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Abstract. 

Nanoparticles in the system (K,Na,Li)(Nb,Ta,Sb)O3, KNN-modified, were 

synthesised following a solid state reaction procedure. Milling of the individual 

carbonate and oxide raw materials was carried out before mixing of the components to 

optimize particle size. These mixtures were calcined at 700 ºC 2 h, obtaining 

nanoparticles with size ranging between 50 and 200 nm. The optimization of the raw 

materials particle size and the particle refinement of the carbonates during their 

decomposition play a key role in the formation of the KNN-modified nanoparticles by 

solid state route. The obtained nanoparticles show tetragonal and orthorhombic phases 

coexistence that could be attributed in part to the lack of homogeneity of cations 

distribution confirmed by EDS analysis. The K+ cation excess on the KNN-modified 

system produces a displacement of Li+ cations from the perovskite structure that is the 

origin of the stabilization of the orthorhombic symmetry. These nanoparticles are used 

to sintered ceramics with good piezoelectric properties without needing of anisotropic 

preparations methods. The sintered ceramics show resistance to hygroscopicity and 

deliquescence. 

Keywords: (A) Powders-solid state reaction, (B) Microstructure-prefiring (C) 

Piezoelectric Properties, (D) Perovskites. 
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1. Introduction 

The search for alternative lead-free piezoelectric materials is now being focused 

on alkali niobate based systems in which a morphotropic phase boundary (MPB) 

occurs.[1, 2, 3] Over the past few years, much attention has been given to the “old” 

lead-free compound (Na0.5K0.5)NbO3 (KNN) because of its good electrical properties 

[4]. A Morphotropic phase boundary (MPB) occurs in KNN and, as for lead titanate-

zirconate piezoceramics, PZT, an enhancement of the properties is observed for 

compositions near to this MPB. However, the major drawbacks of KNN ceramics are (i) 

the need for special handling of the starting powders due to volatility of alkaline 

elements, (ii) high sensitivity of the properties to stoichiometry, and (iii) complex 

densification processes [5]. These problems have been known for a long time and thus, 

the PZT compounds are preferred for applications due to the reliability of the solid state 

reaction processes. The alkaline metal elements forming part of the KNN materials 

easily evaporate at high temperatures and cause  compositional fluctuations and poorer 

properties, as it was well known for the piezoelectric PZT system [6

Exceptionally high piezoelectric properties have been previously reported in the 

system (K,Na)NbO3-LiTaO3-LiSbO3 for ceramics prepared by a complex processing 

method [

]. 

7]. Recent studies demonstrated compositional inhomogeneities associated 

with alkali volatilization and abnormal grain growth for Li / Ta KNN-modified [8, 9] 

which resulted in different properties for the same nominal composition processed by 

different ways. Therefore, the processing and powder synthesis are critical steps in 

obtaining such materials. Recently, KNN-based systems have been obtained through 

“soft chemistry” methods as sol-gel [10] and microemulsion [11]. The use of soft 

chemistry to prepare nano-particles should improve the densification and allows a 

reduction of the synthesis temperature, reducing the volatilization of alkali elements. 
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However, most of the chemical methods could not avoid the appearance of carbonates 

during the thermal treatment and thus high temperatures are finally required to 

synthesize adequate powders. Solid state reaction routes from oxides and carbonates 

have been extensively used to synthesize ferroelectric powders with good control of 

particle morphology. Moreover, solid state reaction synthesis is a low cost technique 

and requires only simple processing. Thus, this technique would be highly desirable for 

technological applications. 

In this work, we report the synthesis and characterization of 

(K0.44+xNa0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 (K0.44+xNL–NTS) nanopowders produced via 

solid state reaction. The effects of K+ content on the phase structure, morphology and 

microstructure of K0.44+xNL–NTS nanopowders are studied. In addition the piezoelectric 

properties of sintered ceramics made from the nanopowders were evaluated.  

 

2. Experimental 

Ceramic powders with compositions (K0.44+xNa0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3, 

hereafter K0.44+xNL–NTS, with x = -0.06, -0.04, -0.02, 0.00, 0.02 and 0.04, were 

synthesized by conventional solid state reaction. The raw materials used in this study 

are potassium carbonate (K2CO3, 99.0 %), sodium carbonate (Na2CO3, 99.5 %), lithium 

carbonate (Li2CO3, 99.5 %), niobium oxide (Nb2O5, 99.5 %), tantalum oxide (Ta2O5, 

99.0 %) and antimony oxide (Sb2O5, 99.995 %). In all the experiments, raw materials 

were dried prior to use at 200 ºC for 1 h, because of their hygroscopic nature. Raw 

materials were milled individually (attrition milling in ethanol for 3 hours), in order to 

obtain an appropriate particle size distribution [12]. Table I shows the median particle 

size, d50, of the raw materials before and after the milling stage. The as received 

materials presented a wide dispersion of particle sizes. The milling process produces a 
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homogenization of the particle sizes, obtaining median particle sizes, d50, between 0.6 

and 3 µm, for the milled raw materials. These median particle size data were an order of 

magnitude smaller than the d50 value of the as received materials. These powders were 

then weighed and mixed by attrition milling using ZrO2 balls in ethanol medium for 3 h, 

dried and calcined at 700 °C for 2 h with a heating rate of 3 ºC/min.  

The calcined powders were attrition milled again and pressed at 200 MPa into 

disks of 10 mm in diameter and 0.7 mm in thickness. The pellets were finally sintered in 

air at 1125 ºC for different times, from 1 h to 16 h. The density of the sintered samples 

was measured using the Archimedes method. For the electrical measurements, a fired 

silver paste was used for the electric contacts. The samples were poled in a silicon oil 

bath at 25 °C by applying a direct current electric field of 4.0 kV/mm during 30 min 

[13

Simultaneous thermogravimetric and differential thermal analysis were carried 

out on K0.44+xNL–NTS samples before and after the calcination step using a NETZSCH 

STA 409 analyzer. Around 50 mg of powder were placed in a Pt/Rh crucible and heated 

up to 1200 °C with a heating rate of 3 °C/min. The measurements were performed in a 

flowing air atmosphere. 

]. 

The infrared spectra were recorded using a Perkin Elmer FTIR 1720X 

spectrometer. A few milligrams of the sample were mixed with KBr in an agate mortar, 

disc pressed and recorded from 4000 to 400 cm−1. The infrared bands of interest were 

located between 400 cm-1 and 1800 cm-1. The crystalline symmetry was determined by 

X-ray diffraction analysis (XRD, Siemens D5000, Munich, Germany, Cu Kα radiation). 

The lattice parameters of the sintered ceramics were refined by a method of global 

simulation of the full diagram using the pattern matching routine of fullprof program.  
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The particle size and morphology were evaluated using Field Emission Scanning 

Electron Microscopy, FE–SEM, Hitachi S–4700 and Transmission Electron Microscopy 

(TEM, Philips CM 200 FEGTEM, Eindhoven, Netherlands) with an accelerating 

voltage of 200 kV. For TEM investigations, powders were suspended in isopropanol, 

and a drop of this suspension was deposited on a holey carbon-coated film supported on 

a 400 mesh copper grid. Surface area measurements were performed using a 3–point 

BET technique (Quantachrome Instruments, Florida, USA). 

The Raman scattering was measured in air atmosphere and at room temperature, 

by using 488 nm radiation from an Ar+ laser operating at 10 mW. The signal was 

collected by a microscope Raman spectrometer (Renishaw Micro–Raman System 1000) 

in the 100 cm-1–3000 cm-1 range.  

The piezoelectric constant d33 was measured using a piezo-d33 meter (YE2730A 

d33 METER, APC International, Ltd, USA). The electromechanical coupling factor kp 

was determined at room temperature by resonance and antiresonance methods on the 

basis of IEEE standards. 

 

3. Results and discussion. 

 

Figure 1 shows the results of the TG/DTA for the K0.44+xNL–NTS mixtures. The 

samples experiment a mass loss between 11.1 % and 12.7 % upon heating to 700ºC. The 

highest mass loss was recorded for over–stoichiometric samples, x = 0.04. Four weight 

loss peaks can be observed on the TG curve, Fig 1.a, at 80 ºC, 180 ºC, 345 ºC and 480 

ºC, associated with endothermic peaks, Fig 1.b. The first weight loss occurring at 80 ºC 

is attributed to the removal of absorbed environmental moisture water. The sub–

stoichiometric and stoichiometric compositions, -0.06 ≤ x ≤ 0.00, show ∼ 0.5 % weight 
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loss on this process, meanwhile the potassium rich composition, x ≥ 0.04 shows bigger 

weight loss. The weight loss peak at 180 ºC is related to simultaneous losses of H2O and 

CO2 [14]. The decomposition of AHCO3 to A2CO3, where A is K+, Na+ or Li+, occurs 

between 100 and 180 ºC [15]. According with these data, it would mean that 1.6 % wt 

of AHCO3 is formed after the ethanol milling step from the H2O and CO2 present in the 

atmosphere. The endothermic peaks at 345 ºC and 480 ºC are consistent with the 

polymorphic transition of A2CO3 [16

Figures 2.a and b show FTIR studies of the K0.44+xNL–NTS mixtures and 

calcined–K0.44+xNL–NTS powders on the region between 1800 cm-1 and 400 cm-1. The 

IR spectra of the initial mixtures, Fig 2.a, shows four main absorption bands at ~1640 

cm-1, ~1460 cm-1 (double peak), 880 cm-1 and 630 cm-1. The weak absorption band at 

1640 cm-1 can be attributed to the in-plane bending vibration of H2O [19]. The band at 

~1460 cm-1 can be assigned to the C–O asymmetrical stretching (υ3) and the group of 

bands at ∼ 880 cm-1 to the CO3
-2 out-of-plane deformation (υ2) of the carbonate group 

[15]. The broad band appearing at 630 cm-1 could be ascribed to the characteristic 

vibration of B–O, where B is Nb+5, Ta+5 and Sb+5 cations. 

]. The main weight losses occurred in a narrow 

temperature range between 400 and 690 ºC, corresponding to the CO2 losses. At 

temperatures above 700 ºC, the decomposition of carbonates has been completed. For 

compositions between -0.06 ≤ x ≤ 0.00, the complete decomposition temperature is 

similar and occurs at ∼ 600 ºC, while for x ≥ 0.04 the required temperature to finish the 

complete carbonate decomposition is ∼ 700 ºC. Based on these results, the optimum 

calcination treatment was selected at 700 °C during 2 h. 

The IR spectra of the calcined K0.44+xNL–NTS powders, fig 2.b, shows a 

complete disappearance of the absorption band at 1460 cm-1, ascribed to vibrations of 

the CO3
-2 group, for sub–stoichiometric and stoichiometric compositions, -0.06 ≤ x ≤ 



 7 

0.00. Meanwhile, in the over–stoichiometric samples this band is still present, as shown 

in the inset of Figure 2.b. The broad strong band centered at 680 cm-1 indicates the 

formation of the perovskite phase [17

The calcined K0.44+xNL–NTS powders consist of agglomerates 300–500 nm in 

size, which are formed by smaller plate-like particles in the range 50–150 nm depending 

on the composition, Fig. 3. The obtention of nanopowders by the solid state reaction 

procedure is attributed to the decomposition reaction from carbonates to oxides, which 

may be responsible for the refinement of the particle size. [

]. These results are in good agreement with the 

ones observed by TG/DTA, where the weight losses corresponding to decomposition of 

carbonates were completed at ~ 700 ºC. 

18, 19

TEM micrographs of the calcined K0.44+xNL–NTS powders reveal in detail the 

nanopowders morphology, Fig. 4. The nanoparticles are comparable in size with those 

obtained by “soft chemistry” methods [10, 11]. The sub–stoichiometric samples show 

strongly agglomerated particles with acicular morphology and particle size < 100 nm, 

Fig. 4.a. The stoichiometric powders show nearly spherical like particles as well as a 

few platelet particles with sizes ranged 100-150 nm, Fig. 4.b. Finally, the over–

stoichiometric powders are formed by particles with platelet morphology that 

correspond to nearly rectangular particles. The platelets possess a lateral size < 200 nm 

and a considerably lower thickness, Fig. 4.c. As the amount of starting K2CO3 increases, 

the nanoparticles evolve from small acicular nanoparticles to nearly rectangular platelets 

having larger size along the plane dimensions than the spherical like particle of lower 

stoichiometry. BET measurements showed a specific surface area ~ 9.7 m2/g for sub–

stoichiometric nanopowders and 9.5 m2/g for stoichiometric and over–stoichiometric 

nanopowders. These high BET values are comparable with those obtained by “soft 

] 
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chemistry” methods [10, 11] and are in agreement with the nanoparticles dimension of 

the synthesized powders.  

X-rays diffraction (XRD) patterns of the calcined powders show main peaks that 

can be easily associated to the KNN perovskite structure, together with minor secondary 

phases identified as Ta2O5 for the sub–stoichiometric samples, Fig 5.a. The presence of 

Ta2O5 remnants from the starting mixtures was related to the lower reactivity of Ta2O5 

compared to Nb2O5 [20]. The main phase of the sub–stoichiometric samples can be well 

related to a tetragonal perovskite phase, whereas for the over-stoichiometric samples the 

XRD pattern presents features that can be associated to phase coexistence between 

tetragonal an orthorhombic perovskite phases. [21

The crystallite size of the nanopowders was calculated from the full width at half 

maximum of the diffraction peaks using the Scherrer’s equation (after correction of the 

data by the instrumental broadening of the system): 

], although the broadening of the 

peakas made it difficult to fully resolve the peaks corresponding to any individual 

crystalline symmetry.  

)cos( θ
λ

×
×Κ

=
B

D  

where D is the crystallite size, λ is the X-ray wavelength, B is the full width at half 

maximum of the diffraction line, θ is the angle of diffraction and κ is a constant (∼ 0.9). 

The figure 5.c shows the evolution of the crystallite size as a function of the 

composition. The size increases form 26 ± 7 nm for sub–stoichiometric samples to 46 ± 

23 nm for over–stoichiometric ones. Both the average crystallite size and the dispersion 

of the crystalline size (error bars correspond to the standard deviation) increase almost 

linearly with the presence of K+ in the composition, in good agreement with the trend 

observed by TEM (Fig. 4). The particle size observed by TEM are larger than the ones 
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calculated by XRD, indicating that each particle is composed of different coherent 

crystalline regions. 

The different reactivity between Nb2O5 and Ta2O5 observed by XRD was 

corroborated by EDS analysis of the calcined K0.44NL–NTS powder particles. Figure 6 

(a) shows the EDS analysis of a Ta5+ rich particle marked as A in Fig 4 (b). The EDS 

microanalysis shows very high levels of Ta2O5 indicating a low reactivity. On the other 

hand, particles with nominal composition are commonly observed, Fig 6 (b), where the 

EDS analysis of the particle marked as B on Fig. 4 (b) is shown. The observation of 

Ta5+ rich particles indicates the existence of compositional heterogeneities in the 

nanopowders. 

The Raman spectra of the calcined nanopowders are shown in Fig 7. The main 

vibrations are associated to the BO6 perovskite-octahedra [22]. The vibrations of the 

BO6 octahedron consist of 1A1g (υ1) + 1Eg (υ2) + 2F1u (υ3, υ4) + F2g (υ5) + F2u (υ6). Of 

these vibrations, 1A1g (υ1) + 1Eg (υ2) +1F1u (υ3) are stretching modes and the rest are 

bending modes. In particular, A1g (υ1) and F2g (υ5) are detected as relatively strong 

scatterings in systems similar to the one we are studying, because of a near-perfect 

equilateral octahedral symmetry. All the calcined samples were confirmed as consisting 

of a perovskite phase. For over-stoichiometric sample, minor bands at high wavenumber 

region can be assigned to the residual carbonate phases. Furthermore, we should not 

exclude from the discussion the fact that the O–H stretch of H2O appears near 2650 cm-

1, which can eventually overlap with hydrogen carbonate bands [23

A detail of the region between 440 cm-1 and 760 cm-1 is presented in figure 8.a, 

where the spectrum is fitted to the sum of two Lorentzian functions centered at ~ 555 

cm-1 and ~ 615 cm-1, ascribed to Eg (υ2) and A1g (υ1) Raman modes, respectively, 

according to literature [22]. The A1g (υ1) peak shifts to lower frequencies when the 

]. 
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amount of K+ cations increases (see Fig. 8.b) due to a decrease in the strength constant 

caused by the lengthening of the distance between B5+ type ions and their coordinated 

oxygens. This type of position shift has been previously associated in sintered ceramics 

with an evolution from tetragonal to orthorhombic phase [21]. Taking this into account, 

it can be said that in the sub–stoichiometric samples, the tetragonal symmetry is 

dominant at room temperature, as previously inferred from the XRD results, whereas 

for the overstoichiometric samples the structure  evolves towards an orthorhombic 

symmetry. This indicates that the structure tends to orthorhombic simmetry when the 

K2CO3 content increases.  

In KNLN and related systems, the orthorhombic to tetragonal phase transition 

shifts towards lower temperatures when the concentration of Li+  cations increases [22, 

24]. The Li+ cations compete with Na+ and K+ in the A sites of ABO3 perovskite to form 

a solid solution. The structure of the solid solution transforms from orthorhombic to 

tetragonal symmetry due to the large distortion caused by the incorporation of Li+ 

cations [22, 25]. This may be attributed to the smaller ionic radius of Li+ compared to 

Na+ and K+ [25

The nanopowder obtained have been used for the production of ceramic samples 

by a simple sintering process in air at 1125 ºC for different times, from 1 h to 16 h. 

Sintering in open air is the most suitable method for industrial mass production of 

ceramic samples. All the obtained ceramics show relative densities over 95 % of the 

theoretical value (see table II). This demonstrates that the use of the nanopowders 

]. This stabilization of the orthorhombic symmetry at room temperature 

with the increasing of  K+ concentration has been observed in our samples by Raman 

spectroscopy. This behavior could be associated with an excess of K+ cations in the 

K0.44+xNL–NTS system which causes a displacement of Li+ cations from the perovskite 

structure and therefore the stabilization of the orthorhombic symmetry phase.  
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precursor allows the production of well sintered ceramics of KNN-modified. Moreover, 

no relevant weight losses have been observed during the sintering, indicating that there 

are no alkaline materials volatilization.  

Table. II summarizes typical data of sintering density, grain size, crystal 

symmetry (including the presence of secondary phases) and tetragonality ratio (c/a, 

obtained from the fitting of the full XRD pattern with the fullprof program) of 

K0.44+xNL–NTS ceramics as a function of the stoichiometry, for sintering times of 1 and 

16 hours. For all compositions the bulk density slightly increases with increasing 

sintering time. This evolution agrees well with the one reported for LiTaO3-modified 

KNN, for which an increase of the densities was observed for sintering times up to ≈ 10 

h [8]. 

The average grain size increases slightly with sintering time. The sub–

stoichiometric samples show a greater grain size than the stoichiometric and the over–

stoichiometric ones, as can be observed on the micrographs presented in Figure 9 for 

samples sintered for 16 hours. This behavior has been reported in our previous works 

concerning Li/Ta/Sb KNN-modified piezoelectric ceramics with composition 

(K0.44+xNa0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 [21, 26] demonstrating that K deficiency (and 

thus excess B+5 cations) improved the sinterability compared to stoichiometric 

compositions. For the K-deficient compositions, the densification occurs via a liquid 

phase that promotes grain growth, but induces the occurrence of a secondary phase of 

Tetragonal Tungsten Bronze structure (TTB) [26], see fig. 9b, similar to the one 

observed for LiTaO3 and LiNbO3-modified KNN. The quantity of this secondary phase 

decreases with sintering time. Previous studies devoted to KNN-modified [8, 9] also 

evidenced the presence of abnormal grains, with cylindrical morphology and very large 
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dimensions, which are not observed here, This fact indicates that the EDS observed 

compositional heterogeneities are compensated by the high reactivity of nanopowders. 

The sintered samples present the coexistence of tetragonal and orthorhombic 

phases at room temperature due to a phase polymorphism [21, 27] (see table II). The 

tetragonal symmetry is the main phase on the sub–stoichiometric ceramics and evolves 

to orthorhombic symmetry for the over–stoichiometric ceramics, for sintering time 1 h, 

in close relation with the main phase present on the starting nanoparticles. The 

increasing of sintering time enhances the c/a ratio of the tetragonal phase, in all cases. 

These data are in agreement with a recent work [28

These results suggest that the starting nanoparticles composition affects the 

structure of the sintered ceramics and thus its properties. The preparation of the  

nanopowders causes an improvement on the sinterability and better compositional 

homogenization in respect in respect to preparations by the common process 

[REFERENCIAS], inhibition of the abnormal grains growth, and stabilization of the 

tetragonal symmetry at room temperature in the KNL–NTS system. 

] that established the increasing of 

the tetragonality ratio, c/a, on KNN-modified systems with the Li+ content. Then, the 

observed increase of the c/a ratio could indicate an increase of Li+ incorporation in the 

perovskite structure with the sintering time. 

The remanent polarization (Pr) of the K0.44+xNL–NTS sintered ceramics for 

different values of x and sintering times are summarized in Table II. The sub-

stoichiometric and stoichiometric ceramics show well saturated hysteresis loops and 

large values of Pr (~18.5.µC/cm2), especially for high sintering times (16 h). However, 

the over-stoichiometric ceramics present lower Pr values and for 1 h sintered samples 

the presence of conduction effects. The piezoelectric properties previously established 

for the KNL-NTS system, show a linear evolution of the d33 values with the 
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tetragonality ratio: the higher the tetragonality ratio of the system the higher their 

piezoelectric properties are [21, 29

Some studies devoted to KNN-based ceramics also demonstrated that these 

materials present sintering difficulties and exhibit deliquescence [

]. This same trend is observed also in the present 

results (see table II). This linear dependence was associated to the stabilization of the 

tetragonal phase at room temperature in expense of the orthorhombic one, i.e., the 

decrease of the polymorphism phase transition temperature [21, 29]. Therefore, the 

stoichiometry of the KNL–NTS system, which must be controlled in the early stages, 

plays an important role in the stabilization of the different crystalline symmetries and on 

their piezoelectric properties. 

30] and formation of 

hygroscopic secondary products [31

Therefore, the KNL-NTS nanopowders prepared by solid state reaction and 

sintered in an air atmosphere have the potential to be among the leading lead-free 

piezoceramic materials in the future. 

] when they are exposed to moisture. We have 

immersed KNN-based ceramics of this work in water for a long time (48 h), observing 

no hygroscopicity or deliquescence behaviour. The figure 10 shows typical data on the 

frequency dependence of phase and impedance for K0.44+xNL–NTS piezoceramics 

sintered at 1125 ºC for 16 h before and after 48-hours immersion in water. No 

differences were observed between the piezoelectric resonance and antiresonance, 

confirming that the K0.44+xNL–NTS sintered ceramics are free from hygroscopicity or 

deliquescence problems. 
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4. Conclusion. 

 

A method to produce KNN-modified nanoparticles by solid state reaction 

process has been developed. The nanoparticles obtained varied from 50 to 200 nm as a 

function of the stoichiometry. X–ray diffraction and Raman spectroscopy showed an 

orthorhombic symmetry stabilization when the concentration of alkaline cations 

increased. The excess of K+ cations in the K0.44+xNL–NTS system may cause a 

displacement of Li+ cations from the perovskite structure. Therefore, the stoichiometry 

of the KNL–NTS system plays an important role in the stabilization of the crystalline 

symmetries and thus on their related piezoelectric properties. The stabilization of the 

tetragonal crystalline symmetries produces an improvement of the piezoelectric 

properties in comparison to the samples where the orthorhombic phase is present. The 

sintered samples showed an improvement on the sinterability, inhibition of abnormal 

grains growth, stabilization of the tetragonal symmetry and are free from hygroscopicity 

or deliquescence behaviour when compared with previously reported materials.  
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Figure Captions: 

Figure 1. TG (a) and DTA (b) curves of the K0.44+xNL–NTS mixtures 

Figure 2. FTIR plots of the (a) K0.44+xNL–NTS mixtures and (b) calcined K0.44+xNL–

NTS powders as a function of the composition. The inset shows a detail of the region 

between 1800 cm-1 and 1400 cm-1. 

Figure 3. FE–SEM photographs of the calcined K0.44+xNL–NTS powders, (a) x= -0.06 

(b) x= 0.00 and (c) x= 0.04. 

Figure 4. TEM photographs of the K0.44+xNL–NTS powders calcined at 700 ºC during 2 

h as a function of the composition, (a) x= -0.06 (b) x= 0.00 and (c) x= 0.04. 

Figure 5. (a) XRD patterns of the K0.44+xNL–NTS powders of the different composition 

calcined for 2 h at 700 ºC, where x varied between -0.06 and 0.04 and (b) detail of the 

2θ region from 44º to 47º. (c) Evolution of the crystallite size as a function of the 

composition. 

Figure 6. EDS spectra of (a) a Ta5+ rich particle and (b) a particle with nominal 

composition, corresponding to the ones marked as A and B, respectively, on Fig. 4 (b). 

Figure 7. Raman spectra of calcined K0.44+xNL–NTS powders depending on the 

composition: x= -0.06, x= 0.00 and x=0.04. 

Figure 8. (a) Magnified Raman spectra in the wavenumber ranges from 440 to 760 cm-1 

as function of the composition and Lorentzian fits of the individual peaks of the Eg (υ2) 

and A1g (υ1) Raman modes. (b) Evolution of the Raman shift of A1g modes as a function 

of the composition.  

Figure 9. Micrographs of samples sintered for 16 hours prepared with (a) sub-

stoichiometric, (b) stoichimetric and (c) over-stoichiometric nanopowders. On figure (c) 

the presence of a grain with TTB structure is signalled. 
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Figure 10. Resonance and antiresonance spectra of K0.44NL–NTS sintered ceramics at 

1125 ºC for 16 h before (a) and after being exposed to water (b) 

Table. I. Main characteristic of the reagents used for synthesis of K0.44+xNL–NTS by 

solid state reaction, as well the average particle size, d50, of the raw materials before and 

after the milling stage. 

Table. II. Several properties and typical electrical properties of K0.44+xNL–NTS 

ceramics sintered at 1125 ºC. T*: tetragonal symmetry, O*: orthorhombic symmetry 

(tetragonal P4mm and orthorhombic Amm2). TTB ***: A minor secondary-phase 

detected by DRX which was assigned to K3LiNb6O17, (PDF#36-0533), with tetragonal 

tungsten–bronze structure, [21, 26]. 
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Raw 

materials 

Commercial 

Reference

Purity

(%)

 25 ºC

(g/cm3)

Melting point 

( ºC)

d50 (m) 

as received

d50 (m) 

milled
Physical Form

Na2CO3

PANREAC, Montplet 

& Esteban.
99.5 2.54 858 6.73 1.65

White, monoclinic, 

hygroscopic

K2CO3 MERCK. Darmstadt 99.0 2.29 898 12.80 2.32
white, monoclinic, 

hygroscopic

Li2CO3

PANREAC, Montplet 

& Esteban.
99.5 2.11 723 10.54 2.82 white, monoclinic, 

Nb2O5

SIGMA-ALDRICH 

CHEMIE
99.9 4.60 1512 2.13 0.55 white, orthorhombic

Ta2O5

SIGMA-ALDRICH 

CHEMIE
99.0 8.20 1784 10.06 1.03 white, rhombohedric

Sb2O5

SIGMA-ALDRICH 

CHEMIE
99.995 4.12

decompose at 

380 
15.15 3.18 yellow, cubic
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Composition Sintering time  
(h) 

Density  
(g/cm3)  
± 0.01 

Density 
relative to 

theoric (%) 

Grain size  
(µm) 

Cristal phase 
 

Secondary phase 
TTB *** (%) 

tetragonality ratio 
(c/a) 

± 0.0001 

Pr 

(µC/cm2) 
d33 

(pC/N) 

sub–stoichiometric (x=-0.06) 1 4.61  96.6 1.36 ± 0.80 T* 3.5 ± 0.2 1.0093 15.0 ± 1.0 148 ± 10 
16 4.69  98.3 1.70 ± 1.04 T* 1.2 ± 0.1 1.0108 17.5 ± 1.0 230 ± 15 

stoichiometric (x=0.00) 1 4.64  97.3 0.63 ± 0.37 O** + T* --- 1.0071 5.9 ± 0.5 57 ± 5 
16 4.70  98.5 1.18 ± 0.64 T* --- 1.0110 18.5 ± 1.5 255 ± 15 

over–stoichiometric (x=0.04) 1 4.74  99.4 0.64 ± 0.37 O** --- --- --- 40 ± 5  
16 4.76  99.8 1.30 ± 0.68 O** + T* --- 1.0079 10.0 ± 2.0 102 ± 6 
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