamiltonian. Thus one notes that for �1 < 1:9, the lowest state is j1i. To exite the systemto the state j2i one has to break one proton-proton pair and one neutron-neutron pair andreate instead 2 proton-neutron pairs. The exitation energy shown in Fig. 6 should belose to the energy spaing between the lowest two lines shown in Fig. 7. This spaing isdereasing up to �1 � 1:9 and then it is inreasing. This explains the minimum value of theexitation energy at about �1 = 1:6, from Fig.6. This reets indeed a transition from thephase where the dominant ground state omponent has only like nuleons paired to a newphase with a dominant ground state omponent having no proton-proton pairs, all protonspartiipating in proton-neutron pairs. For the above mentioned value of �1 the three statesare quasi-degenerate and apparently the system might be exited at an almost vanishingost. As a matter of fat that happens in the standard pnQRPA treatment (see the dottedline in Fig. 6). However in the exat alulation the minimum exitation energy ausedby the o�-diagonal matrix elements and shown in Fig. 6 is very lose to twie the proton-neutron gap shown in Fig.1 at �1 � 1:6. This is nothing else but a beautiful on�rmationprovided by the exat alulation for the mehanism whih prevents the ground state toollapse. It is interesting to see that there are two values for �1 where the predition of thepresent approah oinides with the exat result. This is an indiation that for these valuesthe omponents of alpha-like (two proton-neutron pairs) exitations prevail.Of ourse there are di�erenes between the urves shown by full and dashed lines in Fig.6aused mainly by the fat that while the exat eigenstates have de�nite numbers of protonsand neutrons, in the semi-lassial approah these numbers are onserved only in average, inthe stati ground state. Therefore in the present approah the phonon operator an onnetthe ground state of a (N,Z) nuleus with exited states in the neighboring odd-odd as well aseven-even nulei. Suh a transition operator was onstruted within a di�erent approah anddi�erent arguments in ref. [36℄. In order to obtain a detail struture of the phonon operator27



obtained by quantizing the lassial motion of the independent degrees of freedom additionalinvestigations are neessary. They are under progress and will be published elsewhere.The osillating sign of the deviations of the exat exitation energy from the value of !(5.16) reets the fat that the semi-lassial approah aounts for the average propertiesof the many body system. VII. CONCLUSIONSIn the previous Setions we developed a semi-lassial formalism to treat a many bodyHamiltonian whih is often used in the literature to study the single and double beta Fermitransitions. Usually suh a Hamiltonian is treated in two steps. First one treats the pairinginteration de�ning a BCS ground state where alike nuleons are paired to vanishing angularmomentum. In the next step the monopole partile-hole and partile-partile proton-neutroninterations are treated by the proton neutron quasipartile RPA (pnQRPA). In suh atreatment the ground state is ollapsing for a ritial value of the strength of the partilepartile interation(see for instane [28,29℄). This feature is troublesome sine a) the realistivalue of the strength for the pp interation is lose to its ritial value, and b) the value ofthe strength that reprodues the experimental value of the double beta transition amplitudeis also lose to the value where the pnQRPA breaks down. The pp interation is just theproton-neutron T=1 pairing interation and therefore the instability of the pnQRPA groundstate is an indiation that there must exist a new stati ground state whih inludes theproton-neutron orrelations. If that ground state exists indeed, the residual pp interationdoes not produe any longer instability of the RPA solutions sine the dangerous graphs havebeen already introdued in the stati ground state. These ideas guided us in performing thepresent work.The model Hamiltonian has been treated within a semi-lassial formalism. The vari-ational state is obtained by applying on the bare vauum three BV transformations: forproton-proton, neutron-neutron and proton-neutron pairing. We have proved that this s-28



tate may be written as two BV transformations applied on the BCS vauum for the proton-neutron pairing. For monopole pairing this is a general transformation mixing protons andneutrons. Indeed, it depends on 6 real parameters for eah j-shell. The lassial equations ofmotion are written in a Hamilton anonial form. The anonial oordinates have very niephysial interpretation. Two of them desribe, lassially, the rotation around the z axes inthe spae of the proton-neutron quasi-spin and the spae of isospin respetively. Moreoverthe r0 variable desribes rotations in the gauge spae. Three onstants of motion have beenfound. These are the third omponents of the total quasi-spin and isospin respetively andthe lassial energy. The stati equations are, in fat, the generalized pairing equations whosesolutions determine the stati ground state. Within this approximation one de�nes not onlythe stati ground state but also three quasipartile energies orresponding to the three BVtransformations. Although the orresponding quasipartiles are independent modes, theirenergies are related through the partile-hole two body term -whih renormalizes the threegaps- and through a gap dependent re-normalization of the single partile energies.The proof that the found solutions orrespond to the minimum energy is given by thefat that the RPA equations have a real positive solution.Numerial appliations have been made for the ase of a single level. In this ase themodel is integrable sine we have three degrees of freedom and three onstants of motion.Yet, we use the BCS and RPA approximations to illustrate the improvement gained over theprevious attempts for the same Hamiltonian, where the self-onsisteny between the mean�eld and the RPA mode was not implemented. In the numerial ases onsidered here wefound a ground state with all gaps, i. e. �p;�n;�pn; ��, di�erent from zero. To this groundstate it orresponds a real positive RPA energy whih, ontrary to the up to date knowledge,is inreasing with the strength of the partile-partile interation.Several situations when a Goldstone mode appears have been found. This is a signaturefor a phase transition. An additional phase, distint from the one mentioned above, annotbe found in the one level ase sine when �pn = 0 the r+ oordinate beomes a onstant ofmotion, and the ground state orresponding to the new phase beomes degenerate.29



The results of the present paper are very important sine they eluidate a long standingproblem in the many body treatment of the Fermi transitions whih inludes the partilepartile interation in the pnQRPA formalism.Several salient features of the present approah are pointed out by omparing its predi-tions with those obtained by an exat treatment of the model Hamiltonian.VIII. APPENDIX AThe expliit expression of the lassial energy is:H � h	jHj	i =Xj "(�pj � �p)� Gp2 (U2j jVpjj2 + jVjj2Unj2) + (2�+ �1)2j + 1 (U2j Unj2 + jVjj2jVpjj2)� �12j + 1(U2j jVnjj2 + jVjj2Upj2)# (U2j jVpjj2 + jVjj2Unj2)(2j + 1)+Xj "(�nj � �n)� Gn2 (U2j jVnjj2 + jVjj2Upj2) + (2�+ �1)2j + 1 (U2j Upj2 + jVjj2jVnjj2)� �12j + 1(U2j jVnjj2 + jVjj2Upj2)# (U2j jVnjj2 + jVjj2Upj2)(2j + 1)+(��+ �1)Xj (jVpjj2Unj2 + jVnjj2Upj2)� �Xj (jVnjj2 � jVpjj2)+2�1Xj (U2j V �j 2UpjjVpjjUnjjVnjj+ h::)��j�pj2Gp � j�nj2Gn + 2j��j2� � 2j�pnj2�1 : (A.1)IX. APPENDIX BTaking into aount the analytial expression of the lassial energy H one an easilyobtain the equations of motion in an expliit form:�r0j = �i
j [(UnjV �njV 2j � UpjU2j Vpj)��p � (UnjVnjV �j 2 � UpjV �pjU2j )�p℄�i
j [(UpjV �pjV 2j � UnjVnjU2j )��n � (UpjVpjV �j 2 � UnjV �njU2j )�n℄�2iĵ(U2pj � jV 2njj)(V �j �pn � Vj��pn)Uj; (B.1)30



�r�j = i2
j[(UpjVpjU2j � UnjV 2j V �nj)��p � (UpjV �pjU2j � UnjVnjV �j 2)�p℄+ i2
j[(UpjV �pjV 2j � UnjVnjU2j )��n � (UpjVpjV �j 2 � UnjV �njU2j )�n℄+iĵ[(UjVjUpjV �pj + UjV �j UnjVnj)�� � (UjV �j UpjVpj + UjVjUnjV �nj)���℄; (B.2)�r+j = i2
j[(UpjVpjU2j + UnjV �njV 2j )��p � (UpjV �pjU2j + UnjVnjV �j 2)�p℄+ i2
j[(UpjV �pjU2j + UnjVnjU2j )��n � (UpjVpjU2j + UnjV �njU2j )�n℄+iĵ[(UjVjUpjV �pj � UjV �j UnjVnj)�� � (UjV �j UpjVpj � UjVjUnjV �nj)���℄; (B.3)� �'0j = (�pj � �p) + (�nj � �n)�12 1jVpjj2 � U2nj " UpjVpj + UnjV �nj VjV �j !��p +  UpjV �pj + UnjVnjV �jVj !�p#�12 1jVpjj2 � U2nj " UnjVnj + UpjV �pj VjV �j !��n +  UnjV �nj + UpVpV �jVj !�n#� 1̂j U2j � jVjj2Uj  1V �j ��pn + 1Vj�pn!+1̂j U2j � jVjj2U2pj � jVnjj2 1UjjVjj2 [(UpjVpjVj + UnjVnjV �j )��� + (UpjV �pjV �j + UnjVnjVj)��℄; (B.4)� �'�j = 2[(�pj � �p)� (�nj � �n)℄�12 "U2j (U2pj � jVpjj2)Upj  ��pV �pj + �pVpj!+ U2nj � jVnjj2Unj  V 2jVnj��p + V �j 2V �nj �p!#+12 "U2j (U2nj � jVnjj2)Unj  ��nV �nj + �nVnj!+ U2pj � jVpjj2Upj  V 2jVpj��n + V �j 2V �pj �n!#+2̂j "Uj(U2pj � jVpjj2)Upj  V �jV �pj��� + VjVpj ��!� Uj(U2nj � jVnjj2)Unj  V �jV �nj �� + VjVnj ���!# ; (B.5)� �'+j = �12 "U2j (U2pj � jVpjj2)Upj  ��pV �pj + �pVpj!� U2nj � jVnjj2Unj  V 2jVnj��p + V �j 2V �nj �p!+2 jVjj2 � U2jjVpjj2 � U2nj " UpjVpj + UnjV �nj VjV �j !��p +  UpjV �pj + UnjV �njV �jVj !�p##�12 "U2j (U2nj � jVnjj2)Unj  ��nV �nj + �nVnj!� U2pj � jVpjj2Upj  V 2jVpj��n + V �j 2V �pj �n!+2 jVjj2 � U2jjVpjj2 � U2nj " UnjVnj + UpjV �pj VjV �j !��n +  UnjV �nj + UpjVpjV �jVj !�n##31



+2̂j "Uj(U2pj � jVpjj2)Upj  V �jV �pj ��� + VjVpj ���!+ Uj(U2nj � jVnjj2)Unj  V �jV �nj �� + VjVnj ���!�(U2j � jVjj2)2U2pj � jVnjj2 1UjjVjj2 h(UpjVpjVj + U�njV �njV �j )��� + (UpjV �pjV �j + UnjVnjVj)��i#+2̂j 1Uj  ��pnV �j + �pnVj ! : (B.6)X. APPENDIX CHere we give the analytial expressions for the oeÆients A33 and B33 involved in theequations of motion haraterizing the single j ase. These oeÆients determine, by meansof (5.16), the energy of the harmoni mode.A33 = 12
j "4V 2 � U2V 2p � U2n   U2p � V 2pUpVp � U2n � V 2nUnVn ! �p +�n � 2̂j V 2 � U2UV ��!+ V 2 � U2U3V 3 �pnĵ !�16 V 2 � U2(V 2p � U2n)2  UpVp + UnVn)(�p +�n � 2V 2 � U2UV ��̂j !� 1U3pV 3p  U2�p � V 2�n � 4̂j UV ��!� 1U3nV 3n  U2�n � V 2�p � 4̂j UV ��!+Gp
j "U2(U2p � V 2p )UpVp � V 2(U2n � V 2n )UnVn + 2UpVp + UnVnV 2p � U2n (V 2 � U2)#2+Gn
j "U2(U2n � V 2n )UnVn � V 2(U2p � V 2p )UpVp + 2UpVp + UnVnV 2p � U2n (V 2 � U2)#2�4�U2V 2 "U2p � V 2pUpVp + U2n � V 2nUnVn + UpVp + UnVnV 2p � U2n (V 2 � U2)2U2V 2 #2 + 4 �1U2V 235B33 = �p22Gp + �n22Gn � 2��2� + 
j2 [�Gp
j(UpVpU2 + UnVnV 2)2�Gn
j(UpVpV 2 + UnVnU2)2 + 4�U2V 2(UpVp � UnVn)2)℄: (C.1)
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FIG. 1. The gap parameters �p;�n; ��; (a), �pn (b) obtained by solving the general-ized pairing equations (2.15), (2.16) and the energy of the RPA mode (b) given by eq.(5.17) are plotted as funtions of �1. The strengths for the two body interation terms areGp = 0:25MeV; Gn = 0:12MeV; � = 0:20MeV. The partile numbers are Z = 4; N = 12:, inj = 192 shell.
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FIG. 2. The energy minima, orresponding to the solutions of the stati equations, are plottedas funtion of �1. The input data are the same as in Fig. 1. Interation strengths are given inunits of MeV. The minimal lassial energy orresponding to the stati solution with �pn = 0 isalso plotted.
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FIG. 3. The same as in Fig. 1) but for Z = N = 8; Gp = Gn = 0:125MeV. In this ase anadditional solution of the stati equation appears with �p = �n = �� = 0;�pn 6= 0 whih isplotted by a dashed line.
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FIG. 4. The same as in Fig. 2) but for the data of Fig. 3. An additional urve orrespondingto the stati solutions �p = �n = �� = 0 (dashed line) is presented.
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FIG. 5. Ground state energies, produed by the diagonalization proedure and by the presentapproah are plotted as funtions of �1. The Fermi levels �p and �n for the exat alulation aretaken equal to those given by the semi-lassial treatment. The input data are the same as in Fig.1.
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FIG. 6. The energy of the semi-lassial mode is ompared with the exitation energy of the�rst exited state obtained by diagonalization. Also shown are the energies of the standard pro-ton-proton and proton-neutron QRPA modes, when the proton-neutron pairing is not inluded inthe mean �eld(�pn = 0). The input data are as shown in Fig. 1.
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FIG. 7. The expetation values of the model Hamiltonian in the states jki de�ned by (6.5) areplotted as funtion of �1
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