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Abstract— The paper deals with the problem of motion
planning of anthropomorphic mechanical hands avoiding col-
lisions. The proposed approach tries to mimic the real human
hand motions, but reducing the dimension of the search space
in order to obtain results as a compromise between motion
optimality and planning complexity (time) by means of the
concept of principal motion directions. Basically, the work
includes the following phases: capturing the human hand
workspace using a sensorized glove and mapping it to the
mechanical hand workspace, reducing the space dimension by
looking for the most relevant principal motion directions, and
planning the hand movements using a sampling-based roadmap
planner. The approach has been implemented for a four finger
anthropomorphic mechanical hand, and some examples are
included to illustrate its validity.

I. INTRODUCTION

Advances in robotics are producing a number of com-

plex devices with a high number of degrees of freedom

(DOF), lots of sensors, and sophisticated controllers to assure

stability and a good performance. These devices include

different types of robots, adapted to different environments

and tasks, and among them the most representative instances

are the humanoids, equipped with anthropomorphic hands

with a number of DOF ranging from 12 (four fingers with

3 independent DOF each one) to 25 (five fingers with 4

independent DOF each one plus some DOF in the palm [1]).

Examples of anthropomorphic hands with four fingers are

the Utah/MIT Hand [2], DIST Hand [3], LMS Hand [4];

DLR Hand [5] and MA-I Hand [6], and examples with five

fingers are the Belgrade/USC Hand [7], Anthrobot-2 Hand

[8], NTU Hand [9], ROBONAUT [10], Shadow Hand [11],

Gifu Hand [12] and Bolonia Hand 3 [13]. Good discussions

about robot hands can be found in [14] and [15].

Despite the advanced features of these mechanical hands,

one of the remaining problems in order to obtain a good

outcome from them is the automatic determination of their

movements, which are quite complex and non-evident for

the human being in the space of generalized coordinates.

This is a well-known motion planning problem, but in a

very large dimensional space, thus some new approaches are

still necessary in order to find solutions that can be really

implemented and used in practice. This paper presents some

developments in this line, looking for procedures that allow

the automatic motion planning of anthropomorphic hands in
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a smooth way, caring for collisions with the environment as

well as between the different parts of the hand.

II. PROBLEM STATEMENT AND SOLUTION

OVERVIEW

Let C = Ch + Ca be the configuration space of a hand-

arm system, where Ch and Ca are the configuration spaces of

the hand and of the arm where it is mounted, respectively.

The basic problem to be solved is the following: given the

current hand-arm configuration Co and a final desired one

Cd (that is not necessarily a grasping configuration), find a

collision free path from Co to Cd. The dimension of the

configuration space of this problem is equal to the number

of DOF of the hand plus the number of DOF of the arm,

therefore conventional solutions require high computational

times. In this context, the proposed approach is based on

a reduction of the configuration space dimension, which is

done by looking for a representative subspace SCh of the

hand configuration space Ch, and looking for continuous valid

paths in the compound subspace SC = SCh + Ca. Of course,

there may be solutions in C not included in SC, thus the

selection of a proper subspace SCh is a relevant step in the

proposed approach. On the other hand, if a solution is found

in SC, for sure it is valid in C.

The main consideration that supports the reduction of

the problem space is that the human hand has several

joint movements that are not (completely) independent, and

therefore they can be associated in some way. A typical

example is given by the last two joints of each finger,

which (normally) cannot be moved independently; in the

same way some other relations can be found analyzing the

hand configuration space. This feature can be extrapolated

to mechanical hands where the analysis is done by taking

enough samples of Ch and looking then for the direction in

which the samples present the largest dispersion, which is

iteratively repeated considering orthogonal directions until a

new basis of Ch is generated. Then, by selecting the first

vectors of this basis and properly choosing a bounding box

aligned with these vectors and centered in the mean value of

the original set of points, a good bounded approximation SCh

of Ch is found.

A relevant previous work in this line [16] uses an initial

set of grasping configurations to find a bidimensional grasp

subspace, i.e. to characterize the configurations of the hand

used to grasp different objects. This subspace is used in

other works to look for grasping configurations [17], [18].

As a difference with these works, we use here an initial

set of unconstrained general hand configurations in order to

model all the real hand workspace and not only potential
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Fig. 1. Sensorized glove used to capture the operator hand workspace.

grasping configurations. The particular procedure followed

to generate the set of hand configurations as well as to find

a proper bounded subspace is detailed in Section III. Once

the bounded subspace is determined, sampling-based motion

planning techniques are used to model the free configurations

and to find free paths between any two of them (Section IV).

Dimensionality reduction techniques have also been used to

synthesize human-like motion in graphic applications [19].

The approach followed in this work can be summarized

in the following steps:

1) Use a sensorized glove to obtain samples of the human

hand workspace (22 DOF) (Subsection III-A).

2) Map these samples to the configuration space Ch of a

mechanical hand (13 DOF) (Subsection III-B).

3) Find a representative subspace SCh of the mechanical

hand configuration space Ch (between 3 and 6 DOF)

(Subsection III-C).

4) Use a sampling-based roadmap planner to model the

free space of the representative subspace SC=SCh+Ca

(Section IV).

5) Finally, given an initial and final hand-arm configura-

tions of C (not necessarily belonging to SC), Co and

Cd respectively, connect them to the roadmap and use

it to find a free path between them.

III. MODELING HAND MOVEMENTS WITH

PRINCIPAL MOTION DIRECTIONS

A. Data Aqcuisition

The data acquisition is done using the commercial sen-

sorized glove CyberGlove c© from Immersion Corporation,

shown in Fig. 1. It is a fully instrumented glove that provides

up to 22 high-accuracy joint-angle measurements, using

resistive bendsensing technology. The 22-sensor model has

three flexion sensors per finger, four abduction sensors, a

palm-arc sensor, and sensors to measure the flexion and the

abduction of the wrist.

After a calibration procedure for each user’s hand, the

movements captured with the glove are mapped to move-

Fig. 2. Human hand with the sensorized glove connected to the mechanical
hand simulator used in the data acquisition procedure.
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Fig. 3. The anthropomorphic mechanical hand used.

ments of the mechanical hand through a virtual simula-

tor (Fig. 2), where the user has a visual feedback of the

mapping (detailed in the next subsection). Thus, the user

freely moves its hand in an unconstrained way, i.e. without

performing any specific task, trying to cover the whole

mechanical hand workspace. Mapped postures are recorded

for processing and analysis.

B. Mapping from the Sensorized Glove to the Mechanical

Hand

The Schunk antropomorphic hand (SAH) [20], shown

in Fig. 3, is a 13-DOF robotic hand based on the DLR

hand [5]. It has four identical fingers and one is equipped

with an additional joint to function as the opposing thumb.

Each finger has four joints, although the distal joint is

mechanically coupled to the middle joint, i.e. there are three

DOF per finger.

Since the SAH mimics the human hand movements,

mapping the data from the glove sensors to the movements

of the SAH is done in an almost direct way. The following

issues are considered for the mapping (see Figures 1 and 3):

• The palm of the mechanical hand is rigid and there-

fore the palm arc sensor v and the wrist flexion and

abduction sensors b and a are ignored.

• The mechanical hand lacks the little finger and therefore

the sensors u, t, s and r are ignored.

• The distal phalanx sensors i, m, and q are not used since

the SAH hand has a coupling between the medium and

distal phalanx of each finger.
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TABLE I

CORRESPONDENCE BETWEEN THE CYBERGLOVE SENSORS (FIG. 1)

AND THE JOINTS OF THE SAH HAND (FIG. 3).

Cyberglove Sensor SA Hand Joint

Id. Name Id. Name

c thumb roll 0 thumb base
c thumb roll 1 finger base (thumb)
e thumb inner 2 proximal phalanx (thumb)
f thumb outer 3 medium phalanx (thumb)
j index abduction 4 finger base (index)
g index inner 5 proximal phalanx (index)
h index middle 6 medium phalanx (index)
- medium abduction 7 finger base (medium)
k medium inner 8 proximal phalanx (medium)
l medium medium 9 medium phalanx (medium)
n ring abduction 10 finger base (ring)
o ring inner 11 proximal phalanx (ring)
p ring medium 12 medium phalanx (ring)
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Fig. 4. Top-left: Positive correlation between proximal phalanxes (8
and 11); Top-right: Negative correlation between the abduction of the
index and the ring (4 and 10); Bottom-left: Smooth positive correlation
between medium phalanxes (6 and 9); Bottom-right: No correlation between
consecutive phalanxes of the medium finger (8 and 9).

• Using the sensor c to control joint 1 produces a more

natural motion of the SAH hand than using sensor d,

therefore sensor c is used for both joints 0 and 1.

• In the glove, the abduction is measured in a relative way,

i.e. sensors j and n give, respectively, the relative angle

between the index and the middle fingers and between

the middle and the ring fingers. Then, the mapping

is done using the middle finger as reference, i.e. the

base of the middle finger (joint 7) is fixed to zero,

and sensors j and n are directly associated to joints 4

and 10, respectively.

Then, only 11 values from the 22 available in the glove

are used in the mapping to the joints of the SAH mechanical

hand. The complete mapping is shown in Table I. Note

that this mapping makes the motions of the SAH hand

to be defined with 11 independent parameters, although it

has 13 DOF.
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Fig. 5. Total variance covered when using an increasing number of PMDs.

C. Principal Motion Directions

Dimensionality reduction of a feature set is a common pre-

processing step used for pattern recognition and classification

applications as well as in compression schemes. Principal

component analysis (PCA) is often used in these fields to

reduce multidimensional data sets to lower dimensions for

analysis [21]. It is also used as a tool in exploratory data

analysis and for making predictive models. PCA involves

the computation of the eigenvalue decomposition of a data

covariance matrix or the singular value decomposition of a

data matrix, usually after mean centering the data for each

attribute.

In this work, PCA is used to reduce the configuration space

of the mechanical hand SAH to a more tractable space of

smaller dimension, using the data recorded from the hand

postures (Section III-A). Fig. 4 shows some examples of

the existing correlation between joints, illustrating that an

effective reduction can be obtained.

The vectors that define the new base of the hand space

are called Principal Motion Directions (PMDs). Selecting

only the first vectors with higher associated variances a

reduced hand space is obtained: The first PMD represents

the 42.19% of the total variance in the analyzed dataset;

the first two components the 77.12%, and the first three

components the 84.71% (the complete evolution is shown in

Fig. 5). Therefore, in this work the use of three PMDs has

been considered sufficient. Fig. 6 shows the hand postures

along the two principal components, and Fig. 7 the postures

resulting from their linear combination.

IV. MOTION PLANNING

Sampling-based motion planners have demonstrated to be

one of the best alternatives for path planning problems, since

they avoid the explicit characterization of the obstacles of

the configuration space C. These planners generate collision-

free samples of C and connect them with free paths cap-

turing the connectivity of the free space either by forming

roadmaps [22] or trees [23].

A sampling-based roadmap planner, using a deterministic

sampling sequence as sampling source, will be used here

to find the motions of the hand and of the arm where it

is mounted. It relies on generating samples from the lower

dimensional space SC obtained by considering, for the hand

motions, the subspace SCh defined by the first three PMDs.

4027

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 17, 2009 at 07:08 from IEEE Xplore.  Restrictions apply. 



PMD1

PMD2

Fig. 6. Configurations of the SAH hand when it is moved along the first two PMDs.

PMD1

PMD2

Fig. 7. Configurations of the SAH hand when it is moved along a
combination of the first two PMDs.

A. The algorithm

A basic sampling-based roadmap planner has an initial

preprocessing phase to construct the graph that represents the

roadmap capturing the connectivity of the free configuration

space (Cfree). The nodes of the graph are the configurations

sampled from Cfree and the edges the collision-free paths

that connect them.

Fig. 8 shows the algorithm that returns the graph G

representing the roadmap. The input is the number N of

configurations to sample. The functions used are:

• Function INSERT(s,V ): inserts a node to the set V of nodes

of the graph. The use of an efficient graph structure

like the ones provided by the Boost Graph Library [24]

greatly enhances the implementation.

• Function INSERT((s, q),E): inserts the edge (s, q) connect-

ing configurations s and q to the set E of edges of the

graph.

• Function GET-SAMPLE(): generates a configuration of SC,

using the PMDs for the hand configurations, as it is

detailed in the following subsection.

• Function FREE(s): returns TRUE if the configuration s

belongs to Cfree. The use of a simple and efficient

collision detection library like PQP [25] is mandatory

since this is a time-consuming step of the process.

• Function NEIGBORHOOD(s): returns the set of up to K

samples that lie within a predefined neighborhood of s.

This can be efficiently implemented using either the

Basic Sampling-Based RoadMap(N )

G.vertexSet← ∅, G.edgeSet← ∅ i← 0

For i = 1 to N do:

s = GET-SAMPLE()

If FREE(s) then

INSERT(s, G.vertexSet)

ForAll q ∈ G.vertexSet | s 6= q and q ∈ NEIGBORHOOD(s) do

If CONNECT(s, q) then

INSERT((s, q), G.edgeSet)

End If

End For

End If

End For

RETURN G

Fig. 8. Algorithm for the preprocessing phase of a basic sampling-based
roadmap planner.

MPNN algorithm [26] or taking advantage of the grid

structure if grid-based deterministic sampling sequences

are used [27].

• Function CONNECT(s,q): determines whether the rectilin-

ear path in C connecting s and q is free or not by

performing the collision-check test to several of its

configurations. This can be efficiently done using the

binary method [28].

The second phase of a sampling-based roadmap planner is

the query phase where the initial and the goal configurations

(Co and Cd) are connected to the roadmap, and graph

search algorithms are used to find a path connecting them.

In the proposed implementation, the initial and the goal

configurations of the hand are free configurations that are not

constrained to lie in the subspace SCh defined by the PMDs,

but they can be any configuration of Ch. The connection of

Co and Cd to the roadmap is done searching for free paths

in C between these configurations and the nearest nodes in

the roadmap, using the CONNECT(s,q) function. The search

algorithm used is the A*.

B. The sampling source

Sampling-based methods usually rely on the use of a

random number generation source, although the use of

deterministic sampling sequences is a good alternative [29].

Deterministic sampling sequences provide an incremental

and uniform coverage of C, with a better dispersion than

random sampling. Deterministic sampling has given slightly

better results than random sampling in roadmap planners [30]
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a) b)

Fig. 9. Configurations: a) Co and b) Cd.

(although Hsu et al. [31] constrained this improvement to

few degrees of freedom tasks and considered it much less

significant than the importance sampling issue devoted to

bias the samples towards regions relevant to the task). With

the objective of sampling uniformly over the space defined

by the first main PMDs, the use of a deterministic sampling

sequence is therefore a good option. In this work, the sd(k)
deterministic sequence has been chosen [32]. It is a determin-

istic sequence based on a multi-grid cell decomposition and

on the use of the digital construction method first proposed

in [33]. The sd(k) sequence is a sequence of cells of the

maximum partition level. Samples are random configurations

within those cells, with coordinates in the range [0, 1].
Let H = dim(Ch), A = dim(Ca), and h = dim(SCh). The

function GET-SAMPLE() uses the sd(k) sequence to obtain a

d-dimensional sample from SC, with d = A + h. The first

A components are scaled to obtain the A joint coordinates

of the arm within the corresponding joint ranges; the last h

components are used to obtain the H joint coordinates of the

mechanical hand as follows. Let:

• ei, i = 1, . . . , h, be the unitary vectors defining the

first h PMDs (when ordered in a decreasing order of

the variance given by the corresponding eigenvalues λi,

of the eigenvalue decomposition of the data covariance

matrix).

• b = (b1, . . . , bH)T be the data mean (Section III-C).

• ∆i = 4
√

λi be the range (centered at b) covered by the

95% of the dataset along the direction defined by ei.

• E be a H×h matrix defined as E = [∆1e1, . . . ,∆heh].
• p = (p1, . . . , ph)T be the last h components of the

sample generated by the sd(k) sequence, shifted by

−0.5 along each component, i.e. −0.5 ≤ pi ≤ 0.5
(recall that sd(k) gives values within [0, 1] and sample

p should span the joint coordinates around b).

Then, the joint values Θ = (θ1, . . . , θH)T of the mechanical

hand are obtained as follows:

Θ = E p + b

V. EVALUATION AND DISCUSSION

The evaluation of the proposed approach is done by

comparing its efficiency with that of a basic probabilistic

roadmap planner. Fig. 9 shows the initial and goal configu-

rations (Co and Cd) of the planning problem to be solved,

where the SAH hand is mounted on a robot with three

revolute joints. Therefore, considering three PMDs, SC is

TABLE II

COMPARISON BETWEEN APPROACHES FOR THE TEST CASE

# samples # nodes
Mean Mean 95% Confidence Interval

16-RND 63 21 [12.9, 28.3]

6-SDK 25 15 [12.0, 17.9]

6-dimensional (this scenario is called 6-SDK). On the other

hand, the basic PRM samples randomly over all the joint

space, and therefore the space C where the planning is done

is 16-dimensional (this scenario is called 16-RND).

Table II shows the summary results of 10 trials per

scenario. It can be seen that the proposed approach is able

to solve the problem with less samples than the basic PRM,

and with less variability between trials. One reason for

this efficiency is that the sampling over PMDs provides

(self)collision-free samples more often than sampling over

all the joint space, and with hand-postures that mimic those

of the human hand, being therefore best suited to avoid

collisions with the objects to be grasped.

Aside from the quantitative results, it is worth noting

that the motions obtained with the proposed approach look

more natural from the anthropomorphic and aesthetic points

of view, as it can be appreciated in Fig. 10 where two

sequences of snapshots are shown, respectively, for the

16-RND and 6-SDK case. This advantage is less evident

if a postprocessing smoothing is done in the 16-RND case,

although this adds an extra computational cost.

VI. CONCLUSIONS

This paper has presented an efficient methodology to com-

pute collision-free motions of a hand-arm system based on

the principal motions direction (PMDs). These directions, ob-

tained by demonstration using pattern recognition techniques,

capture the natural motion of the human hand. Taking the

PMDs with more weight (those with larger variances), allows

a reduction of the dimension of the hand-movement space

that greatly eases the work of a sampling-based roadmap

planner. Added to a good computational efficiency, the hand

motions obtained by the proposed planner are more natural

than those obtained when all the degrees of freedom of

the hand are directly sampled using a random sampling

sequence in the joint space. Currently, the proposed planner

is being enhanced by the use of an importance sampling

method to bias the samples towards more relevant regions

of the configuration space, in order to perform tasks with

smaller clearances. Future work includes the implementation

of rapidly-exploring random trees to quickly solve single

queries.
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