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Abstract

A system that builds and maintains a dynamic map for a mobile robot
is presented. A learning rule associated to each observed landmark is used
to compute its robustness. The position of the robot during map construc-
tion is estimated by combining sensor readings, motion commands, and
the current map state by means of an Extended Kalman Filter. The com-
bination of landmark strength validation and Kalman filtering for map
updating and robot position estimation allows for robust learning of mod-
erately dynamic indoor environments.

Keywords: Mobile robot map learning, mobile robot navigation, CML,
SLAM, Extended Kalman Filter.
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1 Introduction

Efficient indoor mobile robot navigation is limited mainly by the ability of a
robot to perceive and interact with its surroundings in a deliberative way. And,
for such interaction to take place, a model or description of the environment
usually needs to be specified beforehand. If a global description or measurement
of the elements present in the environment is not available, the descriptors and
methods for the autonomous building of one are required. This is, either the
robot has a global map, or it is given the means to learn one.

Many systems that incorporate human-made models of the environment have
been successfully developed, even when only an approximate map is given or
when the system must navigate in crowded environments12,18. However, the
autonomous building of a global, and possibly dynamic, map of the environment
for a mobile robot is still a difficult problem. Three main difficulties arise during
autonomous learning of an indoor map by a mobile robot:

1. Dead reckoning. As the robot moves, its global position estimate from
encoder readings accumulates drift errors due to wheel slippage or encoder
quantization. And, after a small period of time, unless corrected, that
estimate is unreliable.

2. Sensors. Obstacle and landmark position estimates are restricted by the
type of sensors used, and by the finesse of the algorithms used for ex-
traction, location, and identification. For example, in the case of sonar
sensors, false reflections are typical, and a large amount of obstacle posi-
tion readings might be inaccurate. On the other hand, if vision is used,
effective and accurate extraction and identification of landmarks is often
prohibitive for real-time systems.

3. Dynamic environments. In a restricted number of applications, the envi-
ronment remains static. However, for the general case, obstacle locations
usually change over time, pushing for stochastic map models that contin-
uously update the environment map to reflect these changes.

Map construction in mobile robotics has been achieved typically by updating
grid maps of obstacles. Recent contributions on grid-based map building include
the ones by Anousaki2, Duckett11, Lee15, and Oriolo19 among others.

If a mobile robot is able to repeatedly identify the same landmark in the
environment, it could refine the position of such landmark in the map, and at
the same time, use this information to update the estimate it has about its own
current location. To this aim, Castellanos6, Kwon14, and Dissanayake10 to name
a few, have suggested probabilistic approaches for obstacle parameterization and
robot localization. Another technique that uses a Bayesian approach to map
learning and localization over grid maps is by Thrun20.
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Figure 1: System architecture.

A completely different approach to robot navigation that does not take into
account the geometric structure of the environment relies on the use of goal
oriented cognitive maps to learn the relationship between successively explored
places3,4,7,13. However, all of the above cited contributions are limited in that
changing environments are only dealt at most with reactive behaviors.

In this article we present a methodology for the construction and update of a
dynamic map for a mobile robot. It extends on previous probabilistic methods to
concurrent localization and mapping by incorporating the measurement of land-
mark strength and quality, measures that permit the elimination of unreliable
observations so that map updating can occur even in moderately changing envi-
ronments. Unlike grid-based techniques, it is scale independent. The technique
does not make any assumption on the distribution of the landmark positions,
but it does expect white distribution of dead reckoning and sensor measurement
errors. Our system architecture is shown in Fig. 1. It includes three distinctive
modules: landmark extraction, map updating, and localization.

3



2 Landmark Strength and Quality Measures

The use of an estimation-theoretic approach such as Extended Kalman Filtering
5,17,21 to concurrent localization and mapping has gain popularity in recent
years1,6,10,16. However, little attention has been paid on the constraints inherent
with such formalism. Two of the most critical of these restrictions are the
linearization constraint and the data association constraint. The former refers
to the requisite that a linearized model for the motion of the mobile robot be
available, as well as accurate models for the uncertainty in sensor measurements
and motion commands. The latter constraint refers to the issue of landmark
identification, and consequently, to the issue of landmark quality.

In the work by Dissanayake10 for example, landmark robustness is addressed
as an implementation issue only, suggesting a quality measure based on the
probability density function of the observations associated to a given landmark,
disregarding the temporal dispersion of such observations.

We introduce in this communication a set of measures for landmark valida-
tion. Measures that quantify how disperse both in space and time landmark
observations are in order to be considered strong references for environment
representation and robot localization. Temporary landmarks and those coming
from noisy sensor readings are pruned from the map as their strength measure
diminishes over time. By the same token, those landmarks that are repeatedly
observed are considered trusted indicators of the structure of the environment.
Similarly, those landmarks that accumulate wide spatial dispersion during map
building are also removed.

2.1 Temporal Uncertainty

In order to evaluate landmark temporal dispersion, we have resorted to an
exponential decay rule with the possibility to link neighboring landmarks in
a networked representation.

Consider the map of the environment to be a set of landmarks parameterized
as quadruples

T = {(zW
i ,ΣW

i , ζW
i ,Xi), 0 ≤ i ≤ t}, (1)

with zW the landmark position in world coordinates, ΣW
i the associated land-

mark covariance matrix, ζW
i a vector of landmark appearance properties, Xi the

strength state, and t the total number of landmarks in the map.

For each landmark in T , there exists an associated memory cell that will
register how persistent, and how old the landmark is. The state of the cell
Xi(k) will be the strength state of landmark i, and ēi = {0, 1} its identification
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stamp. The proposed update rule equation is

Xi(k) =
1

1 + e−(αiēi+βiXi(k−1)+
∑

j∈V (k) wji(k−1)Xj(k−1))
(2)

with the long-term learning expression

wji(k) = wji(k − 1) + γXi(k − 1)Xj(k − 1) (3)

where αi is an input weight used to regulate the contribution of the identification
of a landmark in the current scene over the previous map configuration; βi is
a memory weight used to regulate the contribution of the previous state of a
given landmark over its new state; and γ is a positive constant that determines
the speed of learning. The sum o weights into a state node i is normalized to
restrict them from growing indefinitely over time. As will be seen later, the
strength states are only updated for those landmarks that fall on a projected
view of the map over the robot field of view.

2.2 Spatial Uncertainty

It has been shown10 that the a posteriori error covariance estimate

P(k|k) = E[(x(k) − x(k|k))(x(k) − x(k|k))�] (4)

for any landmark in the map state estimate of the Kalman filter decreases mono-
tonically, and that it converges to a lower bound at the end of the map building
process. The term (x(k)−x(k|k)) refers to the error between the true robot and
landmark locations and their a posteriori estimate. However, by maintaining
an unbiased sample covariance of the observations we can still compute a mea-
sure for the spatial distribution of that given landmark. Given an observation
(zi,0, ζi, 1) and its corresponding projected match (zj ,Σj , ζj ,Xj), the running
unbiased sample landmark covariance matrix update can be computed with

Σj(k) =
(nj − 2)Σj(k − 1) + (zj(k) − zi(k))(zj(k) − zi(k))�

nj − 1
(5)

with nj a landmark identification accumulator that is incremented if a scene to
map match is obtained for such landmark zj .

In the following sections we show how the landmark position estimates in the
robot reference frame, their appearance properties, and the correlation informa-
tion for commonly persistent landmarks in the scene, will help in building the
map, as well as to position the robot within this map minimizing the localization
error.
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3 Map Update

Map building is performed iteratively during robot navigation. The result from
the landmark extraction module is a set of detected landmark positions in robot
coordinates and their corresponding appearance property vectors

D(k) = {(z1, ζ1), (z2, ζ2), . . . , (zd, ζd)}. (6)

The previous map state is as in Eq. 1 the set of quadruples

T (k − 1) = {(zW
i ,ΣW

i , ζW
i ,Xi), 0 ≤ i ≤ t}, (7)

with T (0) = {∅}.

3.1 Pruning of Possible Matches by Map-to-Scene Projec-
tion

The first step in the construction and update of the map is the search for
landmark matches between D(k) and T (k − 1). In order to make the system
computationally efficient, this search must be limited to a reduced number of
landmarks V (k). The elements of V (k) are computed by projecting T (k − 1)
onto the scene and trimmed to those landmarks that fall within the current
robot field of view.

The position of the robot in world coordinates is xr = [x, y, θ]�, with R =
Rot(z, θ) and t = [x, y, 0]�. A state vector that encompasses both the robot
pose and the location of each landmark in world-centered coordinates will be
updated during the localization step of the algorithm

x(k) =
[
xr(k)�, zW

1

�
, zW

2

�
, . . . , zW

t

�]�
(8)

The function that changes a landmark in the map from world coordinates to
robot coordinates is given by

ψ : (zW ,ΣW , ζW ,X ) �→ (z,Σ, ζ,X ) = (R�(zW − t),RΣWR�, f(ζW ,xr),X ).
(9)

V (k) ⊆ ψ(T (k − 1)), and the set inclusion rules for V (k) are

0 ≤ u ≤ 2u0, 0 ≤ v ≤ 2v0, zmin ≤ z ≤ zmax (10)

where the function f(·) is used to represent appearance properties in robot
centered coordinates, (u, v) are the coordinates of the projection of z onto a
robot mounted camera image plane, (u0, v0) are the image center coordinates,
and (zmin, zmax) is a user defined depth threshold. A schematic representation
of these inclusion areas for each instance k is depicted as triangular regions in
Fig 2.
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3.2 Scene-to-Map Landmark Matching

If the coordinates of a sensed landmark fall within a distance dmax of a landmark
in the pruned set V (k), and provided their appearance vectors are similar, then
we have a scene-to-map landmark match. By rewriting the sets D(k) and V(k)
in the forms

D(k) = {(zi,0, ζi, 1), 0 ≤ i ≤ d}, V (k) = {(zj ,Σj , ζj ,Xj), 0 ≤ j ≤ v}, (11)

and provided a suitable appearance similarity metric s(·), the scene-to-map
matching rules can be written as

(zi − zj)�Σ−1
j (zi − zj) ≤ dmax, s(ζi, ζj) ≤ smax. (12)

The use of the Mahalanobis distance in Eq.12, allow the computation of a
suitable value for dmax such that the null hypothesis that zi and zj match is
not rejected at some desired confidence level. Nevertheless, the formulation of
a sufficiently invariant similarity metric s(·) for the second matching criteria
is a difficult task. The search for robust measures of appearance similarity as
well as a world-to-robot appearance mapping function f(·) are active research
topics in computer vision and are out of the scope of this paper. The choice
of s(·) and f(·) for the experiments presented in this article are detailed in the
implementation section.

The pairings of scene and map landmarks that satisfy the rules in Eq. 12
form a set of matches M(k). The rest of the elements in D(k) form a set N(k)
of new landmarks that must be added to the map. Also, there might exist a set
U(k) of unobserved landmarks due to occlusions, because these entities are no
longer present in the scene, or because the illumination conditions do not allow
the robot to identify them properly. The three sets M , N , and U make the set
U ∪ V .

M(k) = D(k) ∩ V (k), N(k) = D(k) −M(k), U(k) = V (k) −M(k) (13)

For an exemplary representation of the sets D,V ,M ,N , and U , see Fig. 2. The
next step in map updating is to refine the strength of both the matched and
unobserved sets of landmarks accordingly.

3.3 Map Augmentation

Once the strength and sample covariance have been updated for all landmarks
in V (k) by means of Eqs. 2-3,5, the next step is to augment (or trim) the map
accordingly. As a first step, the landmarks in the map that meet the following
two conditions

Xj(k) < ts, tr(Σj(k)) > tq (14)
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Figure 2: Concurrent localization and map building

are considered weak and must be removed from the map, with ts and tq user
supplied landmark strength and quality thresholds. Consequently, their corre-
sponding entries in the state vector x are eliminated. For those landmarks that
do not match the pruning conditions, and if zj ∈M(k), then the entries in T (k)
must be updated. After the computation of Xj(k) and Σj(k), the state on the
map for that landmark is computed with

Tj(k) = ψ−1(xj ,R�Σj(k)R, f−1(ζj ,xr),Xj(k)) (15)

On the other hand, the newly observed landmarks zj ∈ N(k) are initialized
in the map with

Tj(k) = ψ−1(zj ,0, f−1(ζj ,xr), 1) (16)

4 Localization

The equations used to update our estimate of the pose of the robot, and the
location of the landmarks are next derived, provided a set of observations and
the robot motion commands are available.

A nonlinear function that relates the measurements about the environment
in Eq. 6 to the actual robot pose xr(k), the landmark position estimates in the
map zW

i (k), and the uncertainty in sensor measurements v(k) at time step k is
given by

zi(k) = hi(x(k),v(k)) (17)
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A noise-free approximation of Eq. 17 is given in Eq. 9 and rewritten here for
clarity,

zi(k|k) = R(k)�(zW
i − t(k)) (18)

with R(k) = Rot(θ(k|k − 1), z), and t(k) = [x(k|k − 1), y(k|k − 1), 0]�. A
linearized version of hi about this noise-free approximate can be formulated as
a Taylor series with the higher order terms dropped, i.e.,

zi(k) ≈ zi(k|k) +
∂hi(x(k|k − 1), 0)

∂x
(x(k) − x(k|k − 1)) + v(k) (19)

Differentiating Eq.17 with respect to the state vector x(k), we obtain the
following expression for the Jacobian or measurement innovation matrix for
landmark i at time step k:

Hi(k) =
[

Hr(k) 0 · · · 0 R(k)� 0 · · · 0
]

(20)

where
Hr(k) =

[
03×2 Ṙ(k)�(zW

i (k) − t(k))
] − R(k)� (21)

Each iteration of an Extended Kalman Filter is divided into a prediction step
(walking without sensing), and a correction step (refining from observations).

4.1 Prediction of Robot and Map Pose and Uncertainty

To predict the behavior of the system we need to add the motion command and
system noise to the previous state estimation. The time update equations of
the robot pose and map state and their error covariance matrix are

x(k|k − 1) = x(k − 1) + u(k) (22)

and
P(k|k − 1) = P(k − 1) + Q (23)

respectively, with u(k) the motion command vector, and Q a given system noise
matrix. Q is typically set to a constant value, and can be computed by running
a set of motion commands and parameterizing the deviation of the robot from
the desired pose. If the number of samples is sufficiently large, white noise
parameters can be expected for Q.

4.2 Correction of Robot and Map Pose and Uncertainty

Given the prediction error x(k) − x(k|k − 1), the Kalman filter is designed to
minimize the error covariance matrix in Eq. 4. During the correction step, the
following two computations take place for each landmark in M(k).

9



First, the Kalman Filter Gain is computed with

Ki(k) = P(k|k−1)H�
i (k)

(
Hi(k)P(k|k − 1)H�

i (k) + R�(k)Σi(k)R(k)
)−1

(24)

where Σi(k) is the measurement covariance matrix at time k for landmark i
computed in Eq. 5, and R�(k)Σi(k)R(k) is the base change that will express
this covariance matrix in robot centered coordinates, the reference frame where
observations take place.

At this point, we are able to compute the robot pose estimate update from
each observation,

x(k) = x(k|k − 1) + Ki(k)(zi − hi(x(k|k − 1),0)) (25)

Eq. 25 shows how each of the observed landmarks contributes to the correc-
tion of the robot pose estimate xr(k), and its own location zW

i (k). Note that
zW

i (k) is the best approximation we have to the real landmark position in world
coordinates at time step k, and that the measurement error zi−hi(x(k|k−1),0)
is also an approximation to the actual error in locating that particular landmark.
Given the convergence properties of the Kalman filter, and provided a sufficient
number of measurements for each landmark are made over time, the error in
the estimation of the robot pose and the landmark position will converge to a
lower bound.

Similarly, the contribution to the error covariance estimate is obtained with

P(k) = (I− Ki(k)Hi(k))P(k|k − 1) (26)

Evaluating Eqs. 22-26 for all landmarks inM(k) completes an iteration of the
Kalman filter. The entire concurrent localization and map building algorithm
is shown in Table 1.

5 Implementation Issues

For the implementation that supports the results presented in this article, the
extraction of landmarks is based solely on visual information. A salient feature
detector that uses Beaudet’s cornerness measure was implemented, with further
refinement using the variance descent approach 8,9. These salient features are
then pairwise matched in the stereo set by correlation, and by the enforcement
of epipolar constraints. Each feature’s 3-d position with respect to the robot is
reconstructed from stereo geometry. The 3-d position of a feature with respect to
the robot zi, and an associated vector of appearance properties ζi, constitute a
landmark. The appearance properties, which are used to validate scene to map
landmark matches, include the pixel gray-level mean and distribution over a
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for each iteration do:
Landmark Extraction
D(k) ← Feature detection and stereo correspondence.
Map Update
V (k) ← Pruning of possible matches by map projection.

Input: T (k − 1).
M(k), U(k), N(k) ← Scene to map landmark matching.

Input: D(k), V (k).
X (k) ← Landmark strength update.

Input: M(k), N(k), U(k), T (k − 1).
T (k) ← Map augmentation.

Input: T (k − 1),X (k),x(k),P(k).
Localization
x(k|k − 1), P(k|k − 1) ← Map and robot pose prediction.

Input: x(k − 1), P(k − 1), u(k),Q.
x(k),P(k) ← Map and robot pose correction.

Input: x(k|k − 1),P(k|k − 1), M(k).

Table 1: Concurrent localization and map building algorithm.

small window around the salient feature, and the energy of the feature computed
from the cornerness measure.

The gray level appearance correlation around the pixels of interest weighted
by the energy of the Beaudet cornerness measure is used as a similarity metric
s(·), and the appearance mapping function f(·) is implemented by projecting the
window of interest into world coordinates as in Eq. 9, and recomputing in this
new window the appearance properties described before. Our test platform, the
mobile robot MARCO, is shown in Fig. 3a, and a sample image of the feature
extraction module is shown in Fig. 3b.

Fig. 4 shows a run of the full concurrent localization and map building algo-
rithm with 50 landmarks detected. The localization of some of the landmarks
might vary considerably due to the characteristics of the sensors. For example,
if as in our case, computer vision is used, specular reflections might contribute
to false readings. This is exemplified by the coarse localization of some land-
marks in the figure with large uncertainty ellipses around them. By pruning the
poor quality landmarks using the methodology described in this paper a more
accurate map can be constructed, and consequently, better robot localization
is achieved. The numbered dots in the figure correspond to the identified land-
marks in the scene, and the surrounding ellipses indicate a scaled projection in
the xy plane of their sample covariance ΣW . The thin line square indicates the
desired robot trajectory, and the thick line indicates the actual robot trajectory
as estimated from landmark correspondences. Fig. 5 shows a three-dimensional
view of the same run with the uncertainty ellipses projected in the room floor,
and the landmark height indicated by thin vertical lines.
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(a)

(b)

Figure 3: (a) Marco mobile robot. (b) Landmark extraction

The initial estimate of the robot pose in world coordinates must be know;
e.g., xr(0) = [0, 0, 0]�; and an initial estimate for the error covariance can be
set to P(0) = I. Even if these initial parameters are not correct, the filter is
guaranteed to converge to the actual robot pose; it will just take more time to
do so.

6 Conclusions

The methodology for the concurrent localization and map building for a mo-
bile robot was presented. Unlike grid-based techniques, it is scale independent.
It was designed so that map updating can occur even in moderately changing
environments by exploiting the relationship existing among neighboring land-
marks, and the persistence of each landmark in the scene. It does not make any
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Figure 4: Concurrent Localization and Mapping

assumption on the distribution of the landmark positions, but it does expect
white distribution of dead reckoning and sensor errors.

One of the main contributions of this work resides on the formulation of
strength measures used to validate landmarks on the basis of their temporal
and spatial dispersions. Temporary landmarks and those coming from noisy
sensor readings are pruned from the map as their existence state diminishes
over time. On the other hand, those groups of landmarks that are repeatedly
seen are considered stronger indicators of the structure of the environment.

The combination of landmark strength validation for map updating and
Kalman filtering for position estimation provides a suitable platform for the
learning of indoor dynamic environments.
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