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Abstract

Let p be a large prime number, K,L, M, λ be integers with 1 ≤ M ≤ p and
gcd(λ, p) = 1. The aim of our paper is to obtain sharp upper bound estimates for
the number I2(M ; K, L) of solutions of the congruence

xy ≡ λ (mod p), K + 1 ≤ x ≤ K + M, L + 1 ≤ y ≤ L + M

and for the number I3(M ; L) of solutions of the congruence

xyz ≡ λ (mod p), L + 1 ≤ x, y, z ≤ L + M. (1)

Using the idea of Heath-Brown from [6], we obtain a bound for I2(M ; K, L), which
improves several recent results of Chan and Shparlinski [3]. For instance, we prove that
if M < p1/4, then I2(M ; K, L) ≤ Mo(1).

The problem with I3(M ; L) is more difficult and requires a different approach.
Here, we connect this problem with the Pell diophantine equation and prove that for
M < p1/8 one has I3(M ; L) ≤ Mo(1). Our results have applications to some other
problems as well. For instance, it follows that if I1, I2, I3 are intervals in F∗p of length
|Ii| < p1/8, then

|I1 · I2 · I3| = (|I1| · |I2| · |I3|)1−o(1).
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1 Introduction

In what follows, p denotes a large prime number, K,L, M, λ are integers with 1 ≤ M ≤ p
and gcd(λ, p) = 1. By x, y, z we denote variables that take integer values. The notation Bo(1)

denotes such a quantity that for any ε > 0 there exists c = c(ε) > 0 such that Bo(1) < cBε.
Let I2(M ; K,L) be the number of solutions of the congruence

xy ≡ λ (mod p), K + 1 ≤ x ≤ K + M, L + 1 ≤ y ≤ L + M

and let I3(M ; L) be the number of solutions of the congruence

xyz ≡ λ (mod p), L + 1 ≤ x, y, z ≤ L + M.

Estimates of incomplete Kloosterman sums implies that

I2(M ; K,L) =
M2

p
+ O(p1/2(log p)2). (2)

In particular, if M/(p3/4(log p)2) →∞ as p →∞, one gets that

I2(M ; K, L) = (1 + o(1))
M2

p
.

This asymptotic formula also holds when M/p3/4 →∞ as p →∞ (see [5]). The problem of
upper bound estimates of I2(M ; K, L) for smaller values of M has been a subject of the work
of Chan and Shparlinski [3]. Using Bourgain’s sum-product estimate [1], they have shown
that there exists an effectively computable constant η > 0 such that for any positive integer
M < p, uniformly over arbitrary integers K and L, the following bound holds:

I2(M ; K, L) ¿ M2

p
+ M1−η.

In the present paper we obtain the following upper bound estimates for I2(M ; K, L).

Theorem 1. Uniformly over arbitrary integers K and L, we have

I2(M ; K,L) <
M4/3+o(1)

p1/3
+ M o(1). (3)

When K = L, we have

I2(M ; L,L) <
M3/2+o(1)

p1/2
+ M o(1). (4)

In particular, if M < p1/4 then I2(M ; K,L) < M o(1).
Theorem 1 together with (2) easily implies the following consequence, which improves

upon the mentioned result of Chan and Shparlinski.

Corollary 1. Uniformly over arbitrary integers K and L, we have

I2(M ; K, L) ¿ M2

p
+ M4/5+o(1).

If K = L, then

I2(M ; L,L) ¿ M2

p
+ M3/4+o(1).
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The proof of Theorem 1 is based on an idea of Heath-Brown [6]. The problem with
I3(M ; L) is more difficult and requires a different approach. Here, we shall connect this
problem with the Pell diophantine equation and establish the following statement.

Theorem 2. Let M ¿ p1/8. Then, uniformly over arbitrary integer L, we have

I3(M ; L) ¿ M o(1). (5)

From Theorem 2 we can easily derive a sharp bound for the cardinality of product of
three small intervals in F∗p.

Corollary 2. Let I1, I2, I3 be intervals in F∗p of length |Ii| < p1/8. Then

|I1 · I2 · I3| = (|I1| · |I2| · |I3|)1−o(1).

Theorems 1 and 2 have also applications to the problem on concentration points on
exponential curves as well. Let g ≥ 2 be an integer of multiplicative order t, and let M < t.
Denote by Ja(M ; K,L) the number of solutions of the congruence

y ≡ agx (mod p); x ∈ [K + 1, K + M ], y ∈ [L + 1, L + M ].

Chan and Shparlinski [3] used a sum product estimate of Bourgain and Garaev [2] to prove
that

Ja(M ; K, L) < max{M10/11+o(1),M9/8+o(1)p−1/8}
as M →∞. From our Theorem 1 we shall derive the following improvement on this result.

Corollary 3. Let M < t. Uniformly over arbitrary integers K and L, we have

Ja(M ; K,L) < (1 + M3/4p−1/4)M1/2+o(1).

In particular, if M ≤ p1/3, then we have Ja(M ; K, L) < M1/2+o(1).
Theorem 2 allows to strength Corollary 3 when M ¿ p3/20.

Corollary 4. The following bound holds:

Ja(M ; K,L) < (1 + Mp−1/8)M1/3+o(1).

In particular, if M ¿ p1/8, then we have Ja(M ; K,L) < M1/3+o(1).

2 Proof of Theorem 1

We will need the following lemma which is a simple version of a more precise result about
divisors in short intervals, see, for example, [4].

Lemma 1. For all positive integer n and m ≥ √
n, the interval [m, m + n1/6] contains at

most two divisors of n,
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Proof. Suppose that d1, d2, d3 ∈ [m,m+L] are three divisors of n. We claim that the number

r =
d1d2d3

(d1, d2)(d1, d3)(d2, d3)

is also a divisor of n. To see this, for a given prime q, let α1, α2, α3, α such that qαi‖di, i =
1, 2, 3 and qα‖n. Assume that α1 ≤ α2 ≤ α3 ≤ α. The exponent of q in the rational number r
is α1 +α2 +α3− (min(α1, α2)+min(α1, α3)+min(α2, α3)) = α3−α1. Since 0 ≤ α3−α1 ≤ α
we have that r is an integer divisor of n.

On the other hand, since (di, dj) ≤ |di − dj| ≤ L we have

n ≥ r >
m3

L3
≥ n3/2

L3
,

and the result follows.

Now we proceed to prove Theorem 1. Our approach is based on Heath-Brown’s idea
from [6]. We can assume that M is sufficiently large number. The congruence xy ≡ λ
(mod p), K + 1 ≤ x ≤ K + M, L + 1 ≤ y ≤ L + M is equivalent to

xy + Kx + Ly ≡ b (mod p), 1 ≤ x, y ≤ M, (6)

where b = λ − K2. From the pigeon-hole principle it follows that for any positive integer
T < p there exists a positive integer t ≤ T 2 and integers u0, v0 such that

tK ≡ u0 (mod p), tL ≡ v0 (mod p), |u0| ≤ p/T, |v0| ≤ p/T.

From (6) we get that

txy + u0x + v0y ≡ b0 (mod p), 1 ≤ x, y ≤ M,

for some |b0| < p/2. We write this congruence as an equation

txy + u0x + v0y = b0 + zp, 1 ≤ x, y ≤ M, z ∈ Z. (7)

Comparing the minimum and maximum value of the left hand side we can see that

|z| ≤
∣∣∣txy + u0x + v0y − b0

p

∣∣∣ <
T 2M2

p
+

2M

T
+

1

2
.

We observe that for each given z the equation (7) is equivalent to the equation

(tx + u0)(ty + v0) = nz, 1 ≤ x, y ≤ M (8)

for certain integer nz. If nz = 0, then either tx+u0 = 0 or ty + v0 = 0. Since λ 6≡ 0 (mod p),
in either case x and y are both determined uniquely. So, we can only consider those z for
which nz 6= 0.

• Case M < p1/4/4. In this case we take T = 8M . Then |z| < 1 and we have to consider
only the integer nz = n0 in (8). Each solution of (8) produces two divisors of |n0|,
|tx + u0| and |ty + v0|, one of them is greater than or equal to

√
|n0|. If |n0| ≤ 236M18

the number of solutions of (8) is bounded by the number of divisors of n0, which is
M o(1). If |n0| > 236M18 the positive integers |tx + u0| and |ty + v0| lie in two intervals
I1 and I2 of length T 2M ≤ 26M3 < |n0|1/6. If there were five solutions, we would have
three divisors greater of equal to

√
|n0| in an interval of length ≤ |n0|1/6. We apply

Lemma 1 to conclude that there are at most four solutions. Hence, in this case we have

I2(M ; K,L) < M o(1).

4



• Case M ≥ p1/4/4. In this case we take T ≈ (p/M)1/3. Thus |z| ¿ M4/3/p1/3. For each
z the number of solutions of (8) is bounded by the number of divisors of nz which is
po(1) = M o(1). Hence, in this case we get

I2(M ; K, L) <
M4/3+o(1)

p1/3
.

Thus, we have proved that

I2(M ; K, L) <
M4/3+o(1)

p1/3
+ M o(1)

which proves the first part of Theorem 1.
The proof of the second part of Theorem 1 (corresponding to the case K = L) is similar,

with the only difference that we simply take t ≤ T (instead t ≤ T 2) satisfying

tK ≡ u0 (mod p), |u0| ≤ p/T.

3 An auxiliary statement

To prove Theorem 2 we need the following auxiliary statement.

Proposition 1. Let |A|, |B|, |C|, |D|, |E|, |F | ≤ MO(1) and assume that ∆ = B2 − 4AC is
not a perfect square (in particular, ∆ 6= 0). Then the diophantine equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (9)

has at most M o(1) solutions in integers x, y with 1 ≤ |x|, |y| ≤ MO(1).

We shall need several lemmas.

Lemma 2. Let A be a positive integer that is not a perfect square and let (x0, y0) be a solution
of the equation the equation x2 − Ay2 = 1 in positive integers with the smallest value of x0.
Then for any other integer solution (x, y) there exist a positive integer n such that

|x|+
√

A|y| = (x0 +
√

Ay0)
n.

Lemma 2 is well-known from the theory of Pell’s equation.

Lemma 3. Let A be a squarefree integer, N is a positive integer. Then the congruence
z2 ≡ A (mod N), 0 ≤ z ≤ N − 1 has at most N o(1) solutions.

Proof. Let J(N) be the number of solutions of the congruence in question and let N =
pα1

1 · · · pαk
k be a canonical factorization of N . Clearly, J(N) = J(pα1

1 ) · · · J(pαk
k ), where J(pα)

is the number of solutions of the congruence z2 ≡ A (mod pα), 0 ≤ z ≤ pα − 1. Since A is
squarefree, we have J(2α) ≤ 4 and J(pα) ≤ 2 for odd primes p. The result follows.

Lemma 4. Let A, E be integers with |A|, |E| < MO(1) such that A is not a perfect square.
Then the equation

x2 − Ay2 = E, 1 ≤ x, y < MO(1)

has at most M o(1) solutions.
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Proof. (1) We can assume that A is also a squarefree number. Indeed, let A = A1B
2
1 , where

A1, B1 are nonzero integers, A1 is squarefree and is not a perfect square. Then our equation
takes the form x2 − A1(B1y)2 = E, 1 ≤ x, y < MO(1). Since B1y < MO(1), it follows that
indeed we can assume that A is squarefree.

(2) We can assume that in our equation gcd(x, y) = 1. Indeed, if d = gcd(x, y), then
d2 | E. In particular, since E has M o(1) divisors, we have M o(1) possible values for d. Besides,
(x/d)2 + A(y/d)2 = E/d2, where we have now gcd(x/d, y/d) = 1. Thus, without loss of
generality, we can assume that gcd(x, y) = 1. In particular, it follows that gcd(y, E) = 1.

(3) Since A is not a perfect square, we have, in particular, that E 6= 0.

(4) For any x, y ∈ Z+ with (y, E) = 1 there exists 1 ≤ z ≤ |E| such that x ≡ zy (mod E).

Given 1 ≤ z ≤ |E|, let Kz be the set of all pairs (x, y) with

x2 − Ay2 = E, 1 ≤ x, y < MO(1), (x, y) = 1

such that x ≡ zy (mod E).
If (x, y) ∈ Kz, then (zy)2 − Ay2 ≡ 0 (mod E). Since (y, E) = 1, it follows that z2 ≡ A

(mod E). Due to Lemma 3, the number of solutions of this congruence is at most |E|o(1) =
M o(1). Thus, we have at most M o(1) possible values for z. Therefore, it suffices to show that
|Kz| = M o(1) for any such z.

Let x0 be the smallest positive integer such that

x2
0 − Ay2

0 = E, (x0, y0) ∈ Kz.

Let (x, y) be any other solution from Kz. Then,

x2
0 − Ay2

0 = E, x2 − Ay2 = E.

From this we derive that

(x0x− Ayy0)
2 − A(xy0 − x0y)2 = (x2

0 − Ay2
0)(x

2 − Ay2) = E2. (10)

On the other hand, from (x0, y0), (x, y) ∈ Kz it follows that

x0 ≡ zy0 (mod E), x ≡ zy (mod E)

Since z2 ≡ A (mod E), we get xx0 ≡ z2yy0 (mod E) ≡ Ayy0 (mod E). We also have
x0y ≡ xy0 (mod E), as both hand sides are zyy0 (mod E). Therefore,

x0x− Ay0y ≡ 0 (mod E), xy0 − x0y ≡ (mod E). (11)

From (10) and (11) we get that

(
x0x− Ay0y

E

)2

− A

(
xy0 − x0y

E

)2

= 1

and the numbers inside of parenthesis are integers.
Now there are two cases to consider:
(1) A > 0. In view of Lemma 2,

∣∣∣∣
x0x− Ay0y

E

∣∣∣∣ +
√
|A|

∣∣∣∣
xy0 − x0y

E

∣∣∣∣ = (u0 +
√
|A|v0)

n,
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where (u0, v0) is the smallest solution to X2 − AY 2 = 1 in positive integers, and n is some
non-negative integer.

Since the left hand side is of the order of magnitude MO(1), we have that n ¿ log M =
M o(1). Thus, there are M o(1) possible values for n and, each given n produces at most 4 pairs
(x, y). This proves the statement in the first case.

(2) A < 0. Then we get that

x0x− Ay0y

E
∈ {−1, 0, 1}, xy0 − x0y

E
∈ {−1, 0, 1},

and the result follows.

The proof of Proposition 1. Now we can deduce Proposition 1 from Lemma 4. Multiply-
ing (9) by 4A, we get

(2Ax + By + D)2 −∆y2 + (4EA− 2BD)y + 4AF −D2 = 0,

where ∆ = B2 − 4AC. Multiplying by ∆ we get,

(∆y + BD − 2EA)2 −∆(2x + By + D)2 = T,

where T = (BD − 2EA)2 + ∆(4AF − D2). Now, since ∆ is not a full square, and since
T, ∆ ≤ MO(1), we have, by Lemma 4 and the condition |A|, |B|, |C|, |D|, |E|, |F | ≤ M , that
there are at most M o(1) possible pairs (∆y + BD − 2EA, 2x + By + D). Each such pair
uniquely determines y (since ∆ 6= 0) and x. This finishes the proof of Proposition 1.

4 Proof of Theorem 2

In what follows, by v∗ we denote the least positive integer such that vv∗ ≡ 1 (mod p). We
rewrite our congruence in the form

(L + x)(L + y)(L + z) ≡ λ (mod p), 1 ≤ x, y, z ≤ M

which, in turn, is equivalent to the congruence

L2(x + y + z) + L(xy + xz + yz) + xyz ≡ λ− L3 (mod p), 1 ≤ x, y, z ≤ M. (12)

Assume that M ¿ p1/8 and that p is large enough to satisfy several inequalities through
the proof. Let

k = max{1, 2M2/p1/4}. (13)

Lemma 5. If L = uv∗ for some integers u, v with |u| ≤ M3/k and 1 ≤ |v| ≤ M2/k, then
the number of solutions of the congruence (12) is at most M o(1).

Proof. The congruence (12) is equivalente to

v2xyz + uv(xy + xz + yz) + u2(x + y + z) ≡ µ (mod p),

where |µ| < p/2 and µ ≡ λv2 − u3v∗. The absolute value of the left hand side is bounded by

(M2/k)2M3 + (M3/k)(M2/k)(3M2) + (M3/k)2(3M) ≤ 7M7/k2 ≤ 7M7/(2M2/p1/4)2

=
7

4
M3p1/2 < p/2.
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Hence, the congruence (12) is equivalent to the equality

v2xyz + uv(xy + xz + yz) + u2(x + y + z) = µ.

Multiplying by v, we get

(vx + u)(vy + u)(vz + u) = vµ + u3

The absolute value of the right and the left hand sides is ≤ MO(1), and besides it is distinct
from zero (since vµ + u3 ≡ λv3 (mod p), and λv3 6≡ 0 (mod p). Therefore, the number of
solutions of the latter equation is bounded by M o(1) and the lemma follows.

Due to this lemma, from now on we can assume that L does not satisfy the condition of
Lemma 5, that is

L 6= uv∗, |u| ≤ M3/k, |v| ≤ M2/k. (14)

For 0 ≤ r, s ≤ 3k− 1 and 0 ≤ t ≤ k− 1 let Sr,s,t be the set of solutions (x, y, z) such that




x + y + z ∈ ( rM
k

, (r+1)M
k

]

xy + xz + yz ∈ ( sM2

k
, (s+1)M2

k
]

xyz ∈ ( tM3

k
, (t+1)M3

k
]

Clearly, the number of solutions I3(M ; L) of our congruence satisfies

I3(M ; L) ≤ 9k3 max |Srst|.
We fix one solution (x0, y0, z0) ∈ Srst. Any other solution (xi, yi, zi) ∈ Srst satisfies the

congruence
AiL

2 + BiL + Ci ≡ 0 (mod p) (15)

where

Ai = xi + yi + zi − (x0 + y0 + z0),

Bi = xiyi + xizi + yizi − (x0y0 + x0z0 + y0z0),

Ci = xiyizi − x0y0z0.

We have
|Ai| ≤ M/k, |Bi| ≤ M2/k, |Ci| ≤ M3/k. (16)

A solution (xi, yi, zi) 6= (x0, y0, z0) we call degenerated if Ai = 0, and non-degenerated
otherwise.

The set of non-degenerated solutions.

We shall show that there are at most M o(1) non-degenerated solutions. So that, let us
assume that there are at least several non-degenerated solutions. With this set of solutions we
shall form a system of congruence with respect to L,L2. Let us fix one solution (A1, B1, C1).
Note that the condition Ai 6= 0 implies that Ai 6≡ 0 (mod p).

Case (1). If AiB1 6= A1Bi for some i, then in view of inequalities (16) we also have that
AiB1 6≡ A1Bi (mod p). Solving the system of equations (15) corresponding to the indices i
and 1, we obtain that

L ≡ (CiA1 − AiC1)(AiB1 − A1Bi)
∗ (mod p) ≡ uv∗ (mod p),
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L2 ≡ (BiC1 − CiB1)(AiB1 − A1Bi)
∗ (mod p) ≡ u′v∗ (mod p),

where
u = CiA1 − AiC1, v = AiB1 − A1Bi, u′ = BiC1 − CiB1.

From this we derive that

|u| ≤ 2M4/k2, |u′| ≤ 2M5/k2, |v| ≤ 2M3/k2 (17)

and (uv∗)2 ≡ L2 (mod p) ≡ u′v∗ (mod p). Hence, u2 ≡ u′v (mod p) and, using (17), (13),
we get |u2|, |u′v| ≤ 4M8/k4 ≤ p/4, so that we actually have the equality u2 = u′v.

Multiplying (12) by v, we get

vxyz + u(xy + xz + yz) + u′(x + y + z) ≡ v(λ− L3) (mod p) (18)

Since 1 ≤ x, y, z ≤ M , the inequalities (17) give

|vxyz + u(xy + xz + yz) + u′(x + y + z)| ≤ 14M6

k2
≤ 14M6

(2M2p−1/4)2
=

7M2p1/2

2
< p/2.

This converts the congruence (18) into the equality

vxyz + u(xy + xz + yz) + u′(x + y + z) = µ

for some µ ¿ MO(1) and µ ≡ v(λ − L3) (mod p). We multiply this equality by v2 and use
u′v = u2; we get that

(vx + u)(vy + u)(vz + u) = µv2 + u3. (19)

Since µv2 + u3 6= 0, the total number of solutions of the latter equation is ¿ M o(1).

Case (2). If we are not in case (1), then for any index i one has A1Bi = AiB1, which, in
turn, implies that we also have

A1Ci ≡ AiC1 (mod p).

In view of inequalities (16), we get that the latter congruence is also an equality, so that we
have

A1Bi = AiB1, A1Ci = AiC1. (20)

From the first equation and the definition of Ai, Bi, Ci, we get

zi(A1(xi + yi)−B1) = B1(xi + yi − a0)− A1xiyi + b0A1, (21)

from the second equation we get

zi(A1xiyi − C1) = C1(xi + yi − a0) + c0A1, (22)

where
a0 = x0 + y0 + z0, b0 = x0y0 + y0z0 + z0x0, c0 = x0y0z0.

Multiplying (21) by A1xiyi − C1, and (22) by A1(xi + yi) − B1, subtracting the resulting
equalities, and making the change of variables xi + yi = ui, xiyi = vi, we obtain

(B1(ui − a0)− A1vi + b0A1) (A1vi − C1) = (C1(ui − a0) + c0A1) (A1ui −B1) .

9



We rewrite this equation in the form

A1v
2
i + C1u

2
i −B1uivi − (a0C1 − c0A1)ui − (b0A1 − a0B1 + C1)vi + b0C1 − c0B1 = 0.

If B2
1 − 4A1C1 is a full square (as a number), say R2

1, then from (15) we obtain that
L ≡ (−B1 ± R1)(2A1)

∗ = uv∗ with |u| ≤ |B1| + |B1| +
√
|4A1C1| ≤ 4M2/k, |v| ≤ 2M/k,

which contradicts our condition (14).
If B2

1 − 4A1C1 is not a full square, then we are at the conditions of Proposition 1 and
we can claim that the number of pairs (ui, vi) is at most M o(1). We now conclude the proof
observing that each pair ui, vi produces at most two pairs xi, yi, which, in turn, determines
zi. Therefore, the number of non-degenerated solutions counted in Srst is at most M o(1).

The set of degenerated solutions.

We now consider the set of solutions for which Ai = 0. If Bi 6= 0, then Bi 6≡ 0 (mod p) and
thus we get L = −CiB

∗
i with |Ci| ≤ M3/k, |Bi| ≤ M2/k, which contradicts condition (14).

If Bi = 0 then together with Ai = 0 this implies that Ci = 0. Thus,

xi + yi + zi = a0 = x0 + y0 + z0,

xiyi + xizi + yizi = b0 = x0y0 + y0z0 + z0x0,

xiyizi = c0 = x0y0z0.

Hence,
(L + xi)(L + yi)(L + zi) = (L + x0)(L + y0)(L + z0).

The right hand side is not zero (since it is congruent to λ (mod p) and gcd(λ, p) = 1). Thus,
the number of solutions of this equation is at most M o(1). The result follows.

5 Proof of Corollaries

If M < p5/8 then
M4/3+o(1)

p1/3
+ M o(1) < M4/5+o(1)

and the statement of Corollary 1 for I2(M ; K, L) follows from Theorem 1. If M > p5/8 then,
p1/2(log p)2 < M4/5+o(1) and the statement of Corollary 1 for I2(M ; K,L) follows from (6).
Analogously we deal with I2(M ; K, K) considering the cases M > p2/3 and M < p2/3.

In order to prove Corollary 3, let k = Ja(M ; K, L) and let (xi, yi), i = 1, . . . , k, be all
solutions of the congruence y ≡ agx (mod p) with xi ∈ [K+1, K+M ] and yi ∈ [L+1, L+M ].
Since M < t, the numbers y1, . . . , yk are distinct. Since yiyj ≡ agz (mod p) for some z ∈
[2K + 2, 2K + 2M ], there exists a value λ such that for at least k2/2M pairs (yi, yj) we have
yiyj ≡ λ (mod p). Hence, theorem 1 implies that

k2

2M
<

M3/2+o(1)

p1/2
+ M o(1),

and the result follows.
Corollary 4 is proved similar to Corollary 3. For any triple (i, j, `) we have yiyjy` ≡ agz

(mod p) for some z ∈ [3K + 3, 3K + 3M ]. Hence, there exists λ 6≡ 0 (mod p) such that the
congruence yiyjy` ≡ λ (mod p) has at least k3/3M solutions. Thus,

k3

3M
< M o(1),
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and the result follows in this case. If M > p1/8, then in the interval [L + 1, L + M ] we can
find a subinterval of length p1/8 which would contain at least k/(2Mp−1/8) members from
y1, . . . , yk. Thus, the preceding argument gives that

(
k

Mp−1/8

)3

3M
< M o(1),

and the result follows.
Now we prove Corollary 2. Let W be the number of solutions of the congruence

xyz ≡ x′y′z′ (mod p), (x, x′, y, y′, z, z′) ∈ I1 × I1 × I2 × I2 × I3 × I3.

Then,

W =
1

p

∑
χ

∣∣∣
∑
x∈I1

χ(x)
∣∣∣
2∣∣∣

∑
y∈I1

χ(y)
∣∣∣
2∣∣∣

∑
z∈I1

χ(z)
∣∣∣
2

.

Applying the Holder’s inequality, we obtain

W ≤
(1

p

∑
χ

∣∣∣
∑
x∈I1

χ(x)
∣∣∣
6)1/3(1

p

∑
χ

∣∣∣
∑
y∈I2

χ(y)
∣∣∣
6)1/3(1

p

∑
χ

∣∣∣
∑
z∈I3

χ(z)
∣∣∣
6)1/3

.

Thus,
W ≤ W

1/3
1 ·W 1/3

2 ·W 1/3
3 ,

where Wj is the number of solutions of the congruence

xyz ≡ x′y′z′ (mod p), x, y, z, x′, y′, z′ ∈ Ij.

According to Theorem 2, for each given triple (x′, y′, z′) there are at most |Ij|o(1) possibilities
for (x, y, z). Thus, we have that Wi ≤ |Ij|3+o(1). Therefore,

W ≤ (|I1| · |I2| · |I3|)1+o(1).

Now, using the well known relationship between the cardinality of a product set and the
number of solutions of the corresponding equation, we get

|I1 · I2 · I3| ≥ |I1|2 · |I2|2 · |I3|2
W

≥ (|I1| · |I2| · |I3|)1−o(1)

and the result follows.

6 Conjectures and Open problems

We conclude our paper with several conjectures and open problems.

Conjecture 1. For M < p1/2 one has I2(M ; K, L) < M o(1)

Conjecture 2. For M < p1/3 one has I3(M ; L) < M o(1)

Conjecture 3. For M < p1/2 one has Ja(M ; K, L) < M o(1).
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Conjecture 4. Let I1, I2, I3 be intervals in F∗p of length |Ii| < p1/3. Then

|I1 · I2 · I3| = (|I1| · |I2| · |I3|)1−o(1).

Problem 1. From Theorem 1 it follows that if if M < p1/4, then I2(M ; K,L) < M o(1).
Improve the exponent 1/4 to a larger constant.

Problem 2. From Theorem 1 it follows that if M < p1/3, then I2(M ; L,L) < M o(1). Improve
the exponent 1/3 to a larger constant.

Problem 3. Theorem 2 claims that if M < p1/8, then I3(M ; L) < M o(1). Improve the
exponent 1/8 to a larger constant.
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