1	STUDIES ON CAKE QUALITY MADE OF									
2	WHEAT-CHICKPEA FLOUR BLENDS									
3										
4	Manuel Gómez ^{1,*} , Bonastre Oliete ¹ , Cristina M. Rosell ² , Valentín Pando ³ ,									
5	Encarnación Fernández ¹									
6										
7	¹ Departamento de Ingeniería Agrícola y Forestal, Tecnología de los Alimentos,									
8	E.T.S.Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain.									
9	² Cereals Group, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, P.O.									
10	Box 73, 46100 Burjassot, Valencia, Spain.									
11	³ Departamento de Estadística e Investigación Operativa, E.T.S. Ingenierías									
12	Agrarias, Universidad de Valladolid, 34004 Palencia, Spain.									
13										
14	*To whom correspondence should be addressed. E-mail: <u>pallares@iaf.uva.es</u> .									
15	Phone number: +34979108359									
16	Fax number: +34979108302									

17 Abstract

18 Legume flours, due to their amino acid composition and fibre content are ideal 19 ingredients for improving the nutritional value of bread and bakery products. In 20 this study the influence of the total or partial replacement of wheat flour by 21 chickpea flour on the quality characteristics of two kinds of cake was analyzed. 22 The effects of the chickpea variety and the milling system were also considered. 23 Volume, symmetry, chroma, and crust and crumb L* diminished when increasing 24 the amount of chickpea flour. The replacement of wheat flour by chickpea flour 25 also induced an increase in the initial firmness but cohesiveness and resilience 26 diminished, increasing the tendency to hardening. The chickpea variety and the 27 milling process (white or whole flour) had also significant influence on cake 28 quality.

29

30

31 Key words: composite flours, chickpea, cake quality, texture properties, staling.

32 **1. Introduction**

33 Pulses have been at the heart of many traditional cuisines for thousands of years. 34 Legumes have been known as "a poor man's meat". They supply protein, complex 35 carbohydrates, fibre and essential vitamins and minerals to the diet, are low in fat 36 and sodium and contain no cholesterol. Legumes have been identified as low glycaemic index foods (Bornet, Billaux & Messing, 1997). Selecting foods of low 37 38 glycaemic index is very important in the dietary treatment of diabetes mellitus, 39 increases satiety, facilitates the control of food intake and has other health benefits 40 for healthy subjects in terms of post-prandial glucose and lipid metabolism 41 (Rizkalla, Bellisle & Slama, 2002). Regular consumption of pulses may have 42 important protective effects on risk for cardiovascular disease (Anderson & Major, 2002). Moreover, pulses contain a rich variety of compounds, which, if 43 44 consumed in sufficient quantities, may help to reduce tumour risk (Mathers, 45 2002). In fact, most health organizations encourage their frequent consumption 46 (Leterme, 2002). These nutritional benefits are related to the reduced digestibility 47 of legume starch and dietary fibre content of legumes, mainly located in their husk 48 fractions. The low digestibility of legume starch has been attributed to its 49 amylose, which is considerably branched and of high molecular weight 50 (Tharanathan & Mahadevamma, 2003).

In the last decades, attitudes and perceptions towards legumes have been changing, bringing about a revival of interest on the part of consumers (Morrow, 1991). The annual per capita consumption of pulses in 1999 was 5.9 kg worldwide, and 2.8 kg in Europe. These consumption figures rose by 10% from 1989 to 1999 but they could increase even further if the food industry and professional organizations take up the challenge to incorporate grain legumes in

57 novel, convenient and healthy food products (Schneider, 2002). The addition of 58 legume to cereal-based products could be a good alternative for increasing the 59 intake of legumes. In addition, legume proteins are rich in lysine and deficient in 60 sulphur containing amino acids, whereas cereal proteins are deficient in lysine, but have adequate amounts of sulphur amino acids (Eggum & Beame, 1983). 61 Therefore, the combination of grain with legume proteins would provide better 62 63 overall essential amino acid balance, helping to combat the world protein calorie 64 malnutrition problem (Livingstone, Feng & Malleshi, 1993).

65 Several studies about the influence of the addition of legume flours on the 66 functional properties of bread dough and final bread quality have been reported in 67 the last 30 years. Among the legumes tested, it is worth mentioning the addition of 68 chickpea flour (Singh, Harinder, Sekhon & Kaur, 1991; Dodok, Ali, Hozová, 69 Halasová & Polacek, 1993; Iyer & Singh, 1997), germinated chickpea flour 70 (Fernandez & Berry, 1989), germinated pea flour (Sadowska, Blaszczak, Fornal, 71 Vidal-Valverde & Frias, 2003), lupin flour (Campos & El-Dash, 1978; Lucisano 72 & Pompei, 1981; Dervas, Doxastakisk, Hadjisavva-Zinoviadi, & Triantafillakos, 73 1999; Doxastakis, Zafiriadis, Irakli, & Tananaki, 2002; Pollard, Stoddard, Popineau, Wrigley & MacRitchie, 2002), fermented lentil flour (Sadowska, 74 75 Fornal, Vidal-Valverde & Frias, 1999), lentil and bean flours (Finney, Morad & 76 Hubbard, 1980; Morad, Leung, Hsu & Finney, 1980; Shehata, Darwish, El-Nahry 77 & Andel-Razek, 1988; Lorimer, Zabik, Harte, Stachiw & Uebersax, 1991) to 78 wheat flour for obtaining bread. However, despite the good results obtained with 79 bread, those studies have not been extended to other cereal baked products.

The aim of this study was to determine the effect of the partial or complete replacement of wheat flour by chickpea flour on the quality of cakes. The effect of the chickpea variety and the milling process was also tested.

83

84 **2. Materials and methods**

85 2.1 Materials

Cake flour (9.8% protein) was supplied by *Harinera Castellana* S.A., Medina del
Campo (Spain); sucrose, sunflower oil, milk, fresh whole eggs, emulsifier and
double-action baking powder, were purchased from the local market.

Chickpeas were supplied by Alimentos Naturales S.A., León (Spain) and milled in a stone mill in Harinera Los Pisones, Zamora (Spain). After milling, the flour with particle size lower than 210 µm was referred as white chickpea flour; and the coarse fraction was ground again in a laboratory mill (3100, Perten Instruments, Sweden). The flour from the second milling was blended with the white chickpea flour in order to obtain the whole chickpea flour.

95

96 2.2 Proximate analysis of flours

97 Wheat and chickpea flours were analysed following the AACC methods (2000)

98 for moisture (method 44-15A), crude protein (method 46-13), crude fat (method

99 30-25), crude fiber (method 32-10) and ash (method 08-01).

100

101 2.3 Pasting properties of flours

102 The Rapid ViscoTM Analyser (RVA) (Newport Scientific Pty Ltd, Australia) was
103 used to determine the pasting properties of the chickpea flours. Pasting properties

104 were determined following the standard Newport Scientific Method 1 (STD1). The heating cycle was 50 °C to 95 °C in 282 s, holding at 95 °C for 150 s and then 105 106 cooling to 50 °C. Each cycle was initiated by a 10-second mixing at 960 rpm 107 paddle speed, and 160 rpm paddle speed was used for the rest of the test. The 108 RVA studies were carried out using 3.0 g of sample and 25 ml water in an 109 aluminium canister. The parameters recorded were peak viscosity (PV), trough or 110 hot paste viscosity (HPV), final or cool paste viscosity (CPV), breakdown (PV-111 HPV), and setback (CPV-HPV). Flour samples were run in triplicate.

112 2.4 Cake preparation

Two kinds of cakes were elaborated: a layer cake (Cake A), and a sponge cake (Cake B). The recipes used are described in Table 1. In layer cake elaboration, a single-bowl mixing procedure was used. All ingredients were mixed during 10 min at speed 6 using a Kitchen–Aid Professional mixer (KPM5). 200 grams of cake batter were placed into 120 mm diameter and 45 mm height, metallic, lard coated pan, and were baked in an electric oven for 25 min at 200°C.

In the sponge cake making, a creaming mixing procedure was used. All ingredients, except for the flour and milk, were mixed during 2 min at speed 6 using a Kitchen–Aid Professional mixer (KPM5). After the addition of the milk and the flour, the mixing process continued during 3 min at speed 8. 150 grams of cake batter were placed into pans and baked as described above.

Two sets of twelve cakes were prepared from each batter. After baking, the cakes were removed from the pans and left one hour for cooling; then, they were placed on coded white plastic plates, and sealed with plastic wraps to prevent drying. Eight cakes from the same batter were used for physical measurements, and four for texture evaluation after seven and 14 days of storage.

129

133

130 2.5 Physical Measurements

Batter density was determined with a measuring cylinder and expressed as the 131 relation between the weight of batter and the same volume of distilled water. 132

Cake quality attributes included: volume, determined by seed displacement, 134 weight, symmetry and volume index, measured following the AACC method 10 -135 91 (AACC, 2000). A digital calibre was used to measure the cake heights. 136 Measurements were run in triplicate.

137 Colour was measured using a Minolta spectrophotometer CN-508i (Minolta, Co.LTD, Japan). Results were expressed in the CIE L*a*b* colour space and 138 were obtained using the D65 standard illuminant, and the 2° standard observer. 139 The hue angle $(\tan^{-1}(b^*/a^*))$ and chroma or intensity $((a^{*2}+b^{*2})^{1/2})$ of the cakes' 140 141 crumb and crust were calculated. Colour determinations were made 5x5 times in 142 each cake: crumb or crust cake colour was checked at five different points on each 143 cake and every point was measured five times. The five points were positioned in 144 the centre of the cake and in the centre of four imaginary sectors in which it was 145 divided along the diameter.

Crumb texture was determined by a TA-XT2 texture analyzer (Stable 146 147 Microsystems, Surrey, UK) provided with the software "Texture Expert". An Aluminium 25 mm diameter cylindrical probe was used in a "Texture Profile 148 149 Analysis" double compression test (TPA) to penetrate to 50% depth, at 2 mm/s 150 speed test, with a 30 s delay between first and second compression. Firmness (N), 151 chewiness (N), cohesiveness, springiness and resilience were calculated from the TPA graphic (Gómez, Ronda, Caballero, Blanco & Rosell, 2007). In cake texture 152

determinations, the crust was removed, and samples of 40x40x20 were used.Averaged results of eight determinations are presented.

155

156 2.6 Statistical analysis

157 In order to assess significant differences among samples, it was performed a

158 multiple comparison analysis of samples using the program Statistica (99 Edition,

159 5.5 Version, StatSoft Inc.). Fisher's least significant differences (LSD) test was

160 used to describe means with 95% confidence.

161

162 3. Results and discussion

163 3.1 Proximate composition of flours

164 The chemical composition of the diverse flours is detailed in Table 2. The 165 chickpea flours had significantly (p<0.05) higher content of protein, fat, ash and 166 fibre than the wheat flour. Protein content of chickpea flours ranged from 22.48 to 167 25.18g /100g, and crude fat values showed a wide variation, being comprised 168 between 3.81 to 7.22 g/100g. No significant differences were found between the 169 chickpea flours, and regarding the variety, Pedrosillano was the most different 170 variety because of its higher moisture and protein content and its lower fat 171 content.

172

173 3.2 Thermal behaviour of the wheat flour and the different chickpea flours

174 Viscometric parameters of the different chickpea flours were determined by using 175 the RVA (Table 3). When a chickpea flour-water dispersion was heated, an 176 increase in the apparent viscosity was observed due to the gelatinization of the

177 starch, although the peak viscosity induced by these type of flours (877-1032 cP) 178 was lower than the one promoted by the wheat flour (2621 cP). Chickpea flours resulted in pastes with lower peak viscosity, holding strength, breakdown, final 179 180 viscosity and total setback than the wheat flour; this is likely due to their lower 181 carbohydrate content (Table 2), and also their different protein content could 182 affect the viscometric parameters (Morris, King & Rubenthaler, 1997). Very low 183 breakdown was observed in the chickpea flours, ranging from 38 cP to 68 cP, in 184 comparison with 893 cP obtained with the wheat flour. The breakdown is related 185 to the ability of the starches to withstand heating at high temperature and shear 186 stress, usually high values of breakdown are associated to high peak viscosities in 187 cereals such as wheat, barley, millet, rye and sorghum (Ragaee & Abdel-Aal, 188 2006), although different behaviour has been observed in triticale (León, Barrera, 189 Pérez, Ribotta & Rosell, 2005). When temperature decreased, an increase in 190 viscosity was observed but chickpea flour induced lower viscosity during cooling 191 than wheat flour. The increase in viscosity is related to the ability of the amylose 192 chains to reassociate and form a gel and it is referred to as setback. Taking into 193 account the low setback values obtained with chickpea flours, it could be expected 194 that the replacement of wheat flour by chickpea flours would result in softer 195 crumbs. No tendency was observed concerning the type of chickpea flour (whole 196 or white), or chickpea cultivar.

197

198 3.3 Effect of chickpea flours on cake shape and size

In Table 4 the effect of composite flours containing chickpea flours on batterdensity and on cake volume and shape can be observed. The replacement of wheat

flour for increasing amounts of chickpea flours decreased batter density when recipe A was used. Conversely, in recipe B, the presence of chickpea flour decreased air incorporation in the batter, yielding lower density. In both recipes, the whole composite flours resulted in high density batters, decreasing the air incorporation. Regarding chickpea cultivars, Pedrosillano gave the greatest batter density in recipe A, whereas Lechoso and Sinaloa brought about the highest batter density in recipe B.

It could have been expected that lower batter density would result in higher cake volume, as was the case with sponge cakes, but, in fact, the opposite phenomenon was observed in layer cakes. Handleman, Conn & Lyons (1961) found a relationship between batter density, viscosity and surface tension and the resulting cake characteristics, although some other parameters like the amount of gas, from the whipping process or from chemical leavening, entrapped into the batter, and the gas kept during baking affected cake quality.

215 Cake volume diminished as the chickpea flour percentage increased in both (A 216 and B) cakes, especially in cake A. Cake B does not incorporate baking powder in 217 its formulation, whilst cake A does. During the baking process, baking powder 218 generates gases, which should be retained in order to guarantee good cake 219 volume, and in that respect flour quality has an important role to play. Another 220 important factor is the gelatinization temperature of the flour, as Miller & Trimbo 221 (1965), Howard, Hughes, & Strobel (1968) and Howard (1972) pointed out for 222 layer cakes, whereas Mizukoshi, Kawada & Matsui (1979) and Mizukoshi, Maeda 223 & Amano (1980) reached the same conclusion for sponge cakes. The starch 224 gelatinization at low temperatures would prevent the correct expansion of doughs.

225 As can be observed in Table 3, chickpea flours presented lower peak viscosity 226 than wheat flours, thus lower gas retention and lower expansion of the product 227 could be expected. Chickpea flours also presented higher protein content, and 228 different amino acid composition than wheat flours which could affect cake 229 characteristics, especially volume (Mohamed, Lajis & Hamid, 1995; Mohamed, 230 S., & Hamid, N.A., 1998). As far as chickpea cultivars are concerned, Sinaloa and 231 Lechoso gave cakes with higher volume, in both the A and B cakes, although in 232 the latter no significant differences were found between Pedrosillano and 233 Lechoso.

As for cake weight, no significant differences were found. Therefore, the water retention capacity was not affected by the substitution of wheat flour for chickpea flour, or by the kind of chickpea flour in sponge cakes. Amongst chickpea cultivars, small differences were also detected, but they could not be attributed to their different chemical composition.

239 The volume index is an indicator of cake volume and, as expected, followed a 240 similar tendency to volume. Symmetry indicates the differences in height between 241 the central zone and the lateral zone. Thus, a high symmetry suggests that cakes 242 mainly rise in their central part, while a negative symmetry indicates that cake 243 volume falls down at the end of the baking process. Hence, symmetry gives an 244 idea about gas retention in the final baking phase. In both cases the incorporation 245 of chickpea flour reduced their symmetry, and in the case of the A cakes with 246 100% of chickpea flour it became negative. This result supports the idea that 247 cakes elaborated with chickpea flour had worse gas retention capacity during baking than those lacking legume flour, especially during the last baking phase. 248

The kind of chickpea flour exerted lower effect on symmetry, although the white flours had higher symmetry in sponge cakes, and thus, higher gas retention and higher final volume than layer cakes. In the case of layer cakes, small differences were observed, the whole flours produced cakes with the highest symmetry. The differences between the various chickpea cultivars were minimal in sponge cakes. In layer cakes, cultivars Lechoso and Sinaloa, the most similar in composition, generated cakes with the highest symmetry and final volume.

256

257 3.4 Effect of chickpea flours on cake colour

258 Crust colour in cakes varied with the quantity, the kind and the variety of 259 chickpea flour (Table 5). This influence was more important in layer than in 260 sponge cakes. The crust colour data of cakes are shown in table 5. Layer cakes 261 became darker (lower L*) as the chickpea flour quantity increased. Pedrosillano 262 also resulted in dark cakes. With regard to the kind of chickpea flour, whole flour 263 produced brighter cakes. The hue angle indicates the tone; values near 0 indicate 264 reddish tones whilst values near 90 indicate yellowish tones. Meanwhile, chroma 265 values near 0 indicate subdued colours, whilst high chroma values indicate 266 vivacious colours. The effect of the composite flours on the hue and chroma 267 values was more evident in sponge cakes, where as the quantity of chickpea 268 increased, the chroma and the hue were reduced. Chickpea cultivars had also an 269 influence on these parameters, on both kinds of cakes, although this effect was 270 more important in the A cakes. The crust colour of cakes, was generated in the 271 baking process due to the Maillard reactions between sugars and amino acids, and 272 the caramelization process of sugars. Therefore, the differences observed when

273 the quantity of chickpea flour increased could be attributed to the high protein 274 content and the different amino acid composition of the composite flours 275 compared to the wheat flour. Differences between layer and sponge cakes seemed 276 to result from their different formulations.

277 Cake crumb does not reach temperatures above 100°C, so the Maillard or caramelization reactions by sugars fail to take place. Therefore, crumb colour 278 279 must be the result of the raw materials colours and their interactions. The crumb 280 colour data of cakes are shown in table 5. Cake A crumb was lightly darker than 281 cake B crumb, and the chickpea flour addition reduced its luminosity, but this 282 effect was only significant in the B cakes. Differences between chickpea cultivars 283 were hardly observed. The greatest differences in crumb colour were observed in 284 chroma, which increased as the amount of chickpea flour increased, and were 285 more noticeable in the A cakes. In both cases, cakes elaborated with Pedrosillano 286 flour presented the highest chroma, mainly due to the highest b* value. This effect 287 was expected because of the more intense orange colour of Pedrosillano flours. Whole flours had the highest a* value and the lowest hue value in both kinds of 288 289 cakes, but the effect of the kind of flour on b* and chroma values was minimum 290 and different depending on the type of cake. These results agree with those 291 obtained by Dodok et al. (1993), who observed that chickpea flour triggered the 292 change in the crumb colour when they studied the addition of chickpea flour to 293 bread doughs.

294

295 3.5 Influence of chickpea flours on cake texture

296 In table 6 the textural characteristics data can be observed. The influence of flours 297 on the initial firmness was inversely proportional to cake volume. Therefore, the initial firmness increased when the percentage of chickpea flour increased, 298 299 although this trend was not significant in layer cakes when 50% of chickpea flour 300 was used to replace wheat flour. These results agree with those obtained by 301 Guinot & Mathlouthi (1991), who observed that small additions of sov protein 302 increased the firmness of sponge cakes. The cakes elaborated with whole flour 303 were firmer than those elaborated with white flour, being this difference more 304 important in sponge cakes. The differences between chickpea cultivars were only 305 significant in layer cakes, where the cakes elaborated with Lechoso and Sinaloa 306 were less firm than those elaborated with Pedrosillano.

307 The volume and the firmness of the A cakes presented a negative correlation, with an r^2 of 29.53. However, the r^2 increased up to 85.41 when samples containing 308 100% whole flour from cultivars Lechoso and Sinaloa were removed from this 309 310 correlation. Whole cakes from these cultivars presented similar firmness than those obtained with cultivars Andaluz and Pedrosillano, but with higher cake 311 312 volume. Cultivars Lechoso and Sinaloa had lower protein and water content but it 313 could not be concluded that the chemical composition was responsible for the 314 higher volume with a similar firmness. In the case of the B cakes, a negative correlation was observed between volume and firmness, with an r^2 of 45.16. 315

Among the other textural parameters, layer cakes were the most influenced by the composite flours. Cohesiveness decreased when the percentage of chickpea flour increased, but it was not affected by the kind and cultivar of chickpea. Gumminess and chewiness were lower in white flour cakes and with cultivars

320 Lechoso and Sinaloa. Adhesiveness was higher in cakes containing 100% 321 chickpea flour and from cultivar Andaluz, although it did not present significant 322 differences with Pedrosillano. Both springiness and resilience diminished when 323 the chickpea flour percentage increased, whilst Lechoso and Sinaloa varieties 324 presented the highest resilience values. In general, a similar behaviour between 325 Lechoso and Sinaloa varieties versus Andaluz and Pedrosillano was observed, 326 which resulted in cakes with higher firmness, gumminess and adhesiveness, but 327 lower resilience.

In sponge cakes, as the percentage of chickpea flour increased, cohesiveness and resilience decreased, while gumminess, chewiness and adhesiveness increased. White flours produce less cohesive, more gummy and chewy, and with less resilience cakes. The chickpea variety had only a significant effect on cohesiveness, being cultivars Andaluz and Pedrosillano the ones that produced the most cohesive cakes.

334 Firmness trends over the storage time can be seen in figure 1, A (recipe A), and B 335 (recipe B). The influence of chickpea cultivar on the firmness trend was not 336 significant in any case. In cake A samples, no great differences in firmness 337 increase pertaining to the composite flours were appreciated, although cakes 338 elaborated with white chickpea flour stale more slowly than those elaborated with 339 whole flour or with wheat flour. In cakes elaborated with 50% of both flours a 340 gradual increase in firmness was observed, whilst in those elaborated with 100% 341 of wheat or chickpea flour a higher firmness increase during the first week was 342 observed, firming slightly slower in the second one. The effect of the composite 343 flours was much evident in the B cakes, where as the percentage of chickpea flour

344 increased, in both white and whole flour, the cakes hardened more quickly. After 345 14 days of storage, the B cakes elaborated with whole chickpea flour presented similar firmness to those elaborated with white flour, however their initial 346 347 firmness was higher and thus the total firmness increase was lower. Unlike bread 348 staling phenomena, hardening phenomena in cakes have been scarcely studied but 349 it is known that these products develop complex systems, where several 350 ingredients interact with each other and affect texture (Gelinas, Roy & Guillet, 351 1999). In general, hardening phenomena in cakes are attributed to crumb 352 dehydration (Willhoft, 1973), which was avoided in this study by packaging the 353 cakes, and to starch retrogradation (Gujral, Rosell, Sharma & Singh 2003).

In conclusion, the addition of 50% of chickpea flour would improve the nutritional value of cakes without greatly affecting their quality characteristics. Lechoso and Sinaloa would be the most adequate cultivars for enrichment, and white better than whole flour. Sponge cake quality was less affected by the chickpea addition than layer cakes, probably because of the lower flour percentage in its formula.

360

361 **4. Acknowledgements**

This work was financially supported by the Spanish Ministerio de Educación y Ciencia Project (MCYT, AGL2005-05192-C04). Authors would like to thank Alicia González for her collaboration in this study and Alfonso Centeno for his help in the translation to English.

366

367 **5. References**

- AACC (2000). Approved Methods of the American Association of Cereal
 Chemists, Method 10-91. 10th edition. St. Paul (Minnesota): American
 Association of Cereal Chemists, Inc.
- Anderson, J.W., & Major, A.W. (2002). Pulses and lipaemia, short- and long-term
- 372 effect: Potential in the prevention of cardiovascular disease. *British Journal of*
- 373 *Nutrition*, 88, suppl. 3, S263-271.
- 374 Bornet, F.R., Billaux, M.S., & Messing, B. (1997). Glycaemic index concept and
- 375 metabolic diseases. *International Journal of Biology Macromolecules*, 21, 207376 219.
- 377 Campos, J.E., & El-Dash, A.A. (1978). Effect of addition of full fat sweet lupine
- flour on rheological properties of dough and baking quality of bread. *Cereal Chemistry*, 55, 619-627.
- Dervas, G., Doxastakisk, G., Hadjisavva-Zinoviadi, S., & Triantafillakos, N.
 (1999). Lupin flour addition to wheat flour doughs and effect on rheological
 properties. Food Chemsitry, 66(1), 67-73.
- 383 Dodok, L., Ali, M.A., Hozová, B., Halasová, G., & Polacek, I. (1993). Importance
- and utilization of chickpea in cereal technology. *Acta Alimentaria*, 22, 119-129.
- 385 Doxastakis, G., Zafiriadis, I., Irakli, M., & Tananaki, C. (2002). Lupin, soya and
- triticale addition to wheat flour doughs and their effect on rheological properties.
- 387 Food Chemistry, 77(2), 219-227.
- Eggum, B.O., & Beame, R.M. (1983). The nutritive value of seed proteins. In W.
- 389 Gottschalk & P.H. Muller eds., Seed Protein Biochemistry, Genetics and Nutritive
- 390 *Value*, (pp. 499-531). The Hague: Junk.

- Fernandez, M.L., & Berry, J.W. (1989). Rheological properties of flour and
 sensory characteristics of bread made from germinated chickpea. *International Journal of Food Science and Technology*, 24, 103-110.
- Finney, P.L., Morad, M.M., & Hubbard, J.D. (1980). Germinated and ungerminated faba bean in conventional U.S. breads made with and without sugar and in Egyptian balady breads. *Cereal Chemistry*, 57, 267-270.
- 397 Gelinas, P., Roy, G., & Guillet, M. (1999). Relative effects of ingredients on cake
- staling based on an accelerated shelf-life test. *Journal of Food Science*, 64, 937-940.
- 400 Gómez, M., Ronda, F., Caballero, P., Blanco, C., & Rosell, C.M. (2006).
- 401 Functionality of different hydrocolloids on the quality and shelf-life of yellow
 402 layer cakes. Food Hydrocolloids, 21:167-173.
- 403 Guinot, P., & Mathlouthi, M. (1991). Instron measurement of sponge cake
- 404 firmness: Effect of additives and storage conditions. Journal of the Science of
- 405 *Food and Agriculture*, 54, 413-420.
- 406 Gujral, H.S., Rosell, C.M., Sharma, S., & Singh, S. (2003). Effect of sodium
- 407 lauryl sulphate on the texture of sponge cake. Food Science and Technology408 International, 9, 89-93.
- 409 Handleman, A.R., Conn, J.F., & Lyons, J.W. (1961). Bubble mechanics in thick
- 410 foams and their effects on cake quality. *Cereal Chemistry*, 38, 294-305.
- 411 Howard, N.B. (1972). The role of some essential ingredients in the formation of
- 412 layer cake structures. *Bakers Digest*, 46 (5), 28-37.
- 413 Howard, N.B., Hughes, D.H., & Strobel, R.G.K. (1968). Function of the starch
- 414 granule in the formation of layer cake structure. *Cereal Chemistry*, 45, 329-338.

- 415 Iyer, L., & Singh, U. (1997). Functional properties of wheat and chickpea
 416 composite flours. *Food Australia*, 49, 27-31.
- 417 León, A.E., Barrera, G.N., Pérez, G.T., Ribotta, P.D., Rosell, C.M. (2005). Effect
- 418 of damaged starch levels on flour thermal behaviour and bread staling. *European*
- 419 *Food Research and Technology*. doi:10.1007/s00217-006-0297-x.
- 420 Leterme, P. (2002). Recommendations by health organizations for pulse 421 consumption. *British Journal of Nutrition*, 88, suppl. 3, S239-242.
- 422 Livingstone, A.S., Feng, J.J., & Malleshi, N.G. (1993). Development and
- 423 nutritional quality evaluation of weaning foods based on malted, popped and dried
- 424 wheat and chickpea. International Journal of Food Science and Technology, 28,
- 425 35-43.
- 426 Lorimer, N.L., Zabik, M.E., Harte, J.B., Stachiw, N.C., & Uebersax, M.A. (1991).
- 427 Effect of navy bean protein flour and navy bean globulin(s) on composite flour
- 428 rheology, chemical bonding, and microstructure. *Cereal Chemistry*, 68, 213-220.
- 429 Lucisano, M., & Pompei, C. (1981). Baking properties of lupin flour.
- 430 Lebensmittel-Wissenchaft & Technologie, 14, 323-330.
- 431 Mathers, J.C. (2002). Pulses and cancinogenesis: potential for the prevention of
- 432 colon, breast and other cancers. *British Journal of Nutrition*, 88, suppl. 3, S273-433 279.
- 434 Miller, B.S., & Trimbo, H.B. (1965). Gelatinization of starch and white layer cake
- 435 quality. Food Technology, 19, 208-216.
- 436 Mizukoshi, M., Kawada, T., & Matsui, N. (1979). Model studies of cake baking.
- 437 I. Continuous observations of starch gelatinization and protein coagulation during
- 438 baking. Cereal Chemistry, 56, 305-309.

- 439 Mizukoshi, M., Maeda, H., & Amano, H. (1980). Model studies of cake baking,
- 440 II. Expansion and heat set of cake batter during baking. *Cereal Chemistry*, 55,441 352-355.
- 442 Mohamed, S., & Hamid, N.A. (1998). Effects of ingredients on the characteristics
- 443 of rice cakes. *Journal of the Science of Food and Agriculture*, 76(3), 464-468.
- 444 Mohamed, S., Lajis, S.M.M., & Hamid, N.A. (1995). Effects of protein from
- 445 different sources on the characteristics of sponge cakes, rice cakes (apam),
- 446 doughnuts and frying batters. *Journal of the Science of Food and Agriculture*, 68,
- 447 271-277.
- 448 Morad, M.M., Leung, H.K., Hsu, D.L., & Finney, P.L. (1980). Effect of
- 449 germination on physicochemical and bread-baking properties of yellow pea, lentil,
- 450 and faba bean flours and starches. *Cereal Chemistry*, 57, 390-396.
- 451 Morris, C., King, G.E., Rubenthaler, G.L. (1997). Contribution of wheat flour
- 452 fractions to peak hot paste viscosity. *Cereal Chemistry*, 74, 147-153.
- 453 Morrow, B. (1991). The rebirth of legumes. *Food Technology*, 45(9), 96-121.
- 454 Pollard, N.J., Stoddard, F.L., Popineau, Y., Wrigley, C.W., & MacRitchie, F.
- 455 (2002). Lupin flours as additives: Dough mixing, breadmaking, emulsifying, and
- 456 foaming. Cereal Chemistry, 79, 662-669.
- 457 Ragaee, S., & Abdel-Aal, E.M. (2006). Pasting properties of starch and protein in
- 458 selected cereals and quality of their food products. *Food Chemistry*, 95, 9-18.
- 459 Rizkalla, S.W., Bellisle, F., & Slama, G. (2002). Health benefits of low glycaemic
- 460 index foods, such as pulses, in diabetic patients and healthy individuals. British
- 461 *Journal of Nutrition*, 88, suppl. 3, S255-262.

- 462 Sadowska, J., Blaszczak, W., Fornal, J., Vidal-Valverde, C., & Frias, J. (2003).
- 463 Changes of wheat dough and bread quality and structure as a result of germinated
- 464 pea flour addition. *European Food Research and Technology*, 216, 46-50.
- 465 Sadowska, J., Fornal, J., Vidal-Valverde, C., & Frias, J. (1999). Natural
- 466 fermentation of lentils. Functional properties and potential in breadmaking of
- 467 fermented lentil flour. *Nahrung*, 43, 396-401.
- 468 Schneider, A.V.C. (2002). Overview of the market and consumption of pulses in
- 469 Europe. British Journal of Nutrition, 88, suppl. 3, S243-250.
- 470 Shehata, N.A., Darwish, N., El-Nahry, F., & Andel-Razek, F.A. (1988).
- 471 Supplementation of wheat flour with some local legumes. *Nahrung*, 32, 3-8.
- 472 Singh, N., Harinder, K., Sekhon, K.S., & Kaur, B. (1991). Studies on the
- 473 improvement of functional and baking properties of wheat-chickpea flour blends.
- 474 *Journal of Food Processing and Preservation*, 15, 391-402.
- Tharanathan, R.N., & Mahadevamma, S. (2003). Grain legumes a boon to
 human nutrition. *Trends in Food Science and Technology*, 14, 507-518.
- 477 Willhoft, E.M.A. (1973). Mechanism and theory of staling of bread and baked
- 478 goods, and associated changes in textural properties. Journal of Texture Studies,
- 479 4, 292-322.

481 FIGURE CAPTIONS

- 482
- 483 Figure 1: Effect of the composite flours on the firmness of cakes during storage.
- 484 A: Cakes obtained from recipe A. B: Cakes obtained from recipe B.

Table 1: Cake formulations

Ingredients	AC	Cake	B Cake				
_	(g)	%	(g)	%			
Flour	700	27.5	490	26.5			
Egg	350	13.8	688	37.3			
Sugar	840	33	481	26			
Powder Milk	42	1.6	50	2.7			
Water	378	14.9	110	6			
Oil	210	8.4	-	-			
Emulsifier	-	-	28	1.5			
Baking powder	21	0.8	-	-			

Kind of flour	Chickpea	Moisture	Crude protein	Crude fat	Crude fibre	Ash	Carbohydrates
	Cultivar						(by difference)
Wheat		10.81d	13.73a	1.40a	0.16a	0.78a	73.12c
Chickpea White	Andaluz	7.94b	24.65e	7.22f	1.36c	3.27b	55.56a
	Lechoso	8.02b	23.46cd	6.26d	1.14b	3.31b	57.81b
	Pedrosillano	8.47c	25.18f	4.62c	1.37c	3.46d	56.90ab
	Sinaloa	8.02b	23.09c	6.34de	1.41c	3.27b	57.87b
Chickpea Whole	Andaluz	7.98b	23.63d	6.87ef	2.72e	3.30b	55.50a
	Lechoso	7.44a	23.06c	6.76e	2.75ef	3.38c	56.61ab
	Pedrosillano	8.21bc	24.93ef	3.81b	2.78f	3.46d	56.81ab
	Sinaloa	7.26a	22.48b	6.58e	2.64d	3.44d	57.60b

Table 2: Proximate composition (g/100g) of wheat and chickpea flours

			Viscome	tric parameters on cooki	ng and coolin	g (Rapid Visco	Analyser)						
Kind of flour	Chickpea		Holding										
Kind of hour	cultivar	Peak viscosity	Peak Time	Pasting Temperature	strength	Breakdown	Total Setback	Viscosity					
		cP	min	°C	cP	cP	cP	cP					
Wheat		2621 e	6.3 b	50.1 a	1728 e	893 c	1485 c	3213 e					
White	Andaluz	954 b	5.9 a	79.1 d	888 b	66 b	258 a	1146 b					
chickpea	Lechoso	877 a	6.1 a	76.7 c	817 a	60 b	249 a	1066 a					
	Pedrosillano	1001 c	6.4 b	79.8 d	963 d	38 a	247 a	1210 c					
	Sinaloa	978 c	5.9 a	72.6 b	930 c	48 a	281 b	1211 c					
Whole	Andaluz	936 b	6.9 c	79.1 d	887 b	49 a	279 b	1166 b					
chickpea	Lechoso	1032 d	5.9 a	76.0 c	964 d	68 b	300 b	1264 d					
	Pedrosillano	976 c	6.7 c	76.0 c	935 c	41 a	285 b	1220 c					
	Sinaloa	987 c	6.7 c	75.9 c	919 c	68 b	275 b	1194 c					

Table 3. Viscometric parameters of different flours during cooking and cooling determined by the Rapid Visco Analyser.

	Batter	density	Volum	$e(cm^3)$	Weig	ht (g)	Sim	etry	Volume	e Index
	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake
Wheat flour / Chickpea flour										
100 / 0	1.05c	0.51a	397.50c	465.00c	183.50a	131.00a	39.90c	26.89c	171.10c	150.94b
50 /50	0.98b	0.58b	373.90b	455.31b	183.63a	130.81a	9.63b	20.72b	147.02b	145.71b
0/100	0.94a	0.60c	348.75a	434.69a	186.00b	131.06a	-3.76a	9.84a	125.22a	133.19a
Kind of flour										
White	0.95a	0.58a	360.16a	469.06b	185.50b	131.25a	0.82a	21.32b	137.77a	149.94b
Whole	0.96b	0.60b	362.50a	420.94a	184.13a	130.63a	5.05b	9.24a	134.47a	128.96a
Chickpea cultivar										
Andaluz	0.96b	0.62c	324.38a	418.75a	185.13cd	130.75a	-3.34a	14.30ab	127.40a	138.16a
Lechoso	0.96b	0.57a	398.13b	453.13bc	183.63a	130.88a	5.09b	16.57b	141.97b	137.54a
Pedrosillano	0.94a	0.60b	324.38a	448.13b	184.63bc	130.88a	-0.17a	17.01b	130.91a	142.94b
Sinaloa	0.98c	0.57a	388.75b	460.00c	185.88d	131.25a	10.15c	13.24a	144.19b	139.16a

Table 4: Physical characteristics of batters and cakes

Table 5: Crust and crumb colour of cakes

	Crust										Crumb									
	L*		L* a*		b*		Chroma		Hue angle		L*		a*		b*		Chroma		Hue angle	
	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake
Wheat flour /																				
Chickpea flour																				
100 / 0	50.13c	44.03a	11.73a	14.16b	12.53ab	23.74b	17.23ab	27.64b	46.11a	59.17b	66.79a	74.51b	1.41b	0.22a	15.81a	22.92a	15.87a	22.92a	84.89a	89.46b
50 / 50	44.77b	46.17b	11.52a	13.36ab	14.84b	15.80a	18.91b	20.86a	51.46b	48.67a	64.80a	74.47b	0.69a	0.40a	21.60b	22.48a	21.62b	22.49a	88.16c	88.94b
0 / 100	38.82a	45.05a	11.36a	13.18a	11.31a	15.08a	16.26a	20.10a	43.60a	48.36a	63.56a	72.80a	1.28b	1.15b	27.16c	26.68	27.20c	26.72b	87.23b	87.48a
Kind of flour																				
White	40.46a	44.15a	10.95a	12.86a	12.53a	16.49a	17.01a	21.00a	46.91a	51.50b	62.77a	73.79a	0.81a	0.52a	23.79a	25.64b	23.83a	25.65b	88.06b	88.89b
Whole	43.14b	47.08b	11.94b	13.67b	12.53a	14.39a	18.17a	19.97a	48.14a	45.53a	65.59b	73.48a	1.16b	1.03b	24.97b	23.52a	25.00b	23.55a	87.33a	87.53a
Chickpea																				
Cultivar																				
Andaluz	43.87b	44.46a	11.90b	13.24ab	10.06a	14.31ab	15.71a	19.52a	39.48a	47.14ab	65.87b	73.67ab	1.64c	0.87a	23.29a	24.20a	23.36a	24.22a	85.93a	87.99a
Lechoso	42.53b	44.72a	11.62b	13.00a	17.02c	16.38ab	20.65c	21.14a	55.41b	50.18ab	63.20ab	72.88a	0.40a	0.68a	23.58a	23.41a	23.59a	23.44a	88.97c	88.33a
Pedrosillano	36.60a	46.35b	10.23a	13.64b	11.81ab	17.11b	15.69a	21.93a	48.54b	51.02b	61.95a	74.05b	1.29b	0.77a	27.57b	26.93b	27.60b	26.95b	87.35b	88.46a
Sinaloa	44.19b	46.92b	12.03b	13.19ab	13.40b	13.95a	18.30b	19.33a	46.67b	45.73a	65.72b	73.95b	0.61a	0.78a	23.08a	23.78a	23.10a	23.81a	88.54c	88.06a

	Firmness (N)		Cohesiveness		Gumminess (N)		Chewiness (N)		Adhesiveness (N·s)		Springiness		Resilience	
	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake	A Cake	B Cake
Wheat flour /														
Chickpea flour														
100 / 0	4.38a	3.62a	0.68c	0.76c	2.98ab	2.74a	2.62b	2.45a	0.05b	0.09a	0.88c	0.89a	0.23c	0.27b
50 /50	4.67a	5.66b	0.56b	0.72b	2.59a	4.02b	2.06a	3.67a	0.11b	0.10a	0.80b	0.91a	0.17b	0.26b
0/100	7.12b	8.65c	0.47a	0.61a	3.35b	5.16c	2.36b	4.53b	0.41a	0.12a	0.71a	0.88a	0.13a	0.21a
Kind of flour														
White	5.54a	5.70a	0.51a	0.69b	2.76a	3.87a	2.07a	3.47a	0.25a	0.08a	0.75a	0.90a	0.15a	0.25b
Whole	6.25b	8.61b	0.52a	0.63a	3.18b	5.31b	2.36b	4.73b	0.27a	0.08a	0.75a	0.89a	0.16a	0.22a
Chickpea Cultivar														
Andaluz	6.15ab	7.15a	0.52a	0.67b	3.16b	4.61a	2.36bc	4.11a	0.43a	0.09a	0.75a	0.90a	0.15a	0.24a
Lechoso	5.22a	7.74a	0.52a	0.65a	2.62a	4.81a	1.96a	4.30a	0.17b	0.08a	0.75a	0.90a	0.16b	0.23a
Pedrosillano	6.97b	6.98a	0.51a	0.67b	3.44b	4.61a	2.53c	4.11a	0.27ab	0.07a	0.75a	0.89a	0.15a	0.24a
Sinaloa	5.24a	6.73a	0.52a	0.66ab	2.66a	4.33a	2.00ab	3.88a	0.18b	0.05a	0.75a	0.90a	0.16b	0.24a

Table 6: Texture of fresh cakes