Supporting Information

Nonafluorobutanesulfonyl Azide:
 A Shelf-Stable Diazo Transfer Reagent for the Synthesis of Azides from Primary Amines

José Ramón Suárez, ${ }^{a}$ Beatriz Trastoy, ${ }^{a}$ M. Eugenia Pérez-Ojeda, ${ }^{\text {b }}$ Rubén Marín-Barrios, ${ }^{\mathrm{a}}$ and Jose Luis Chiara ${ }^{\mathrm{a}, *}$
a Instituto de Química Orgánica General, C.S.I.C., Juan de la Cierva 3, E-28006 Madrid, Spain Fax: (+34)-915644853; e-mail: jl.chiara@iqog.csic.es
b Instituto de Química-Física "Rocasolano", C.S.I.C., Serrano 119, E-28006 Madrid, Spain

General methods. All melting points were measured with a Reicher Jung Thermovar micro-melting apparatus. Proton and carbon-13 nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR or ${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a BRUKER AMX-300 (300 and 75 MHz , respectively), a Varian INOVA 300 (300 and 75 MHz , respectively), a Varian INOVA 400 (400 and 100 MHz , respectively) or a Varian UNITY 500 (500 and 125 MHz , respectively) spectrometers. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual peaks of the deuterated NMR solvent used or to internal tetramethylsilane. Data are presented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet and/or multiple resonances, $b=$ broad), coupling constants in hertz (Hz), integration, and assignment. Proton and carbon-13 assignments are based on DQ-COSY, HSQC, and HMBC correlation experiments. Thin layer chromatography (TLC) was performed with Merck Silica Gel 60 F254 plates. Chromatograms were visualized using UV light and/or treatment with a solution of ammonium molybdate (50 g) and cerium(IV) sulphate (1 g) in 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~L})$ followed by charring on a hot plate. For
detection of azides, the chromatograms were first dipped in a $1 \%(w / v)$ solution of $\mathrm{Ph}_{3} \mathrm{P}$ in EtOAc, dried at rt , then dipped in a 1% or $5 \%(\mathrm{w} / \mathrm{v})$ solution of ninhydrin in 95% aqueous EtOH, and finally charred on a hot plate. ${ }^{[1]}$ Column chromatography was performed with Merck silica gel, grade 60, 230-400 mesh. Mass spectra were recorded on an Agilent/HP 1100 LC/MSD spectrometer using ESI or APCI sources. High resolution mass spectra (HRMS) were recorded on an Agilent 6520 Q-TOF instrument with a ESI source. Elemental analyses were determined in a Heraus CHN-O analyser. Organic solvents were of HPLC grade and were used as provided. All reactions were carried out with magnetic stirring.

Substrates $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ were prepared as reported in the literature. ${ }^{[2]}$

Diazo transfer reaction. To a solution of the corresponding amine $3(0.6 \mathrm{mmol})$ in water $(0.8 \mathrm{~mL})$ was added in sequence $\mathrm{MeOH}(2.2 \mathrm{~mL}), \mathrm{NaHCO}_{3}(0.201 \mathrm{~g}, 2.4 \mathrm{mmol})$, a solution of nonafluorobutanesulfonyl azide $(0.295 \mathrm{~g}, 0.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(14 \mathrm{mg}, 0,06 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 6 h . The mixture was concentrated at reduced pressure, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added, and the resultant solution was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \times 10 \mathrm{~mL})$. The organic layer were separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The corresponding azide 4 was obtained in pure form without any further purification.

Benzyl azide (4a):

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.36(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 5 \mathrm{H})$.

2-Phenylethyl azide (4b): ${ }^{1} \mathrm{H}$ NMR was in agreement with that reported in the literature. ${ }^{[3]}$ ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.23$ (m, 2 H), 7.23-7.41 (m, 5 H).

6-Azido-1-hexanol (4c): ${ }^{1} \mathrm{H}$ NMR was in agreement with that reported in the literature. ${ }^{[4]}$
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): 1.27-1.39 (m, 4 H), 1.53-1.62 (m, 4 H), 2.14 (br s, 1 H), 3.24 ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$.

4-(2-azidoethyl)-1,2-dimethoxybenzene (4d):

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.83(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3$ H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 6.73-6.83(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 34.9\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{3}\right), 111.3(\mathrm{CH})$, 111.9 (CH), 120.6 (CH), 130.5 (C), 147.8 (C), 148.9 (C).

Anal, calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 57.96, H, 6.32, N, 20.28; found: C, 58.04, H, 6.37, N, 19.99.

Ethyl 3-azidobenzoate (4e): ${ }^{1} \mathrm{H}$ NMR was in agreement with that reported in the literature. ${ }^{[5]}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.38(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70 (s, 1 H), 7.81 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
(\boldsymbol{S})-Ethyl $\boldsymbol{\alpha}$-azidoisovalerate (4f): ${ }^{1} \mathrm{H}$ NMR was in agreement with that reported in the literature. ${ }^{[6]}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.00(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.15-2.25$ (m, 1 H), $3.66(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 4.24(\mathrm{qd}, J=6.0,1.2 \mathrm{~Hz}, 2 \mathrm{H})$.
(S)-2-Azido-3-phenylpropanoic acid (4g): ${ }^{1} \mathrm{H}$ NMR was in agreement with that reported in the literature. ${ }^{[7]}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.09 (dd, $J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.29(\mathrm{dd}, J=13.5,4.9 \mathrm{~Hz}, 1$ H), 4.15-4.21 (m, 1 H$), 7.30-7.43(\mathrm{~m}, 5 \mathrm{H}), 8.75$ (br s, 1 H).
(S)-2-azido-3-(4-hydroxyphenyl)propanoic acid (4h): ${ }^{1} \mathrm{H}$ NMR was in agreement with that reported in the literature. ${ }^{[8]}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.05(\mathrm{dd}, J=14.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.27(\mathrm{dd}, J=14.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19$ (dd, $J=8.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$.

1,3,4,6-Tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose (4i): To a solution of Dglucosamine hydrochloride ($64 \mathrm{mg}, 0.3 \mathrm{mmol}$) in water (0.8 mL) was added in sequence $\mathrm{MeOH}(1.1 \mathrm{~mL}), \mathrm{NaHCO}_{3}(0.100 \mathrm{~g}, 1.2 \mathrm{mmol})$, a solution of nonafluorobutanesulfonyl azide ($0.153 \mathrm{~g}, 0.45 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(14 \mathrm{mg}, 0,06 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 6 h . The mixture was concentrated at reduced pressure. The oily residue was suspended in dry pyridine (3 mL) and treated with $\mathrm{Ac}_{2} \mathrm{O}(0.42 \mathrm{~mL}, 4.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 4 h , the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with aqueous $1 \mathrm{M} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaHCO_{3} solution (15 mL) and brine (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The product $\mathbf{4 i}$ was obtained as a mixture of two diastereoisomers ($\alpha / \beta=40: 60$ ratio) in 74% yield.
${ }^{1} \mathrm{H}$ NMR spectrum was agreement with that reported in the literature. ${ }^{[9]}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.02, 2.04, 2.07, 2.09, 2.10 and $2.19\left(8 \times \mathrm{CH}_{3}\right)$, 3.64-3.70 (m, $1 \mathrm{H})$, 3.72-3.77 (m, 2 H), 3.78-3.83 (m, $1 \mathrm{H}, \beta$-anomer), 4.02-4.10 (m, 3 H), 4.28 (dd, $J=$ $4.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \beta$-anomer), 4.30-4.33 (m, $1 \mathrm{H}, \alpha$-anomer), 5.01-5.14 (m, 3 H), 5.46 (dd, J $=12.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \alpha$-anomer), $5.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta$-anomer), $6.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1$ H, α-anomer).

Hexaazido-hepta-O-Acetyl Neomycin (4j): To a solution of neomycin trisulfate salt hydrate ($80 \mathrm{mg}, 0.088 \mathrm{mmol}$) in water $(0.8 \mathrm{~mL})$ was added in sequence $\mathrm{MeOH}(1.1 \mathrm{~mL})$, $\mathrm{NaHCO}_{3}(0.100 \mathrm{~g}, 1.2 \mathrm{mmol})$, a solution of nonafluorobutanesulfonyl azide $(0.257 \mathrm{~g}, 0.792$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ and $\mathrm{Cu}_{2} \mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(14 \mathrm{mg}, 0,06 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 6 h . The mixture was concentrated at reduced pressure. The residue was dissolved in dry pyridine $(3 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with $\mathrm{Ac}_{2} \mathrm{O}(0.45 \mathrm{~mL}, 4.4$ mmol) and stirred for 4 h at this temperature. Then, the volatiles were removed under reduced pressure and the residue was redissolved in 10 mL of ethyl acetate, and extracted twice with 8 mL of 1 M aqueous HCl . The organic layer was concentrated and the residue was purified by flash column chromatography eluting with $2: 1$ hexane/EtOAc to afford $\mathbf{4} \mathbf{j}$ in 62% yield as a white solid.
${ }^{1} \mathrm{H}$ NMR was in agreement with that reported in the literature. ${ }^{[10]}$
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.09\left(\mathrm{CH}_{3}\right), 2.12\left(\mathrm{CH}_{3}\right), 2.14\left(\mathrm{CH}_{3}\right), 2.15\left(\mathrm{CH}_{3}\right), 2.20(3 \times$ CH_{3}), $3.17(\mathrm{dd}, J=10.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.76(\mathrm{~m}, 11 \mathrm{H}), 3.93(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$ 4.15 (m, 1 H), 4.26-4.37 (m, 2 H), 4.42-4.51 (m, 3 H), 4.73 (br s, 1 H), 4.91 (br s, 2 H), $4.97-5.07(\mathrm{~m}, 4 \mathrm{H}), 5.38(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H})$.

One pot Diazo transfer and intermolecular 1,3-Dipolar-cycloaddition reaction. To a solution of the corresponding amine $\mathbf{3}(0.6 \mathrm{mmol})$ in water $(0.8 \mathrm{~mL})$ was added in sequence $\mathrm{MeOH}(2.2 \mathrm{~mL}), \mathrm{NaHCO}_{3}(0.201 \mathrm{~g}, 2.4 \mathrm{mmol})$, a solution of nonafluorobutanesulfonyl azide $(0.295 \mathrm{~g}, 0.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(14 \mathrm{mg}, 0.06 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 6 h . Then, phenylacetylene $(0.06 \mathrm{~mL}$, 0.65 mmol) and sodium ascorbate ($178 \mathrm{mg}, 0.9 \mathrm{mmol}$) were added and the reaction was stirred at room temperature overnight. The mixture was concentrated at reduced pressure, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added, and the resultant solution was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(4 \times 10 \mathrm{~mL})$. The organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The residue was purified by flash column chromatography to afford the corresponding triazol 5-9.

1-Benzyl-4-hexyl-1H-1,2,3-triazole (5): White solid. M.p. $50-51^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.41$ (hexane/EtOAc 3:2).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.86(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.67(\mathrm{~m}, 2$ H), $2.67(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.39$ (m, 3 H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.6\left(\mathrm{CH}_{3}\right)$, $23.1\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right)$, $32.1\left(\mathrm{CH}_{2}\right)$, $54.5\left(\mathrm{CH}_{2}\right), 121.0(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 129.1(\mathrm{CH}), 129.6(2 \times \mathrm{CH}), 135.5$ (C), 149.5 (C).

HRMS (ESI) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3}: 244.1808$, found: 244.1819.

1-Benzyl-4-(p-tolyl)-1H-1,2,3-triazole (6): White solid. M.p.151-153 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.33$ (hexane/EtOAc 3:2).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.36(\mathrm{~s}, 3 \mathrm{H}), 5.58(\mathrm{~s}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ 7.32 (m, 2 H), $7.35-7.39$ (m, 3 H), 7.64 ($\mathrm{s}, 1 \mathrm{H}$), 7.69 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 21.8\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{2}\right), 126.1(2 \times \mathrm{CH}), 128.2(\mathrm{C}), 128.6(2 \times$ $\mathrm{CH}), 129.3(\mathrm{CH}), 129.7(2 \times \mathrm{CH}), 130.0(3 \times \mathrm{CH}), 135.2(\mathrm{C}), 138.6(2 \times \mathrm{C})$.
HRMS (ESI) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3}: 250.1339$, found: 250.1349 .

1-(3,4-Dimethoxyphenethyl)-4-phenyl-1 $\boldsymbol{H}-\mathbf{1 , 2 , 3}$-triazole (7): Pale yellow oil. $\mathrm{R}_{f}=0.36$ (hexane/EtOAc 3:2).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.61(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $36.4\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right), 111.5(\mathrm{CH})$, $111.9(\mathrm{CH}), 120.6(\mathrm{CH}), 125.7(2 \times \mathrm{CH}), 128.1(\mathrm{CH}), 128.8(2 \times \mathrm{CH}), 129.6(2 \times \mathrm{C}), 130.6$ (C), 148.1 (C), 149.1 (C).

MS (ESI): m/z (\%): $310\left(\mathrm{M}^{+}+\mathrm{H}, 100\right), 239$ (10), 165 (26), 102 (41). HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}: 310.1481$, found: 310.1556.

Ethyl 3-(4-hexyl-1H-1,2,3-triazol-1-yl)benzoate (8): Pale yellow oil. $\mathrm{R}_{f}=0.54$ (hexane/EtOAc 7:3).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.39(\mathrm{t}, J=7.1$
$\mathrm{Hz}, 3 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{app}$. $\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{ddd}, J=8.1,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{ddd}, J=5.5$, $3.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-8.30(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.5\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{CH}_{2}\right)$, $32.0\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{CH}_{2}\right), 119.3(\mathrm{C}), 121.4(\mathrm{CH}), 125.0(\mathrm{CH}), 129.7(\mathrm{CH}), 130.3$ $(\mathrm{CH}), 132.6(\mathrm{CH}), 137.8(\mathrm{C}), 150.0(\mathrm{C}), 165.9(\mathrm{C})$.
HRMS (ESI) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}: 302.1863$, found: 302.1877.

Ethyl 3-(4-phenyl-1H-1,2,3-triazol-1-yl)benzoate (9): Colorless oil. $\mathrm{R}_{f}=0.42$ (hexane/EtOAc 3:2).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.41$ (m, 1 H), 7.44-7.50 (m, 2 H), 7.64 (app. t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89-7.94 (m, 2 H), 8.06-8.15 (m, 2 H), $8.28(\mathrm{~s}, 1 \mathrm{H}), 8.38$ (dd, $J=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.3\left(\mathrm{CH}_{3}\right), 61.7\left(\mathrm{CH}_{2}\right), 117.6(\mathrm{CH}), 121.0(\mathrm{CH}), 124.7(\mathrm{CH})$, $125.9(2 \times \mathrm{CH}), 128.6(\mathrm{CH}), 129.0(2 \times \mathrm{CH}), 129.6(\mathrm{CH}), 129.9(\mathrm{C}), 130.0(\mathrm{CH}), 132.2(\mathrm{C})$, 137.1 (C), 148.7 (C), 165.4 (C).

MS (ESI): m/z (\%): $294\left(\mathrm{M}^{+}+\mathrm{H}, 100\right), 194$ (10), 180 (22). HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}$: 294.1167, found: 294.1242.

One pot Diazo transfer and intramolecular 1,3-Dipolar-cycloaddition reaction. To a solution of the corresponding amine $\mathbf{1 0}(0.6 \mathrm{mmol})$ in water $(0.8 \mathrm{~mL})$ was added in sequence $\mathrm{MeOH}(2.2 \mathrm{~mL}), \mathrm{NaHCO}_{3}(0.201 \mathrm{~g}, 2.4 \mathrm{mmol})$, and a solution of nonafluorobutanesulfonyl azide $(0.295 \mathrm{~g}, 0.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$. After stirring the reaction mixture at room temperature for $12 \mathrm{~h}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(14 \mathrm{mg}, 0.06 \mathrm{mmol})$ and sodium ascorbate ($178 \mathrm{mg}, 0.9 \mathrm{mmol}$) were added and the reaction was stirred at room temperature for 3 h . The mixture was concentrated at reduced pressure, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added, and the resultant solution was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(4 \times 10 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated at reduced pressure. The residue was purified by flash column chromatography to afford the corresponding tricyclic triazol 11.

4H-Benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazine (11a): Yellow oil. $\mathrm{R}_{f}=0.35$ (hexane/EtOAc 3:2).
${ }^{1}{ }^{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.39(\mathrm{~s}, 2 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1$ H), $7.63(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 62.4\left(\mathrm{CH}_{2}\right), 117.3(\mathrm{CH}), 118.3(\mathrm{CH}), 123.6(\mathrm{CH}), 124.5(\mathrm{C})$, $127.9(\mathrm{C}), 129.5(2 \times \mathrm{CH}), 145.7(\mathrm{C})$.
HRMS (ESI) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}$: 174.0772, found: 174.0220.

7-Methoxy-4H-benzo[b][1,2,3]triazolo[1,5-d][1,4]oxazine (11b): Yellow solid. $\mathrm{R}_{f}=$ 0.38 (hexane/EtOAc 3:2).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.87(\mathrm{~s}, 3 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 56.2\left(\mathrm{CH}_{3}\right), 61.9\left(\mathrm{CH}_{2}\right), 101.6(\mathrm{CH}), 115.6(\mathrm{CH}), 119.1(\mathrm{CH})$, 124.4 (CH), 127.9 (C), 129.3 (C), 139.1 (C), 135.6 (C).

HRMS (ESI) $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}$: 204.0768, found: 204.0770.

References:

1) Punna, S.; Finn, M. G. Synlett 2004, 99-100.
2) Gabriele, B.; Salerno, G.; Veltri, L.; Mancuso, R.; Li, Z.; Crispini, A.; Anna Bellusci, A. J. Org. Chem. 2006, 71, 7895-7898.
3) Benati, L.; Bencivenni, G.; Leardini, R.; Nanni, D.; Minozzi, M.; Spagnolo, P.;Scialpi, R.; Zanardi, G. Org. Lett. 2006, 8, 2499-2502.
4) Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin V. V. Macromolecules 2005, 38, 3663-3678.
5) Hu, M.; Li, J.; Yao, S.Q. Org. Lett. 2008, 10, 5529-5531.
6) Manis, P. A.; Rathke, M. W. J. Org. Chem. 1980, 45, 4952-4954-5032.
7) Shi, H.; Liu, K.; Xu, A.; Yao, S. Q. Chem. Commun. 2009, 5030-5032.
8) Bock, V. D.; Speijer, D.; Hiemstraa, H.; van Maarseveen, J. H. Org. Biomol. Chem. 2007, 5, 971-975.
9) Vasella, A.; Witzig, C.; Chiara, J. L.; Martín-Lomas, M. Hev. Chim. Acta 1991, 74, 2073-2077.
10) Greenberg, W. A.; Priestley, E. S.; Sears, P. S.; Alper, P. B.; Rosenbohm, C.; Hendrix, M.; Hung, S-C.; Wong, C-H. J. Am. Chem. Soc. 1999, 121, 6527-6541.

4 a

| 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 |
| :--- |

(${ }^{1} \mathrm{H}$ NMR $, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

[^0]
(${ }^{1} \mathrm{H}$ NMR $, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

(${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

$\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(${ }^{1} \mathrm{H}$ NMR $, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

$\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

11a

$\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right.$)

11a

(${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$)

$\left({ }^{13} \mathrm{CNMR}^{\mathrm{NM}}, \mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right.$)

11b

[^0]:

