Concentration points on two and three dimensional modular hyperbolas and applications

J. Cilleruelo
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas
Universidad Autónoma de Madrid
Madrid-28049, Spain
franciscojavier.cilleruelo@uam.es
M. Z. Garaev
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México
garaev@matmor.unam.mx

Abstract

Let p be a large prime number, K, L, M, λ be integers with $1 \leq M \leq p$ and $\operatorname{gcd}(\lambda, p)=1$. The aim of our paper is to obtain sharp upper bound estimates for the number $I_{2}(M ; K, L)$ of solutions of the congruence

$$
x y \equiv \lambda \quad(\bmod p), \quad K+1 \leq x \leq K+M, \quad L+1 \leq y \leq L+M
$$

and for the number $I_{3}(M ; L)$ of solutions of the congruence

$$
\begin{equation*}
x y z \equiv \lambda \quad(\bmod p), \quad L+1 \leq x, y, z \leq L+M . \tag{1}
\end{equation*}
$$

Using the idea of Heath-Brown from [6], we obtain a bound for $I_{2}(M ; K, L)$, which improves several recent results of Chan and Shparlinski [3]. For instance, we prove that if $M<p^{1 / 4}$, then $I_{2}(M ; K, L) \leq M^{o(1)}$.

The problem with $I_{3}(M ; L)$ is more difficult and requires a different approach. Here, we connect this problem with the Pell diophantine equation and prove that for $M<p^{1 / 8}$ one has $I_{3}(M ; L) \leq M^{o(1)}$. Our results have applications to some other problems as well. For instance, it follows that if $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}$ are intervals in \mathbb{F}_{p}^{*} of length $\left|\mathcal{I}_{i}\right|<p^{1 / 8}$, then

$$
\left|\mathcal{I}_{1} \cdot \mathcal{I}_{2} \cdot \mathcal{I}_{3}\right|=\left(\left|\mathcal{I}_{1}\right| \cdot\left|\mathcal{I}_{2}\right| \cdot\left|\mathcal{I}_{3}\right|\right)^{1-o(1)} .
$$

MSC Classification: 11A07, 11B75

1 Introduction

In what follows, p denotes a large prime number, K, L, M, λ are integers with $1 \leq M \leq p$ and $\operatorname{gcd}(\lambda, p)=1$. By x, y, z we denote variables that take integer values. The notation $B^{o(1)}$ denotes such a quantity that for any $\varepsilon>0$ there exists $c=c(\varepsilon)>0$ such that $B^{o(1)}<c B^{\varepsilon}$.

Let $I_{2}(M ; K, L)$ be the number of solutions of the congruence

$$
x y \equiv \lambda \quad(\bmod p), \quad K+1 \leq x \leq K+M, \quad L+1 \leq y \leq L+M
$$

and let $I_{3}(M ; L)$ be the number of solutions of the congruence

$$
x y z \equiv \lambda \quad(\bmod p), \quad L+1 \leq x, y, z \leq L+M
$$

Estimates of incomplete Kloosterman sums implies that

$$
\begin{equation*}
I_{2}(M ; K, L)=\frac{M^{2}}{p}+O\left(p^{1 / 2}(\log p)^{2}\right) \tag{2}
\end{equation*}
$$

In particular, if $M /\left(p^{3 / 4}(\log p)^{2}\right) \rightarrow \infty$ as $p \rightarrow \infty$, one gets that

$$
I_{2}(M ; K, L)=(1+o(1)) \frac{M^{2}}{p} .
$$

This asymptotic formula also holds when $M / p^{3 / 4} \rightarrow \infty$ as $p \rightarrow \infty$ (see [5]). The problem of upper bound estimates of $I_{2}(M ; K, L)$ for smaller values of M has been a subject of the work of Chan and Shparlinski [3]. Using Bourgain's sum-product estimate [1], they have shown that there exists an effectively computable constant $\eta>0$ such that for any positive integer $M<p$, uniformly over arbitrary integers K and L, the following bound holds:

$$
I_{2}(M ; K, L) \ll \frac{M^{2}}{p}+M^{1-\eta} .
$$

In the present paper we obtain the following upper bound estimates for $I_{2}(M ; K, L)$.
Theorem 1. Uniformly over arbitrary integers K and L, we have

$$
\begin{equation*}
I_{2}(M ; K, L)<\frac{M^{4 / 3+o(1)}}{p^{1 / 3}}+M^{o(1)} \tag{3}
\end{equation*}
$$

When $K=L$, we have

$$
\begin{equation*}
I_{2}(M ; L, L)<\frac{M^{3 / 2+o(1)}}{p^{1 / 2}}+M^{o(1)} \tag{4}
\end{equation*}
$$

In particular, if $M<p^{1 / 4}$ then $I_{2}(M ; K, L)<M^{o(1)}$.
Theorem 1 together with (2) easily implies the following consequence, which improves upon the mentioned result of Chan and Shparlinski.
Corollary 1. Uniformly over arbitrary integers K and L, we have

$$
I_{2}(M ; K, L) \ll \frac{M^{2}}{p}+M^{4 / 5+o(1)}
$$

If $K=L$, then

$$
I_{2}(M ; L, L) \ll \frac{M^{2}}{p}+M^{3 / 4+o(1)} .
$$

The proof of Theorem 1 is based on an idea of Heath-Brown [6]. The problem with $I_{3}(M ; L)$ is more difficult and requires a different approach. Here, we shall connect this problem with the Pell diophantine equation and establish the following statement.

Theorem 2. Let $M \ll p^{1 / 8}$. Then, uniformly over arbitrary integer L, we have

$$
\begin{equation*}
I_{3}(M ; L) \ll M^{o(1)} . \tag{5}
\end{equation*}
$$

From Theorem 2 we can easily derive a sharp bound for the cardinality of product of three small intervals in \mathbb{F}_{p}^{*}.

Corollary 2. Let $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}$ be intervals in \mathbb{F}_{p}^{*} of length $\left|\mathcal{I}_{i}\right|<p^{1 / 8}$. Then

$$
\left|\mathcal{I}_{1} \cdot \mathcal{I}_{2} \cdot \mathcal{I}_{3}\right|=\left(\left|\mathcal{I}_{1}\right| \cdot\left|\mathcal{I}_{2}\right| \cdot\left|\mathcal{I}_{3}\right|\right)^{1-o(1)}
$$

Theorems 1 and 2 have also applications to the problem on concentration points on exponential curves as well. Let $g \geq 2$ be an integer of multiplicative order t, and let $M<t$. Denote by $J_{a}(M ; K, L)$ the number of solutions of the congruence

$$
y \equiv a g^{x} \quad(\bmod p) ; \quad x \in[K+1, K+M], y \in[L+1, L+M] .
$$

Chan and Shparlinski [3] used a sum product estimate of Bourgain and Garaev [2] to prove that

$$
J_{a}(M ; K, L)<\max \left\{M^{10 / 11+o(1)}, M^{9 / 8+o(1)} p^{-1 / 8}\right\}
$$

as $M \rightarrow \infty$. From our Theorem 1 we shall derive the following improvement on this result.
Corollary 3. Let $M<t$. Uniformly over arbitrary integers K and L, we have

$$
J_{a}(M ; K, L)<\left(1+M^{3 / 4} p^{-1 / 4}\right) M^{1 / 2+o(1)} .
$$

In particular, if $M \leq p^{1 / 3}$, then we have $J_{a}(M ; K, L)<M^{1 / 2+o(1)}$.
Theorem 2 allows to strength Corollary 3 when $M \ll p^{3 / 20}$.
Corollary 4. The following bound holds:

$$
J_{a}(M ; K, L)<\left(1+M p^{-1 / 8}\right) M^{1 / 3+o(1)} .
$$

In particular, if $M \ll p^{1 / 8}$, then we have $J_{a}(M ; K, L)<M^{1 / 3+o(1)}$.

2 Proof of Theorem 1

We will need the following lemma which is a simple version of a more precise result about divisors in short intervals, see, for example, [4].

Lemma 1. For all positive integer n and $m \geq \sqrt{n}$, the interval $\left[m, m+n^{1 / 6}\right]$ contains at most two divisors of n,

Proof. Suppose that $d_{1}, d_{2}, d_{3} \in[m, m+L]$ are three divisors of n. We claim that the number

$$
r=\frac{d_{1} d_{2} d_{3}}{\left(d_{1}, d_{2}\right)\left(d_{1}, d_{3}\right)\left(d_{2}, d_{3}\right)}
$$

is also a divisor of n. To see this, for a given prime q, let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha$ such that $q^{\alpha_{i}} \| d_{i}, i=$ $1,2,3$ and $q^{\alpha} \| n$. Assume that $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \alpha$. The exponent of q in the rational number r is $\alpha_{1}+\alpha_{2}+\alpha_{3}-\left(\min \left(\alpha_{1}, \alpha_{2}\right)+\min \left(\alpha_{1}, \alpha_{3}\right)+\min \left(\alpha_{2}, \alpha_{3}\right)\right)=\alpha_{3}-\alpha_{1}$. Since $0 \leq \alpha_{3}-\alpha_{1} \leq \alpha$ we have that r is an integer divisor of n.

On the other hand, since $\left(d_{i}, d_{j}\right) \leq\left|d_{i}-d_{j}\right| \leq L$ we have

$$
n \geq r>\frac{m^{3}}{L^{3}} \geq \frac{n^{3 / 2}}{L^{3}}
$$

and the result follows.
Now we proceed to prove Theorem 1. Our approach is based on Heath-Brown's idea from [6]. We can assume that M is sufficiently large number. The congruence $x y \equiv \lambda$ $(\bmod p), K+1 \leq x \leq K+M, L+1 \leq y \leq L+M$ is equivalent to

$$
\begin{equation*}
x y+K x+L y \equiv b \quad(\bmod p), \quad 1 \leq x, y \leq M \tag{6}
\end{equation*}
$$

where $b=\lambda-K^{2}$. From the pigeon-hole principle it follows that for any positive integer $T<p$ there exists a positive integer $t \leq T^{2}$ and integers u_{0}, v_{0} such that

$$
t K \equiv u_{0} \quad(\bmod p), \quad t L \equiv v_{0} \quad(\bmod p), \quad\left|u_{0}\right| \leq p / T, \quad\left|v_{0}\right| \leq p / T
$$

From (6) we get that

$$
t x y+u_{0} x+v_{0} y \equiv b_{0} \quad(\bmod p), \quad 1 \leq x, y \leq M
$$

for some $\left|b_{0}\right|<p / 2$. We write this congruence as an equation

$$
\begin{equation*}
t x y+u_{0} x+v_{0} y=b_{0}+z p, \quad 1 \leq x, y \leq M, z \in \mathbb{Z} \tag{7}
\end{equation*}
$$

Comparing the minimum and maximum value of the left hand side we can see that

$$
|z| \leq\left|\frac{t x y+u_{0} x+v_{0} y-b_{0}}{p}\right|<\frac{T^{2} M^{2}}{p}+\frac{2 M}{T}+\frac{1}{2} .
$$

We observe that for each given z the equation (7) is equivalent to the equation

$$
\begin{equation*}
\left(t x+u_{0}\right)\left(t y+v_{0}\right)=n_{z}, \quad 1 \leq x, y \leq M \tag{8}
\end{equation*}
$$

for certain integer n_{z}. If $n_{z}=0$, then either $t x+u_{0}=0$ or $t y+v_{0}=0$. Since $\lambda \not \equiv 0(\bmod p)$, in either case x and y are both determined uniquely. So, we can only consider those z for which $n_{z} \neq 0$.

- Case $M<p^{1 / 4} / 4$. In this case we take $T=8 M$. Then $|z|<1$ and we have to consider only the integer $n_{z}=n_{0}$ in (8). Each solution of (8) produces two divisors of $\left|n_{0}\right|$, $\left|t x+u_{0}\right|$ and $\left|t y+v_{0}\right|$, one of them is greater than or equal to $\sqrt{\left|n_{0}\right|}$. If $\left|n_{0}\right| \leq 2^{36} M^{18}$ the number of solutions of (8) is bounded by the number of divisors of n_{0}, which is $M^{o(1)}$. If $\left|n_{0}\right|>2^{36} M^{18}$ the positive integers $\left|t x+u_{0}\right|$ and $\left|t y+v_{0}\right|$ lie in two intervals \mathcal{I}_{1} and \mathcal{I}_{2} of length $T^{2} M \leq 2^{6} M^{3}<\left|n_{0}\right|^{1 / 6}$. If there were five solutions, we would have three divisors greater of equal to $\sqrt{\left|n_{0}\right|}$ in an interval of length $\leq\left|n_{0}\right|^{1 / 6}$. We apply Lemma 1 to conclude that there are at most four solutions. Hence, in this case we have

$$
I_{2}(M ; K, L)<M^{o(1)}
$$

- Case $M \geq p^{1 / 4} / 4$. In this case we take $T \approx(p / M)^{1 / 3}$. Thus $|z| \ll M^{4 / 3} / p^{1 / 3}$. For each z the number of solutions of (8) is bounded by the number of divisors of n_{z} which is $p^{o(1)}=M^{o(1)}$. Hence, in this case we get

$$
I_{2}(M ; K, L)<\frac{M^{4 / 3+o(1)}}{p^{1 / 3}}
$$

Thus, we have proved that

$$
I_{2}(M ; K, L)<\frac{M^{4 / 3+o(1)}}{p^{1 / 3}}+M^{o(1)}
$$

which proves the first part of Theorem 1.
The proof of the second part of Theorem 1 (corresponding to the case $K=L$) is similar, with the only difference that we simply take $t \leq T$ (instead $t \leq T^{2}$) satisfying

$$
t K \equiv u_{0} \quad(\bmod p), \quad\left|u_{0}\right| \leq p / T
$$

3 An auxiliary statement

To prove Theorem 2 we need the following auxiliary statement.
Proposition 1. Let $|A|,|B|,|C|,|D|,|E|,|F| \leq M^{O(1)}$ and assume that $\Delta=B^{2}-4 A C$ is not a perfect square (in particular, $\Delta \neq 0$). Then the diophantine equation

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{9}
\end{equation*}
$$

has at most $M^{o(1)}$ solutions in integers x, y with $1 \leq|x|,|y| \leq M^{O(1)}$.
We shall need several lemmas.
Lemma 2. Let A be a positive integer that is not a perfect square and let $\left(x_{0}, y_{0}\right)$ be a solution of the equation the equation $x^{2}-A y^{2}=1$ in positive integers with the smallest value of x_{0}. Then for any other integer solution (x, y) there exist a positive integer n such that

$$
|x|+\sqrt{A}|y|=\left(x_{0}+\sqrt{A} y_{0}\right)^{n} .
$$

Lemma 2 is well-known from the theory of Pell's equation.
Lemma 3. Let A be a squarefree integer, N is a positive integer. Then the congruence $z^{2} \equiv A(\bmod N), 0 \leq z \leq N-1$ has at most $N^{o(1)}$ solutions.

Proof. Let $J(N)$ be the number of solutions of the congruence in question and let $N=$ $p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ be a canonical factorization of N. Clearly, $J(N)=J\left(p_{1}^{\alpha_{1}}\right) \cdots J\left(p_{k}^{\alpha_{k}}\right)$, where $J\left(p^{\alpha}\right)$ is the number of solutions of the congruence $z^{2} \equiv A\left(\bmod p^{\alpha}\right), 0 \leq z \leq p^{\alpha}-1$. Since A is squarefree, we have $J\left(2^{\alpha}\right) \leq 4$ and $J\left(p^{\alpha}\right) \leq 2$ for odd primes p. The result follows.

Lemma 4. Let A, E be integers with $|A|,|E|<M^{O(1)}$ such that A is not a perfect square. Then the equation

$$
x^{2}-A y^{2}=E, \quad 1 \leq x, y<M^{O(1)}
$$

has at most $M^{o(1)}$ solutions.

Proof. (1) We can assume that A is also a squarefree number. Indeed, let $A=A_{1} B_{1}^{2}$, where A_{1}, B_{1} are nonzero integers, A_{1} is squarefree and is not a perfect square. Then our equation takes the form $x^{2}-A_{1}\left(B_{1} y\right)^{2}=E, 1 \leq x, y<M^{O(1)}$. Since $B_{1} y<M^{O(1)}$, it follows that indeed we can assume that A is squarefree.
(2) We can assume that in our equation $\operatorname{gcd}(x, y)=1$. Indeed, if $d=\operatorname{gcd}(x, y)$, then $d^{2} \mid E$. In particular, since E has $M^{o(1)}$ divisors, we have $M^{o(1)}$ possible values for d. Besides, $(x / d)^{2}+A(y / d)^{2}=E / d^{2}$, where we have now $\operatorname{gcd}(x / d, y / d)=1$. Thus, without loss of generality, we can assume that $\operatorname{gcd}(x, y)=1$. In particular, it follows that $\operatorname{gcd}(y, E)=1$.
(3) Since A is not a perfect square, we have, in particular, that $E \neq 0$.
(4) For any $x, y \in \mathbb{Z}_{+}$with $(y, E)=1$ there exists $1 \leq z \leq|E|$ such that $x \equiv z y(\bmod E)$. Given $1 \leq z \leq|E|$, let K_{z} be the set of all pairs (x, y) with

$$
x^{2}-A y^{2}=E, \quad 1 \leq x, y<M^{O(1)}, \quad(x, y)=1
$$

such that $x \equiv z y(\bmod E)$.
If $(x, y) \in K_{z}$, then $(z y)^{2}-A y^{2} \equiv 0(\bmod E)$. Since $(y, E)=1$, it follows that $z^{2} \equiv A$ $(\bmod E)$. Due to Lemma 3, the number of solutions of this congruence is at most $|E|^{o(1)}=$ $M^{o(1)}$. Thus, we have at most $M^{o(1)}$ possible values for z. Therefore, it suffices to show that $\left|K_{z}\right|=M^{o(1)}$ for any such z.

Let x_{0} be the smallest positive integer such that

$$
x_{0}^{2}-A y_{0}^{2}=E, \quad\left(x_{0}, y_{0}\right) \in K_{z} .
$$

Let (x, y) be any other solution from K_{z}. Then,

$$
x_{0}^{2}-A y_{0}^{2}=E, \quad x^{2}-A y^{2}=E .
$$

From this we derive that

$$
\begin{equation*}
\left(x_{0} x-A y y_{0}\right)^{2}-A\left(x y_{0}-x_{0} y\right)^{2}=\left(x_{0}^{2}-A y_{0}^{2}\right)\left(x^{2}-A y^{2}\right)=E^{2} . \tag{10}
\end{equation*}
$$

On the other hand, from $\left(x_{0}, y_{0}\right),(x, y) \in K_{z}$ it follows that

$$
x_{0} \equiv z y_{0} \quad(\bmod E), \quad x \equiv z y \quad(\bmod E)
$$

Since $z^{2} \equiv A(\bmod E)$, we get $x x_{0} \equiv z^{2} y y_{0}(\bmod E) \equiv A y y_{0}(\bmod E)$. We also have $x_{0} y \equiv x y_{0}(\bmod E)$, as both hand sides are $z y y_{0}(\bmod E)$. Therefore,

$$
\begin{equation*}
x_{0} x-A y_{0} y \equiv 0 \quad(\bmod E), \quad x y_{0}-x_{0} y \equiv \quad(\bmod E) . \tag{11}
\end{equation*}
$$

From (10) and (11) we get that

$$
\left(\frac{x_{0} x-A y_{0} y}{E}\right)^{2}-A\left(\frac{x y_{0}-x_{0} y}{E}\right)^{2}=1
$$

and the numbers inside of parenthesis are integers.
Now there are two cases to consider:
(1) $A>0$. In view of Lemma 2,

$$
\left|\frac{x_{0} x-A y_{0} y}{E}\right|+\sqrt{|A|}\left|\frac{x y_{0}-x_{0} y}{E}\right|=\left(u_{0}+\sqrt{|A|} v_{0}\right)^{n},
$$

where $\left(u_{0}, v_{0}\right)$ is the smallest solution to $X^{2}-A Y^{2}=1$ in positive integers, and n is some non-negative integer.

Since the left hand side is of the order of magnitude $M^{O(1)}$, we have that $n \ll \log M=$ $M^{o(1)}$. Thus, there are $M^{o(1)}$ possible values for n and, each given n produces at most 4 pairs (x, y). This proves the statement in the first case.
(2) $A<0$. Then we get that

$$
\frac{x_{0} x-A y_{0} y}{E} \in\{-1,0,1\}, \quad \frac{x y_{0}-x_{0} y}{E} \in\{-1,0,1\}
$$

and the result follows.

The proof of Proposition 1. Now we can deduce Proposition 1 from Lemma 4. Multiplying (9) by $4 A$, we get

$$
(2 A x+B y+D)^{2}-\Delta y^{2}+(4 E A-2 B D) y+4 A F-D^{2}=0
$$

where $\Delta=B^{2}-4 A C$. Multiplying by Δ we get,

$$
(\Delta y+B D-2 E A)^{2}-\Delta(2 x+B y+D)^{2}=T
$$

where $T=(B D-2 E A)^{2}+\Delta\left(4 A F-D^{2}\right)$. Now, since Δ is not a full square, and since $T, \Delta \leq M^{O(1)}$, we have, by Lemma 4 and the condition $|A|,|B|,|C|,|D|,|E|,|F| \leq M$, that there are at most $M^{o(1)}$ possible pairs $(\Delta y+B D-2 E A, 2 x+B y+D)$. Each such pair uniquely determines y (since $\Delta \neq 0$) and x. This finishes the proof of Proposition 1.

4 Proof of Theorem 2

In what follows, by v^{*} we denote the least positive integer such that $v v^{*} \equiv 1(\bmod p)$. We rewrite our congruence in the form

$$
(L+x)(L+y)(L+z) \equiv \lambda \quad(\bmod p), \quad 1 \leq x, y, z \leq M
$$

which, in turn, is equivalent to the congruence

$$
\begin{equation*}
L^{2}(x+y+z)+L(x y+x z+y z)+x y z \equiv \lambda-L^{3} \quad(\bmod p), \quad 1 \leq x, y, z \leq M \tag{12}
\end{equation*}
$$

Assume that $M \ll p^{1 / 8}$ and that p is large enough to satisfy several inequalities through the proof. Let

$$
\begin{equation*}
k=\max \left\{1,2 M^{2} / p^{1 / 4}\right\} \tag{13}
\end{equation*}
$$

Lemma 5. If $L=u v^{*}$ for some integers u, v with $|u| \leq M^{3} / k$ and $1 \leq|v| \leq M^{2} / k$, then the number of solutions of the congruence (12) is at most $M^{o(1)}$.
Proof. The congruence (12) is equivalente to

$$
v^{2} x y z+u v(x y+x z+y z)+u^{2}(x+y+z) \equiv \mu \quad(\bmod p),
$$

where $|\mu|<p / 2$ and $\mu \equiv \lambda v^{2}-u^{3} v^{*}$. The absolute value of the left hand side is bounded by

$$
\begin{aligned}
\left(M^{2} / k\right)^{2} M^{3}+\left(M^{3} / k\right)\left(M^{2} / k\right)\left(3 M^{2}\right)+\left(M^{3} / k\right)^{2}(3 M) & \leq 7 M^{7} / k^{2} \leq 7 M^{7} /\left(2 M^{2} / p^{1 / 4}\right)^{2} \\
& =\frac{7}{4} M^{3} p^{1 / 2}<p / 2
\end{aligned}
$$

Hence, the congruence (12) is equivalent to the equality

$$
v^{2} x y z+u v(x y+x z+y z)+u^{2}(x+y+z)=\mu .
$$

Multiplying by v, we get

$$
(v x+u)(v y+u)(v z+u)=v \mu+u^{3}
$$

The absolute value of the right and the left hand sides is $\leq M^{O(1)}$, and besides it is distinct from zero (since $v \mu+u^{3} \equiv \lambda v^{3}(\bmod p)$, and $\lambda v^{3} \not \equiv 0(\bmod p)$. Therefore, the number of solutions of the latter equation is bounded by $M^{o(1)}$ and the lemma follows.

Due to this lemma, from now on we can assume that L does not satisfy the condition of Lemma 5, that is

$$
\begin{equation*}
L \neq u v^{*}, \quad|u| \leq M^{3} / k, \quad|v| \leq M^{2} / k . \tag{14}
\end{equation*}
$$

For $0 \leq r, s \leq 3 k-1$ and $0 \leq t \leq k-1$ let $S_{r, s, t}$ be the set of solutions (x, y, z) such that

$$
\left\{\begin{array}{l}
x+y+z \in\left(\frac{r M}{k}, \frac{(r+1) M}{k}\right] \\
x y+x z+y z \in\left(\frac{s M^{2}}{k}, \frac{(s+1) M^{2}}{k}\right] \\
x y z \in\left(\frac{t M^{3}}{k}, \frac{(t+1) M^{3}}{k}\right]
\end{array}\right.
$$

Clearly, the number of solutions $I_{3}(M ; L)$ of our congruence satisfies

$$
I_{3}(M ; L) \leq 9 k^{3} \max \left|S_{r s t}\right|
$$

We fix one solution $\left(x_{0}, y_{0}, z_{0}\right) \in S_{r s t}$. Any other solution $\left(x_{i}, y_{i}, z_{i}\right) \in S_{r s t}$ satisfies the congruence

$$
\begin{equation*}
A_{i} L^{2}+B_{i} L+C_{i} \equiv 0 \quad(\bmod p) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{i} & =x_{i}+y_{i}+z_{i}-\left(x_{0}+y_{0}+z_{0}\right) \\
B_{i} & =x_{i} y_{i}+x_{i} z_{i}+y_{i} z_{i}-\left(x_{0} y_{0}+x_{0} z_{0}+y_{0} z_{0}\right), \\
C_{i} & =x_{i} y_{i} z_{i}-x_{0} y_{0} z_{0} .
\end{aligned}
$$

We have

$$
\begin{equation*}
\left|A_{i}\right| \leq M / k,\left|B_{i}\right| \leq M^{2} / k,\left|C_{i}\right| \leq M^{3} / k \tag{16}
\end{equation*}
$$

A solution $\left(x_{i}, y_{i}, z_{i}\right) \neq\left(x_{0}, y_{0}, z_{0}\right)$ we call degenerated if $A_{i}=0$, and non-degenerated otherwise.

The set of non-degenerated solutions.

We shall show that there are at most $M^{o(1)}$ non-degenerated solutions. So that, let us assume that there are at least several non-degenerated solutions. With this set of solutions we shall form a system of congruence with respect to L, L^{2}. Let us fix one solution (A_{1}, B_{1}, C_{1}). Note that the condition $A_{i} \neq 0$ implies that $A_{i} \not \equiv 0(\bmod p)$.

Case (1). If $A_{i} B_{1} \neq A_{1} B_{i}$ for some i, then in view of inequalities (16) we also have that $A_{i} B_{1} \not \equiv A_{1} B_{i}(\bmod p)$. Solving the system of equations (15) corresponding to the indices i and 1 , we obtain that

$$
L \equiv\left(C_{i} A_{1}-A_{i} C_{1}\right)\left(A_{i} B_{1}-A_{1} B_{i}\right)^{*} \quad(\bmod p) \equiv u v^{*} \quad(\bmod p),
$$

$$
L^{2} \equiv\left(B_{i} C_{1}-C_{i} B_{1}\right)\left(A_{i} B_{1}-A_{1} B_{i}\right)^{*} \quad(\bmod p) \equiv u^{\prime} v^{*} \quad(\bmod p)
$$

where

$$
u=C_{i} A_{1}-A_{i} C_{1}, \quad v=A_{i} B_{1}-A_{1} B_{i}, \quad u^{\prime}=B_{i} C_{1}-C_{i} B_{1} .
$$

From this we derive that

$$
\begin{equation*}
|u| \leq 2 M^{4} / k^{2},\left|u^{\prime}\right| \leq 2 M^{5} / k^{2},|v| \leq 2 M^{3} / k^{2} \tag{17}
\end{equation*}
$$

and $\left(u v^{*}\right)^{2} \equiv L^{2}(\bmod p) \equiv u^{\prime} v^{*}(\bmod p)$. Hence, $u^{2} \equiv u^{\prime} v(\bmod p)$ and, using (17), (13), we get $\left|u^{2}\right|,\left|u^{\prime} v\right| \leq 4 M^{8} / k^{4} \leq p / 4$, so that we actually have the equality $u^{2}=u^{\prime} v$.

Multiplying (12) by v, we get

$$
\begin{equation*}
v x y z+u(x y+x z+y z)+u^{\prime}(x+y+z) \equiv v\left(\lambda-L^{3}\right) \quad(\bmod p) \tag{18}
\end{equation*}
$$

Since $1 \leq x, y, z \leq M$, the inequalities (17) give

$$
\left|v x y z+u(x y+x z+y z)+u^{\prime}(x+y+z)\right| \leq \frac{14 M^{6}}{k^{2}} \leq \frac{14 M^{6}}{\left(2 M^{2} p^{-1 / 4}\right)^{2}}=\frac{7 M^{2} p^{1 / 2}}{2}<p / 2
$$

This converts the congruence (18) into the equality

$$
v x y z+u(x y+x z+y z)+u^{\prime}(x+y+z)=\mu
$$

for some $\mu \ll M^{O(1)}$ and $\mu \equiv v\left(\lambda-L^{3}\right)(\bmod p)$. We multiply this equality by v^{2} and use $u^{\prime} v=u^{2}$; we get that

$$
\begin{equation*}
(v x+u)(v y+u)(v z+u)=\mu v^{2}+u^{3} . \tag{19}
\end{equation*}
$$

Since $\mu v^{2}+u^{3} \neq 0$, the total number of solutions of the latter equation is $\ll M^{o(1)}$.
Case (2). If we are not in case (1), then for any index i one has $A_{1} B_{i}=A_{i} B_{1}$, which, in turn, implies that we also have

$$
A_{1} C_{i} \equiv A_{i} C_{1} \quad(\bmod p)
$$

In view of inequalities (16), we get that the latter congruence is also an equality, so that we have

$$
\begin{equation*}
A_{1} B_{i}=A_{i} B_{1}, \quad A_{1} C_{i}=A_{i} C_{1} . \tag{20}
\end{equation*}
$$

From the first equation and the definition of A_{i}, B_{i}, C_{i}, we get

$$
\begin{equation*}
z_{i}\left(A_{1}\left(x_{i}+y_{i}\right)-B_{1}\right)=B_{1}\left(x_{i}+y_{i}-a_{0}\right)-A_{1} x_{i} y_{i}+b_{0} A_{1} \tag{21}
\end{equation*}
$$

from the second equation we get

$$
\begin{equation*}
z_{i}\left(A_{1} x_{i} y_{i}-C_{1}\right)=C_{1}\left(x_{i}+y_{i}-a_{0}\right)+c_{0} A_{1}, \tag{22}
\end{equation*}
$$

where

$$
a_{0}=x_{0}+y_{0}+z_{0}, \quad b_{0}=x_{0} y_{0}+y_{0} z_{0}+z_{0} x_{0}, \quad c_{0}=x_{0} y_{0} z_{0} .
$$

Multiplying (21) by $A_{1} x_{i} y_{i}-C_{1}$, and (22) by $A_{1}\left(x_{i}+y_{i}\right)-B_{1}$, subtracting the resulting equalities, and making the change of variables $x_{i}+y_{i}=u_{i}, x_{i} y_{i}=v_{i}$, we obtain

$$
\left(B_{1}\left(u_{i}-a_{0}\right)-A_{1} v_{i}+b_{0} A_{1}\right)\left(A_{1} v_{i}-C_{1}\right)=\left(C_{1}\left(u_{i}-a_{0}\right)+c_{0} A_{1}\right)\left(A_{1} u_{i}-B_{1}\right) .
$$

We rewrite this equation in the form

$$
A_{1} v_{i}^{2}+C_{1} u_{i}^{2}-B_{1} u_{i} v_{i}-\left(a_{0} C_{1}-c_{0} A_{1}\right) u_{i}-\left(b_{0} A_{1}-a_{0} B_{1}+C_{1}\right) v_{i}+b_{0} C_{1}-c_{0} B_{1}=0 .
$$

If $B_{1}^{2}-4 A_{1} C_{1}$ is a full square (as a number), say R_{1}^{2}, then from (15) we obtain that $L \equiv\left(-B_{1} \pm R_{1}\right)\left(2 A_{1}\right)^{*}=u v^{*}$ with $|u| \leq\left|B_{1}\right|+\left|B_{1}\right|+\sqrt{\left|4 A_{1} C_{1}\right|} \leq 4 M^{2} / k,|v| \leq 2 M / k$, which contradicts our condition (14).

If $B_{1}^{2}-4 A_{1} C_{1}$ is not a full square, then we are at the conditions of Proposition 1 and we can claim that the number of pairs $\left(u_{i}, v_{i}\right)$ is at most $M^{o(1)}$. We now conclude the proof observing that each pair u_{i}, v_{i} produces at most two pairs x_{i}, y_{i}, which, in turn, determines z_{i}. Therefore, the number of non-degenerated solutions counted in $S_{r s t}$ is at most $M^{o(1)}$.

The set of degenerated solutions.

We now consider the set of solutions for which $A_{i}=0$. If $B_{i} \neq 0$, then $B_{i} \not \equiv 0(\bmod p)$ and thus we get $L=-C_{i} B_{i}^{*}$ with $\left|C_{i}\right| \leq M^{3} / k,\left|B_{i}\right| \leq M^{2} / k$, which contradicts condition (14).

If $B_{i}=0$ then together with $A_{i}=0$ this implies that $C_{i}=0$. Thus,

$$
\begin{array}{r}
x_{i}+y_{i}+z_{i}=a_{0}=x_{0}+y_{0}+z_{0} \\
x_{i} y_{i}+x_{i} z_{i}+y_{i} z_{i}=b_{0}=x_{0} y_{0}+y_{0} z_{0}+z_{0} x_{0} \\
x_{i} y_{i} z_{i}=c_{0}=x_{0} y_{0} z_{0}
\end{array}
$$

Hence,

$$
\left(L+x_{i}\right)\left(L+y_{i}\right)\left(L+z_{i}\right)=\left(L+x_{0}\right)\left(L+y_{0}\right)\left(L+z_{0}\right) .
$$

The right hand side is not zero (since it is congruent to $\lambda(\bmod p)$ and $\operatorname{gcd}(\lambda, p)=1)$. Thus, the number of solutions of this equation is at most $M^{o(1)}$. The result follows.

5 Proof of Corollaries

If $M<p^{5 / 8}$ then

$$
\frac{M^{4 / 3+o(1)}}{p^{1 / 3}}+M^{o(1)}<M^{4 / 5+o(1)}
$$

and the statement of Corollary 1 for $I_{2}(M ; K, L)$ follows from Theorem 1. If $M>p^{5 / 8}$ then, $p^{1 / 2}(\log p)^{2}<M^{4 / 5+o(1)}$ and the statement of Corollary 1 for $I_{2}(M ; K, L)$ follows from (6). Analogously we deal with $I_{2}(M ; K, K)$ considering the cases $M>p^{2 / 3}$ and $M<p^{2 / 3}$.

In order to prove Corollary 3 , let $k=J_{a}(M ; K, L)$ and let $\left(x_{i}, y_{i}\right), i=1, \ldots, k$, be all solutions of the congruence $y \equiv a g^{x}(\bmod p)$ with $x_{i} \in[K+1, K+M]$ and $y_{i} \in[L+1, L+M]$. Since $M<t$, the numbers y_{1}, \ldots, y_{k} are distinct. Since $y_{i} y_{j} \equiv a g^{z}(\bmod p)$ for some $z \in$ $[2 K+2,2 K+2 M]$, there exists a value λ such that for at least $k^{2} / 2 M$ pairs $\left(y_{i}, y_{j}\right)$ we have $y_{i} y_{j} \equiv \lambda(\bmod p)$. Hence, theorem 1 implies that

$$
\frac{k^{2}}{2 M}<\frac{M^{3 / 2+o(1)}}{p^{1 / 2}}+M^{o(1)}
$$

and the result follows.
Corollary 4 is proved similar to Corollary 3 . For any triple (i, j, ℓ) we have $y_{i} y_{j} y_{\ell} \equiv a g^{z}$ $(\bmod p)$ for some $z \in[3 K+3,3 K+3 M]$. Hence, there exists $\lambda \not \equiv 0(\bmod p)$ such that the congruence $y_{i} y_{j} y_{\ell} \equiv \lambda(\bmod p)$ has at least $k^{3} / 3 M$ solutions. Thus,

$$
\frac{k^{3}}{3 M}<M^{o(1)}
$$

and the result follows in this case. If $M>p^{1 / 8}$, then in the interval $[L+1, L+M]$ we can find a subinterval of length $p^{1 / 8}$ which would contain at least $k /\left(2 M p^{-1 / 8}\right)$ members from y_{1}, \ldots, y_{k}. Thus, the preceding argument gives that

$$
\frac{\left(\frac{k}{M p^{-1 / 8}}\right)^{3}}{3 M}<M^{o(1)}
$$

and the result follows.
Now we prove Corollary 2 . Let W be the number of solutions of the congruence

$$
x y z \equiv x^{\prime} y^{\prime} z^{\prime} \quad(\bmod p), \quad\left(x, x^{\prime}, y, y^{\prime}, z, z^{\prime}\right) \in \mathcal{I}_{1} \times \mathcal{I}_{1} \times \mathcal{I}_{2} \times \mathcal{I}_{2} \times \mathcal{I}_{3} \times \mathcal{I}_{3}
$$

Then,

$$
W=\frac{1}{p} \sum_{\chi}\left|\sum_{x \in \mathcal{I}_{1}} \chi(x)\right|^{2}\left|\sum_{y \in \mathcal{I}_{1}} \chi(y)\right|^{2}\left|\sum_{z \in \mathcal{I}_{1}} \chi(z)\right|^{2} .
$$

Applying the Holder's inequality, we obtain

$$
W \leq\left(\frac{1}{p} \sum_{\chi}\left|\sum_{x \in \mathcal{I}_{1}} \chi(x)\right|^{6}\right)^{1 / 3}\left(\frac{1}{p} \sum_{\chi}\left|\sum_{y \in \mathcal{I}_{2}} \chi(y)\right|^{6}\right)^{1 / 3}\left(\frac{1}{p} \sum_{\chi}\left|\sum_{z \in \mathcal{I}_{3}} \chi(z)\right|^{6}\right)^{1 / 3}
$$

Thus,

$$
W \leq W_{1}^{1 / 3} \cdot W_{2}^{1 / 3} \cdot W_{3}^{1 / 3}
$$

where W_{j} is the number of solutions of the congruence

$$
x y z \equiv x^{\prime} y^{\prime} z^{\prime} \quad(\bmod p), \quad x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in \mathcal{I}_{j} .
$$

According to Theorem 2, for each given triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ there are at most $\left|\mathcal{I}_{j}\right|{ }^{o(1)}$ possibilities for (x, y, z). Thus, we have that $W_{i} \leq\left|\mathcal{I}_{j}\right|^{3+o(1)}$. Therefore,

$$
W \leq\left(\left|\mathcal{I}_{1}\right| \cdot\left|\mathcal{I}_{2}\right| \cdot\left|\mathcal{I}_{3}\right|\right)^{1+o(1)} .
$$

Now, using the well known relationship between the cardinality of a product set and the number of solutions of the corresponding equation, we get

$$
\left|\mathcal{I}_{1} \cdot \mathcal{I}_{2} \cdot \mathcal{I}_{3}\right| \geq \frac{\left|\mathcal{I}_{1}\right|^{2} \cdot\left|\mathcal{I}_{2}\right|^{2} \cdot\left|\mathcal{I}_{3}\right|^{2}}{W} \geq\left(\left|\mathcal{I}_{1}\right| \cdot\left|\mathcal{I}_{2}\right| \cdot\left|\mathcal{I}_{3}\right|\right)^{1-o(1)}
$$

and the result follows.

6 Conjectures and Open problems

We conclude our paper with several conjectures and open problems.
Conjecture 1. For $M<p^{1 / 2}$ one has $I_{2}(M ; K, L)<M^{o(1)}$
Conjecture 2. For $M<p^{1 / 3}$ one has $I_{3}(M ; L)<M^{o(1)}$
Conjecture 3. For $M<p^{1 / 2}$ one has $J_{a}(M ; K, L)<M^{o(1)}$.

Conjecture 4. Let $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}$ be intervals in \mathbb{F}_{p}^{*} of length $\left|\mathcal{I}_{i}\right|<p^{1 / 3}$. Then

$$
\left|\mathcal{I}_{1} \cdot \mathcal{I}_{2} \cdot \mathcal{I}_{3}\right|=\left(\left|\mathcal{I}_{1}\right| \cdot\left|\mathcal{I}_{2}\right| \cdot\left|\mathcal{I}_{3}\right|\right)^{1-o(1)}
$$

Problem 1. From Theorem 1 it follows that if if $M<p^{1 / 4}$, then $I_{2}(M ; K, L)<M^{o(1)}$. Improve the exponent $1 / 4$ to a larger constant.

Problem 2. From Theorem 1 it follows that if $M<p^{1 / 3}$, then $I_{2}(M ; L, L)<M^{o(1)}$. Improve the exponent $1 / 3$ to a larger constant.

Problem 3. Theorem 2 claims that if $M<p^{1 / 8}$, then $I_{3}(M ; L)<M^{o(1)}$. Improve the exponent $1 / 8$ to a larger constant.

References

[1] J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, Int. J. Number Theory 1 (2005), 1-32.
[2] J. Bourgain and M. Z. Garaev, On a variant of sum-product estimates and explicit exponential sum bounds in prime fields, Math. Proc. Cambridge Philos. Soc. 146 (2009), 1-21.
[3] T. H. Chan and I. Shparlinski, On the concentration of points on modular hyperbolas and exponential curves, Acta Arithmetica 142, no. 1 (2010) 59-66.
[4] J. Cilleruelo and J. Jiménez, The hyperbola $x y=N$, Journal of Théorie des Nombres of Bordeaux, vol 12, no. 1 (2000).
[5] M. Garaev, On the logarithmic factor in error term estimates in certain additive congruence problems, Acta Arithmetica 124, n 1 (2006) 27-39.
[6] D. R. Heath-Brown, Almost-primes in arithmetic progressions and short intervals, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 3, 357-375.

