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A
utonomous vehicles (AVs) andmobile robots are devel-
oped to carry out specific tasks autonomously, ideally
with no human intervention at all [1], [2]. These
kinds of vehicles, whether AVs or mobile robots,
has generated great interest in recent years, for

instance, because of their capacity to work in remote or harmful
environments where humans cannot enter because of the
extreme operating conditions [3].We are differentiating amobile
robot (designed from scratch for a specific task) from an AV (a
commercial vehicle with proper sensory and control systems
added so as to be autonomous). However, in the sequel, for the
sake of simplicity, we will use indistinctly one or the other term.
Several applications are found in the literature, varying from
material transportation in a common industrial environment [4]
to the exciting exploration of a far planet surface [5], [6].
A common issue for any application using mobile robots is

navigation [7], including localization, path planning, path execu-
tion, and obstacle avoidance [8]. To correctly perform the assigned
task, the robot must estimate its position and orientation, i.e., its

pose, in the environment.Whichever the sensory systemused, the
computation of the robot’s pose estimate will never be error free;
there is always an associated uncertainty to this estimate due to dif-
ferent factors such as the inaccuracy of the used sensors or incom-
plete environment information. Therefore, localization involves
two different challenges: computing a pose estimate and its associ-
ated uncertainty. The first problem has received a lot of attention
in the literature during the last decades; for instance, see [9] for a
recent approach.
This article is centered on how we can accurately estimate the

robot pose uncertainty and how this uncertainty is propagated to
future states (the robot state, in this context, is its pose). Some atten-
tion has been paid to this issue in the past. The first approach con-
sidering the uncertainty of position estimation was given in [10]. A
min/max error bound approach is proposed resulting in bigger and
bigger circles in the x-y plane representing the possible positions
for the robot. Those circles are computed as projections of cylin-
ders in the configuration space. Basically, the same approach was
independently derived in [11] using a scalar as an uncertainty
measure in the plane position but without reference to the orienta-
tion error. Then the idea of representing this uncertainty came upDigital Object Identifier 10.1109/MRA.2009.932523
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by means of a covariance matrix [12]. In [13], a method for deter-
mining the pose uncertainty covariance matrix using a Jacobian
approach is given for the special case of circular arc motion with a
constant radius of curvature. In [14], the odometry error is mod-
eled for a synchronous drive system depending on parameters char-
acterizing both systematic and nonsystematic components. An
important work addressing the problem of understanding the rela-
tion between odometry sensor readings and the resultant error in
the computed vehicle pose is [15].
In [16] and [17], we provided a general expression for the

uncertainty in the pose estimate of a mobile vehicle using the
covariance definition. This covariance matrix was derived from
a given vehicle kinematic model, and for each time step, the
total covariance was calculated under the assumption that the
cross-covariance between the previous position and the actual
increment of position was zero. This assumption, although
widely considered, is not generally true, because the orientation
errors in the robot’s previous position do not affect the compu-
tation of the actual increment of position, leading to inaccurate
pose uncertainty estimation when propagating it to future states.
The main contribution of this article is the proposal of a novel

solution for the calculation of such cross-covariance terms. In this
way, we are able to catch the highly nonlinear behavior of the pose
uncertainty while accurately estimating it. The basic idea is to fit
the covariance matrix for the previous pose using a set of equa-
tions obtained by eigen decomposition. The cross-covariance
terms are then derived using these set of equations together with
the already-known expressions for the vehicle pose increments.
To validate this method, we compare our pose uncertainty

calculation and propagation approach to widely accepted
existing propagation methods such as the classical Jacobian
approach (used, for instance, by the extended Kalman filter)
and the scaled unscented transformation (UT) [used by the
unscented Kalman filter (UKF)].
The article is organized as follows. The ‘‘Current Pose

Uncertainty: Accurate Computation and Propagation’’ section
develops the cross-covariance terms solution. Next, in the
‘‘Approach Validation’’ section, the results for the pose uncer-
tainty obtained in different vehicle paths are compared using
three methods: the Jacobian matrix method [18], which is the
classical way to obtain the estimation for the incremental pose
uncertainty, the scaled UKF [19], [20], and the presented for-
mulation. The comparison is made to the uncertainty com-
puted using a Monte Carlo simulation of the run paths. Finally,
the last section addresses conclusions and future work.

Current Pose Uncertainty: Accurate
Computation and Propagation
We are interested on how the robot’s pose uncertainty can be
accurately estimated and propagated to future states. In [16],
this uncertainty was computed using (1), considering the
errors of the previous pose estimate, P̂k!1, and the actual esti-
mated increments of pose, DP̂k, to be independent. However,
as the angle (and its error) of the previous pose is considered in
the computation of both, Dx̂k and Dŷk, there is a nonmodeled
cross-covariance between P̂k!1 and DP̂k. The fact of ignoring
the dependency between P̂k!1 and DP̂k causes the considered

error model to not completely catch the high nonlinear
behavior of the pose uncertainty.

cov(P̂k) ¼ cov(P̂k!1)þ cov(DP̂k)þ cov(P̂k!1,DP̂Tk )

þ cov(DP̂k, P̂Tk!1): (1)

We propose here an efficient method to compute such
cross-covariance between the previous pose P̂k!1 and the
actual pose increment DP̂k. Obviously, the optimal way to cal-
culate the covariance of P̂k is to consider, at each sample time
k, the full mathematical expressions for all the pose increments
DP̂1, DP̂2, DP̂3, . . . ,DP̂k!2, DP̂k!1, and DP̂k, which may be
obtained using

cov(P̂k) ¼ cov(P̂0 þ DP̂1 þ $ $ $ þ DP̂k)

¼ E½(P̂0 þ DP̂1 þ $ $ $ þ DP̂k)

3 (P̂0 þ DP̂1 þ $ $ $ þ DP̂k)T &

! E½ðP̂0 þ DP̂1 þ $ $ $ þ DP̂k)&

E½(P̂0 þ DP̂1 þ $ $ $ þ DP̂k)T &: (2)

Since the computational complexity of such expression
increases exponentially, it is not feasible for a real-time
performance to calculate the covariance in this way. Hence, an
incremental approach is preferred, as stated in (1).
To obtain an expression for the cross-covariance terms and

because of the mathematical complexity of the problem, an
equation representation of the covariance at step k! 1 is
obtained, by assuming an error vector for the robot’s pose in
time k! 1.

P̂k!1 ¼ Pk!1 þ ePk!1 , (3)

ePk!1 ¼ ½ exk!1 eyk!1 ehk!1 &
T , (4)

E½ePk!1 & ¼ ½ 0 0 0 &T : (5)

The error ePk!1 can be seen as a vector composed of three
different independent (zero mean, Gaussian, and orthogonal)
errors c1, c2, and c3. Note that these three independent errors,
when multiplied by certain matrix Q, equal the error in each
of the considered axes x, y, h:

c ¼ ½ c1 c2 c3 &
T , (6)

ePk!1 ¼

exk!1

eyk!1

ehk!1

2

64

3

75 ¼ Qc ¼

Ac1 þ Bc2 þ Cc3
Dc1 þ Ec2 þ Fc3
Gc1 þHc2 þ Ic3

2

64

3

75: (7)

Since the considered errors are zero mean, E½ePk!1 & ¼ 0,
from the covariance definition, the expression for the covari-
ance matrix associated to P̂k!1 is obtained:

cov(P̂k!1) ¼ E½(P̂k!1 ! E½P̂k!1&)(P̂k!1 ! E½P̂k!1&)T &,
¼ E½(Pk!1 þ ePk!1 ! E½Pk!1 þ ePk!1 &)

3 (Pk!1 þ ePk!1 ! E½Pk!1 þ ePk!1 &)T &,
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¼ E½(Pk!1 þ ePk!1 ! E½Pk!1& ! E½Pk!1 þ ePk!1 &)
3 (Pk!1 þ ePk!1 ! E½Pk!1& ! E½Pk!1 þ ePk!1 &)T &,

¼ E½(Pk!1 þ ePk!1 ! Pk!1 ! (0))
3 (Pk!1 þ ePk!1 ! Pk!1 ! (0))T &,

¼ E½(ePk!1 )(ePk!1 )T &: (8)

Onmultiplying these terms and reducing,

cov(P̂k!1) ¼ E½(ePk!1 )(ePk!1 )T &
¼ E½Qc(Qc)T &
¼ E½QccTQT &,

¼ E Q

c1
c2
c3

2

64

3

75
c1
c2
c3

2

64

3

75

T

QT

2

64

3

75

¼ E Q

c1c1 c1c2 c1c3
c2c1 c2c2 c2c3
c3c1 c3c2 c3c3

2

64

3

75QT

2

64

3

75,

¼ Q E

c1c1 c1c2 c1c3
c2c1 c2c2 c2c3
c3c1 c3c2 c3c3

2

64

3

75

0

B@

1

CAQT : (9)

Recall that the considered errors c1, c2, and c3 are inde-
pendent and zero mean; hence, the resultant covariance matrix
can be written as follows:

cov(P̂k!1) ¼ Q E

c1c1 c1c2 c1c3
c2c1 c2c2 c2c3
c3c1 c3c2 c3c3

2

64

3

75

0

B@

1

CAQT ,

¼ Q
r2y1 0 0

0 r2y2 0

0 0 r2y3

2

64

3

75QT : (10)

Now, since cov(P̂k!1) is a positive semidefinite Hermitian
matrix, it can be decomposed in the form

cov(P̂k!1) ¼ QkQT

¼ Q
k1, 1 0 0

0 k2, 2 0

0 0 k3, 3

2

4

3

5QT , (11)

where Q is the eigenvector matrix and k is a diagonal matrix
containing the eigenvalues of cov(P̂k!1). This form is equal to
the one in (9); thus, the matrix Q and the three variances r2c1 ,
r2c2 , and r

2
c3
, which equals k1, 1, k2, 2, and k3, 3, respectively, can

be obtained by the eigen decomposition of the covariance
matrix. Note that the product Qc could also be seen as a rota-
tion of the three orthogonal errors considered in ePk!1 with
respect to the axes x, y, and h. So this term is capable of model-
ing the rotation of the robot pose uncertainty as it runs its path.
Now, we are ready to obtain an expression for the cross-

covariance terms

cov(P̂k!1,DP̂Tk )

¼ E½(P̂k!1 ! E½P̂k!1&)(DP̂k ! E½DP̂k&)T &,
¼ E½(Pk!1 þ ePk!1 ! E½Pk!1& ! E½ePk!1 &)(DP̂k ! E½DP̂k&)T &,
¼ E½(Pk!1 þ ePk!1 ! Pk!1 ! (0))(DP̂k ! E½DP̂k&)T &,
¼ E½(ePk!1 )(DP̂k ! E½DP̂k&)T &
¼ E½ePk!1DP̂Tk ! ePk!1E½DP̂k&

T &,
¼ E½ePk!1DP̂Tk & ! E½ePk!1 &E½DP̂k&

T

¼ E½ePk!1DP̂Tk & ! (0)E½DP̂k&
T ,

¼ E½ePk!1DP̂Tk &, (12)

E½ePk!1DP̂Tk & ¼ E
exk!1Dx̂k exk!1Dŷk exk!1Dĥk
eyk!1Dx̂k eyk!1Dŷk eyk!1Dĥk
ehk!1Dx̂k ehk!1Dŷk ehk!1Dĥk

0

B@

1

CA: (13)

Just as an example, we develop here the complete calcula-
tion for the first term in (13). See the ‘‘Approach Validation’’
section and ‘‘Kinematic Model of the AV’’ for details on this
particularization.

E½exk!1Dx̂Tk &¼E exk!1Dd̂k cos(ĥk!1)!
Dĥk
2
sin(ĥk!1)

" #" #

: (14)

Now we need to consider that the estimate of orientation
at previous step ĥk!1 has an associated error, which, without
loss of generality, is modeled as Gaussian. If we consider inde-
pendency between previous position errors and the sensor’s
increment measurements, we can group them separately and
then separate the estimates.

E½exk!1Dx̂Tk & ¼ $ $ $ ¼ E½exk!1 cos (ehk!1 )&

E Dd̂k cos(hk!1)!
Dĥk
2
sin(hk!1)

" #" #

! E½exk!1 sin (ehk!1 )&E Dd̂k sin(hk!1)þ
Dĥk
2
cos(hk!1)

" #" #

:

(15)

The issue now is to deal with nonlinear functions of stochastic,
Gaussian in our case, variables [21]. Expanding exk!1 cos (ehk!1 )
and exk!1 sin (ehk!1 ) terms and using Taylor expansion,

E½(exk!1 ) cos (ehk!1 )& ¼ E½(Ac1þBc2 þCc3)
3 ( cos (Gc1þHc2þ Ic3)&, (16)

E½(exk!1 ) sin (ehk!1 )& ¼ E½(Ac1þBc2 þCc3)
3 ( sin (Gc1þHc2þ Ic3)&, (17)

E½(exk!1 ) cos (ehk!1 )& ¼ 0, (18)

E½(exk!1 ) sin (ehk!1 )& ¼ E½(Ac1þBc2 þCc3)
3 ( sin (Gc1) cos (Hc2) cos (Ic3)

! sin (Gc1) sin (Hc2) sin (Ic3)

þ cos (Gc1) sin (Hc2) cos (Ic3)

þ cos (Gc1) cos (Hc2) cos (Ic3)&
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¼ (AGk1, 1þBHk2,2þCIk3, 3)

3 exp !
G2k1, 1r2c1 þH

2k2, 2þ I2k3, 3
2

 !

¼ cov(xk!1,hTk!1) exp !
r2hk!1
2

! "
: (19)

Finally, the expression for the first term in (13) is

cov(exk!1 ,Dx
T
k ) ¼ !E½exk!1 sin (ehk!1 )&

3E Dd̂k sin (hk!1)þ
Dĥk
2
cos (hk!1)

" #" #

¼ !cov(xk!1, hTk!1) exp !
r2hk!1
2

! "

3 Ddk sin hk!1 þ
k1
2L
cos hk!1 tan/k

! "

¼ !cov(xk!1, hTk!1)E½Dŷk&: (20)

Although we do not provide here a full development for all
the terms in (13), similar expressions can be found for them.

E½exk!1DyTk & ¼ cov(xk!1, h
T
k!1)E½Dx̂k&, (21)

E½exk!1Dh
T
k & ¼ 0, (22)

E½eyk!1DxTk & ¼ !cov(yk!1, hTk!1)E½Dŷk&, (23)

E½eyk!1DyTk & ¼ cov(yk!1, h
T
k!1)E½Dx̂k&, (24)

E½eyk!1Dh
T
k & ¼ 0, (25)

E½ehk!1DxTk & ¼ !cov(hk!1, hTk!1ÞE½Dŷk&, (26)

E½ehk!1DyTk & ¼ cov(hk!1, h
T
k!1)E½Dx̂k&, (27)

E½ehk!1Dh
T
k & ¼ 0: (28)

Approach Validation
To assess the validity and accuracy of the proposed covariance
computation method, a series of simulated and real experi-
ments were performed. Real experiments have been done

using an AV with a nonholonomic Ackerman architecture.
Figure 1 shows the standard vehicle for mining operations,
which has been automated at the Center for Intelligent Sys-
tems (CSI) of the Tecnol!ogico de Monterrey (ITESM). The
vehicle is electrically powered, and steer and driven wheels
were provided with independent sensors.
Both simulated and real experiments consisted of comput-

ing the total accumulated covariance of the vehicle’s pose
along a run path as well as the increment of this covariance
obtained at each sample time.
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Figure 2. Comparison for state (x,y,h) covariance values of the
circular trajectory between Monte Carlo simulation, Jacobian,
the presented formulation, and UT. Values used in this run
are Ddk ¼ 0:2 m, rDdk ¼ 0:01 m, /k ¼ 1:125), r/k

¼ 3),
L ¼ 1.25 m, number of steps ¼ 2,000. (a) cov(x,x). (b) cov(x,y).
(c) cov(y,y). All covariance values are given in m2.Figure 1. ITESM AV’s mining vehicle.

IEEE Robotics & Automation MagazineJUNE 2009 85

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on September 22, 2009 at 04:00 from IEEE Xplore.  Restrictions apply. 



Three different paths have been performed. The first two
are simulated paths: a circle with a total length of 400 m, and
an S-type trajectory, in which the steering angle (u) value
changes sign at the half of the trajectory. The third path is a real
outdoors experiment, with data (Ddk and /k) being gathered
from the ITESM-automated vehicle performing a rectangular
60 m 3 40 m trajectory. In this third experiment, the vehicle
was manually driven while following a marked path on the

ground; so for this case, a ground truth was available. For all
the experiments, we considered the following values for sensor
variances: rDdk ¼ 0:01m and r/k ¼ 3). We use a high value
for the steering variance to make evident the difficulty onto
computing the orientation’s uncertainty.
For each experiment, four different methods to obtain the

pose uncertainty have been used. First, a Monte Carlo simula-
tion for the path the vehicle performs has been made. Monte
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Figure 3. Comparison for the state (x,y,h) covariance values
of the S trajectory (x,y,h) between Monte Carlo simulation,
Jacobian, the presented formulation, and UT. Values used in this
run are L = 1.25 m, 2,000 steps, Ddk ¼ 0:2 m, rDdk ¼ 0:01 m,
/1...1;000 ¼ 1:125), /1;001...2;000 ¼ !1:125), r/k

¼ 3). (a) cov(x,x).
(b) cov(x,y). (c) cov(y,y). All covariance values are given in m2.
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Figure 4. Comparison for the state (x,y,h) covariance values of
the rectangular trajectory using real data between Monte Carlo
simulation, Jacobian, the presented formulation, and UT. Values
used in this run are r/k

¼ 3), L ¼ 1.25 m. Ddk, rDdk , and /k vary
according the measured data. (a) cov(x,x). (b) cov(x,y). (c) cov(y,y).
All covariance values are given in m2.
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Carlo simulation was performed by averaging the covariances
for each sample time in a total of 30,000 simulations to have a
good estimation of the real value for the pose uncertainty.
Foundations of this technique can be found in [22] and [23].
The other three methods shall be compared to this simulation.
The second method computes the uncertainty of the

robot’s pose using the classical way, i.e., computing the Jaco-
bian of the vehicle’s kinematic model [18]. The third method
uses the scaled UKF [20], which is based on the UT [19] and
particle filters, using specific and selected points to represent
a given probability distribution. The fourth method com-
putes the pose uncertainty using the proposed formulae in
this article.
Figure 2 compares results for the different methods when

the vehicle performs the 400 m circular trajectory. Figure 3
is for the S-type trajectory, and Figure 4 is for the real
rectangular path.

More concretely, the figures show a comparison between
Monte Carlo, Jacobian method, UT, and the presented formu-
lation for the covariance of the pose at each sample time. In all
the figures, the abscissa axis represents time steps, while the
ordinate axis measures the pose uncertainty (units are specified
under each graphics). Looking at the figures, it can be seen
that, as long as the value of the accumulated uncertainty in the
orientation of the vehicle, h, is relatively small (<10!), the
Jacobian-based method, the UKF, and the proposed formulae
give similar results to those provided by the Monte Carlo
simulation.
On the other hand, as the covariance in the orientation of

the vehicle grows (as the case at hand, where the robot is trying
to perform paths involving high changes in orientation using
measures from internal noisy sensors), the computed uncer-
tainty by either the Jacobian method, UKFmethod, or the one
presented here differs from the Monte Carlo simulation results.

Table 1. Covariance differences for the circular trajectory (Figure 2)
between Monte Carlo simulation and the other three approaches.

k

Jacobian Presented Formulae UT

Cxx Cxy Cyy Cxx Cxy Cyy Cxx Cxy Cyy

140 !0.01 0 0 !0.01 0 !0.01 0 0 0

280 !0.05 !0.11 0.12 !0.11 !0.02 0 !0.02 !0.12 0.1

420 0.38 !0.79 0.33 !0.24 !0.31 !0.05 0.51 !0.76 0.18

560 2.65 !1.69 !0.52 !0.03 !0.69 !0.92 2.87 !1.38 !0.85

700 6.95 !1.05 !2.77 0 !0.69 !2.91 6.9 !0.14 !3.04

840 10.24 3.3 !4.49 !2.06 0. 15 !5.67 9.06 4.78 !4.03

980 10.15 11.26 !1.33 !5.31 1.81 !8.28 6.97 12.38 0.44

1,120 3.08 18.65 10.53 !10.37 3.97 !9.6 !1.93 17.77 13.18

1,260 !9.59 17.34 28.76 !17.2 4.72 !10.02 !14.64 13.27 30.22

1,400 !20.03 1.78 46.33 !25.15 2 !8.49 !22.4 !4.68 43.71

1,540 !15.94 !25.03 47.53 !30.95 !5.71 !10.81 !14.04 !30.59 39.2

1,680 8.86 !46.76 24.08 !31.26 !14.51 !21.7 13.44 !47.32 11.8

1,820 45.11 !43.19 !12.15 !26.26 !16.6 !38.03 47.62 !37.05 !23.27

1,960 69.04 !9.57 !35.55 !21.97 !8.53 !52.11 64.52 0.25 !40.05

Table 2. Covariance differences for the S trajectory (Figure 3)
between Monte Carlo simulation and the other three approaches.

k

Jacobian Presented Formulae UT

Cxx Cxy Cyy Cxx Cxy Cyy Cxx Cxy Cyy

140 0 !0.03 0.09 0 !0.03 0.08 0.01 !0.03 0.08

280 0.14 !0.36 0.52 0.08 !0.27 0.39 0.17 !0.37 0.49

420 1.34 !1.46 0.78 0.72 !0.98 0.41 1.47 !1.43 0.63

560 3.9 !2.53 !0.14 1.22 !1.54 !0.54 4.12 !2.22 !0.47

700 7.39 !1.84 !2.65 0.43 !1.48 !2.79 7.33 !0.93 !2.92

840 11.32 2.58 !4.67 !0.99 !0.57 !5.85 10.13 4.06 !4.21

980 10.53 10.06 !1.9 !4.93 0.62 !8.85 7.35 11.19 !0.12

1,120 5.25 20.11 7.26 !12.51 2.66 !12.87 !0.25 19.87 10.61

1,260 4.35 37.29 16.37 !23.89 5.77 !22.42 !4.29 36.14 22.28

1,400 15.47 62.41 18.28 !37.24 10.07 !36.59 2.98 61.81 27.34

1,540 51.63 88.44 3.7 !44.44 15.39 !54.72 35.52 90.26 15.1

1,680 113.17 97.88 !29.14 !41.82 17.92 !75.01 94.71 103.32 !17.56

1,820 179.71 71.64 !68.55 !33.58 10.79 !94.51 160.37 80.53 !59.29

1,960 218.77 9.32 !87.26 !27.94 !6.97 !103.84 199.34 20.53 !81.91
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Table 3. Covariance differences for the real rectangular trajectory (Figure 4)
between Monte Carlo simulation and the other three approaches.

k

Jacobian Presented Formulae UT

Cxx Cxy Cyy Cxx Cxy Cyy Cxx Cxy Cyy

75 0 0 0 0 0 0 0 0 0

150 0 0 0 0 0 0 0 0 0

225 !0.01 0 0.03 !0.01 0 0.01 !0.01 0 0.03

300 !0.01 0.05 0.08 !0.04 0.02 0.02 !0.01 0.05 0.05

375 0.15 0.21 0.01 !0.08 0.12 !0.04 0.15 0.16 !0.06

450 0.63 0.44 !0.24 !0.16 0.28 !0.28 0.63 0.28 !0.33

525 1.73 0.65 !0.71 !0.13 0.5 !0.74 1.7 0.3 !0.82

600 2.17 !0.57 !0.68 0.22 0.1 !1.01 1.68 !0.86 !0.55

675 1.94 !2.08 0.46 0.03 !0.52 !1.26 1 !2.06 0.82

750 0.3 !1.2 1.73 !0.48 !0.48 !0.51 !0.31 !0.83 1.61

825 0.23 0.66 1.67 !0.76 0.17 !0.31 0.13 0.88 0.94

900 2.18 2.67 0.46 !1.07 1.13 !1.23 2.47 2.26 !0.74

975 5.07 4.14 !1.2 !1.33 2.02 !2.68 5.55 2.97 !2.66

1,050 5.3 4.23 !1.33 !1.34 2.08 !2.79 5.79 3.01 !2.8

Kinematic Model of the AV

We provide in this section an overview of the method
proposed in [16] and [17]. The formulation is particu-

larized for an AV for which a bicycle kinematic model is con-
sidered (see Figure A1) [24]. The vehicle’s pose can be fully
determined from P̂k ¼ ½ x̂k ŷk ĥk &

T , where

P̂k

1

" #

¼

1 0 0 x̂k!1

0 1 0 ŷk!1

0 0 1 ĥk!1

0 0 0 1

2

6664

3

7775

Dx̂k
Dŷk
Dĥk
1

2

6664

3

7775 ¼

x̂k!1 þ Dx̂k
ŷk!1 þ Dŷk
ĥk!1 þ Dĥk

1

2

6664

3

7775

¼

x̂k!1 þ Dd̂k cos (ĥk!1)! Dĥk
2 sin (ĥk!1)

h i

ŷk!1 þ Dd̂k sin (ĥk!1)þ Dĥk
2 cos (ĥk!1)

h i

ĥk!1 þ Dd̂k tan /̂k
L

1

2

6666664

3

7777775
: (A1)

Variables Ddk, /k, are the measurements the automated
vehicle senses. Ddk is the measured displacement, and /k is
the measured steering angle. It is worth to mention that Dĥk
is not obtained from the rear wheel’s displacement; hence,
independency can be assumed between Dd̂k and Dĥk. Inde-
pendent errors with Gaussian probability distributions are
added to these measurements:

Dd̂k ¼ Ddk þ eDdk , (A2)

/̂k ¼ /k þ e/k
: (A3)

In order that (A2) and (A3) perform correctly, the systematic
errors of the vehicle need to be corrected and compensated [25].
Now, suppose that, for time k ! 1, the pose of the vehicle and
its associated uncertainty are known f P̂k!1 ¼ ½x̂k!1 ŷk!1

ĥk!1&T , cov(P̂k!1)g. We are using k! 1 for t! Dt, k! 2 for t!
2Dt, and so on. Then, for time t, after the vehicle has performed
a certain movement on the plane and sensors on the robot have
noisily measured this displacement, the pose of the vehicle is
obtained using P̂k ¼ P̂k!1 þ DP̂k,DP̂k ¼ ½Dx̂k Dŷk Dĥk &T .

Uncertainty of the pose estimate is then given by the
covariance matrix cov(P̂k), which can be further decomposed
into the following expression:

cov(P̂k) ¼ cov(P̂k!1)þ cov(DP̂k)þ cov(P̂k!1,DP̂
T
k )

þ cov(DP̂k, P̂
T
k!1): (A4)

The term cov(P̂t!1) is recursively defined. The first term to
obtain is cov(DP̂k):

cov(DP̂k) ¼ E

Dx̂k
Dŷk
Dĥk

2

64

3

75
Dx̂k
Dŷk
Dĥk

2

64

3

75

T2

64

3

75! E

Dx̂k
Dŷk
Dĥk

2

64

3

75 E

Dx̂k
Dŷk
Dĥk

2

64

3

75

2

64

3

75

T

,

(A5)

where E stands for the expected value of the corresponding
function.

x

y

R

ν

φ

θ

xR

yR φ

L
θ

(xf, yf)

Figure A1. Kinematic model for a common car-like vehicle.
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As can be noticed, the presented formulation is less affected by
this error than the Jacobian and UKF approaches, respectively;
thus, the estimation of the vehicle’s pose uncertainty, when
computed with the presented formulae, is more accurate.
To summarize the information provided in the given figures,

we present in Tables 1–3 the comparison between the Monte
Carlo simulation and the other three methods for the run
experiments. The tables show the results of subtracting the
Monte Carlo covariance values to the ones obtained by the other
approaches. It is worth to mention that, at certain time steps, UT
and Jacobian behave better for some covariance value, i.e.,
cov(x,x), but worse in all the other. In general, the presented for-
mulae give the lowest error.
Finally, to obtain a better evaluation of these methods, the

covariance eigenvalues obtained with the presented formula-
tion, Jacobian, and UT are compared to those obtained with
the Monte Carlo simulation (always equal to 0). From (11), k
is a diagonal matrix containing the eigenvalues of cov(P̂k):

k ¼
ev1, 1 0 0
0 ev2, 2 0
0 0 ev3, 3

" ######
ev1, 1>ev2, 2>ev3, 3

: (29)

Eigenvalues are compared by using

diff * ¼
X3

i¼1
evMCi, i ! ev*i, i
## ##, (30)

where (*) could be Jacobian, UT, or the developed formula-
tion, and diff represents how close the different methods are to
the covariance obtained with Monte Carlo approach. Results
are shown in Figure 5, in which the developed formulation is
closer than the other two techniques.

Conclusions
The localization problem for a mobile platform involves two dif-
ferent issues: computing a pose estimate and computing its asso-
ciated uncertainty. This article has focused on how the robot’s
pose uncertainty can be accurately estimated and how this uncer-
tainty is propagated to future states. This is important since, in
any outdoor mobile robot application, we need to know as accu-
rate as possible the error in the robot’s pose estimation.
In contrary to other approaches, we have considered here

that the cross-covariance between the previous position and
the actual increment of position is not zero. This consideration
leads to accurate pose uncertainty estimation when propagat-
ing it to future states.
So our main contribution is a novel solution for the calcula-

tion of such cross-covariance terms. In this way, we are able to
catch the highly nonlinear behavior of the pose uncertainty
while accurately estimating it.
Experiments presented in the ‘‘Approach Validation’’ sec-

tion show that the computed pose uncertainty estimation with
the proposed formulation captures the motion phenomena
with a higher degree of accuracy than that obtained with tradi-
tional methods such as the Jacobian computation and the
scaled UT. In this way, the presented method is less sensible to
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Figure 5. Eigenvector comparison of Monte Carlo approach
against Jacobian, UT, and the presented formulation
approaches for the three trajectories performed in the
experiments: (a) circular, (b) S, and (c) rectangular real
trajectories.

Autonomous vehicles and mobile

robots are developed to carry out

specific tasks autonomously.
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the accumulated error in the robot orientation, which turns
out to be the most important error when using internal sensors
to obtain a pose estimate.
Although the presented method has been particularized to

an Ackerman vehicle platform, it is general and valid for all
types of robotic vehicles.
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