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The optical quality of the human eye varies across the visual field. Hence an exact compensation of the eye
aberration for a given field point can give rise to a less-than-optimum compensation in neighboring field re-
gions. We have studied some aspects of this problem and present here an approach to design wide-field (,10°)
optically thin correcting elements, e.g., phase plates, deformable mirrors, and liquid-crystal displays. Their
expected performance is assessed using actual eye aberration data. Particular attention is given to the design
of elements providing a minimum averaged rms residual aberration and those providing a nearly uniform rms
residual aberration across a given field. © 2003 Optical Society of America
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1. INTRODUCTION
In the past several years an intense research effort has
been devoted to the measurement and improvement of
the optical quality of the human eye. A detailed knowl-
edge of the optical defects of individual eyes is of funda-
mental importance for applications in the fields of optom-
etry, physiological optics, vision science, and clinical
instrument design. It is well known that the eye, espe-
cially for large pupil diameters, behaves rather poorly as
an imaging instrument because of the presence of optical
aberrations, a fact pointed out by von Helmholtz a cen-
tury and a half ago.1

The defects of the eye as an image-forming system can
be quantitatively described by the wave aberration
function,2 from which other useful metrics such as the
point-spread function (PSF) or the modulation transfer
function can be easily computed. The wave aberration
function is conveniently expressed as a sum of polynomial
terms, each one of them conveying information about a
specific feature of the wave-front distortions. Among the
several sets of mathematical functions particularly suited
to this end, the well-known Zernike polynomials3–6 are of
widespread use. Low-order eye defects such as the clas-
sical prismatic and spherocylinder refractive errors have
for a long time been successfully measured and compen-
sated for in clinical practice using relatively simple equip-
ment. The measurement of higher-order aberrations and
their successful compensation required the development
of more sophisticated devices. In the last decade, a
variety of aberrometers have been developed that allow
determination of the precise shape of the eye’s wave
aberration with high spatial (and even temporal) resolu-
tion. Among others we can mention the Howland–
Howland aberrometer,7 the Hartmann–Shack wave-front
1084-7529/2003/010001-10$15.00 ©
sensors,8–10 laser ray-tracing setups,11–13 and spatially re-
solved refractometers.14,15 The correction of these high-
order refractive defects has also witnessed noticeable ad-
vances: Real-time aberration correction has been
reported with adaptive optics systems using deformable
mirrors16–18 or liquid-crystal devices,19,20 and compensa-
tion of static eye aberrations has been achieved using
photoresist phase plates.21,22 New proposals for custom-
ized LASIK surgical procedures seek to compensate not
only for the classical ametropies but for the high-order
eye aberration terms.

Different aims feed the current trends for improving
the optical quality of the eye in order to reach its diffrac-
tion limit. From the subject’s viewpoint, diffraction-
limited retinal images should help to achieve supernor-
mal vision, with visual acuities nearly doubling the
standard 20/20 value. Although most subjects will never
need such high acuity for everyday life, some specific
vision-related tasks may benefit from this improvement.
Research in physiological optics, especially in aspects re-
lated to the sampling and processing of retinal images,
will also benefit from it. But perhaps the most conspicu-
ous applications will be those related to the development
of clinical instrumentation for high-resolution retinal im-
aging. Indeed the eye fundus images attainable using
conventional imaging systems are severely blurred by
monochromatic eye aberrations. Although such aberra-
tions are not the only factor degrading retinal images
(chromatic aberrations and scattering in ocular media
also play an important role), correcting them will be an
important step towards achieving high-resolution imag-
ery for clinical diagnosis.

The optical quality of the eye varies strongly among
subjects and for a given subject it varies noticeably across
2003 Optical Society of America
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the field of view (FOV). This latter fact has been studied
in detail using objective methods,23 suggesting that typi-
cal human eyes behave as wide-field imaging instruments
whose optical quality is less than diffraction-limited but
slowly varying across a 610°-wide region about the foveal
center. This optical quality decreases quickly for more
eccentric field positions. It is worth noting that despite
the approximately constant optical quality across the cen-
tral field (measured by the rms wave aberration), the
weight and importance of each individual Zernike term in
the aberration function may vary rather strongly from
one position to another. The slowly varying optical qual-
ity does not arise from the constancy of each individual
aberration term but rather from a delicate balance of the
contributions of the different Zernike terms.23 From this
observation several questions naturally arise: If we cor-
rect exactly the optical aberrations for a given point in the
visual field (say, for central foveal vision), how does it af-
fect the image quality in the neighboring areas? To what
extent can the optical quality of the eye be improved in
certain regions of the visual field without worsening it no-
ticeably in the remaining ones? The field-dependent de-
composition of the aberration function in terms of indi-
vidual Zernike polynomials suggests that no diffraction-
limited correction can be achieved for extended FOV
regions using a single thin optical element or surgical pro-
cedure. If so, what kind of trade-offs can be expected?
How can we design an aberration-compensating element
to achieve an optimum optical quality for a given field re-
gion in a particular eye?

Recent works24,25 have addressed the design of oph-
thalmic lenses to correct the eye’s low-order peripheral re-
fractive power errors (defocus and astigmatism) for wide
visual fields. The design procedure involves the use of
ray-tracing optimizing routines applied to model eyes to
find the parameters of the surfaces of aspheric and astig-
matic lenses which will provide a reasonable cancellation
of the spherical and cylinder refractive error over the re-
quired field.

In this paper we present a different but complementary
approach to the design of optical elements to compensate
for the global aberration pattern of individual eyes across
a wide field of view viz., ;610° around the central fovea.
This analytic method handles aberrations of any order
and is not restricted to correction only of low-order refrac-
tive power errors. The analysis developed here is re-
stricted to the design of optically thin elements that can
be described by a transmittance function that in a first
approximation does not depend on the visual field angle.
As long as this angle is kept reasonably small, the as-
sumption is reasonable for aberration-correcting elements
such as photoresist phase plates manufactured on a flat
substrate, deformable mirrors, and liquid-crystal dis-
plays. The results are of direct application to the design
of wide-field elements to be used in high-resolution reti-
nal imaging instruments. In addition, the results can be
used as initial conditions for the nonlinear numerical op-
timization of the refractive surfaces of ophthalmic (con-
tact) lenses drawn on curved, thick substrates.

The structure of this paper is as follows. In Section 2
we describe typical patterns of field-dependent eye aber-
rations taken from an earlier work.23 In Section 3 we in-
troduce wide-field metrics of aberration correction and de-
scribe the optimization procedures for design of wide-field
Fig. 1. Eye aberration maps for five different positions across the visual field of subjects EM, RN, and CD. Gray levels span one
wavelength (543 nm). The on-axis defocus has been subtracted in all cases.



S. Bará and R. Navarro Vol. 20, No. 1 /January 2003 /J. Opt. Soc. Am. A 3
compensating elements adapted to individual eyes.
Particular attention is given to the design of elements
providing a minimum averaged residual rms aberration
in a given field region and those providing a nearly uni-
form residual rms aberration across this FOV. In Section
4 these procedures will be applied to several sets of actual
eye aberrations and their expected performance com-
puted. Discussion, conclusions and future work are pre-
sented in Section 5.

2. IMAGE QUALITY METRICS AND
MONOCHROMATIC EYE ABERRATIONS
ACROSS THE VISUAL FIELD
To describe quantitatively the field dependence of the
eye’s aberrations, let us expand the wave aberration func-
tion We(r, a) over the points r on the eye’s exit pupil as a
series of normalized Zernike polynomials with coefficients
ai dependent on the angular position across the visual
field (a). We have

We~r, a! 5 (
i50

`

ai~a!Zi~r/R !, (1)

where R is the radius of the pupil and a is a two-
dimensional vector whose components are the angles
formed by the chief ray corresponding to a given field po-
sition and the x and y axes defined on the eye’s exit pupil.
The Zernike polynomials Zi are labeled here by a single
index i embedding the two indices characterizing each
term [radial (n) and angular (l) orders, respectively].6

The first Zernike polynomial (i 5 0 with n 5 0) is a con-
stant term accounting for the average value of the aber-
ration function and has no special relevance for image
quality, so it is usually dropped from expansion (1). The
next two terms with i 5 1, 2 (both with n 5 1) corre-
spond to global tilts in the wave fronts and hence describe
prismatic effects. Terms with i 5 3, 4, 5 (all of them with
n 5 2) correspond to spherical ametropy (l 5 0) and
astigmatism (l 5 2 and l 5 22). Terms with i . 5 ac-

Fig. 2. Overall rms aberration including all terms (excepting
tilts) of subjects EM (circles), RN (squares), and CD (triangles)
for five positions across the visual field.
count for higher-order aberrations (n . 2) that have
been shown to affect noticeably the image quality of the
human eye.8,16,26,27

Following the recommendations in Ref. 6, here the
Zernike polynomials Zi are normalized such that the
overlapping integral,

1

pR2 E
P
Zi~r/R !Zj~r/R !d2r, (2)

equals 1 for i 5 j and is zero otherwise. In Eq. (2) P de-
notes integration over the area of the eye pupil. A useful
parameter describing the overall magnitude of aberra-
tions is the wave-front variance, defined for each field po-
sition as

s 2~a! 5
1

Ap
E

P
@We~r, a! 2 W̄e~r, a!#2d2r, (3)

where as before P denotes integration over the eye exit
pupil, Ap is the pupil area, and W̄e(r, a) is the average
value of the wave aberration over the pupil. One advan-
tage of using the Zernike polynomial expansion on a cir-
cular pupil is that W̄e(r, a) 5 a0 . An even more useful
property is that the wave-front variance can be written in
terms of the normalized aberration coefficients ai in the
compact form

s 2 5 (
i51

`

ai
2. (4)

Note that since the wave aberration depends on the visual
angle a, the PSF and the modulation transfer function, as
well as the wave-front variance, Strehl ratio, and other
image quality metrics, will also depend on a.

Figure 1 illustrates the strong dependence of the over-
all wave aberration We(r, a) on visual angle a. We(r, a)
is plotted for three subjects (EM, RN, and CD) and five
temporal field positions (a 5 0°, 5°, 10°, 20° and 40°).
These data were obtained using the laser ray tracing
method.23 In these wrapped gray level plots, the gray

Fig. 3. Aberration coefficients ai for subject EM for five posi-
tions across the visual field. Circles, i 5 4 (defocus, including
the on-axis measured value); squares, i 5 5 (astigmatism at 0°
or 90°); diamonds, i 5 8 (third-order coma along x axis); and tri-
angles, i 5 12 (spherical aberration).
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level range corresponds to one wavelength (543 nm) of op-
tical path length. To help in visualizing the differences,
the on-axis defocus term of each subject a4(0°) (which can
be easily compensated for using conventional ophthalmic
lenses) has been subtracted from We(r, a) in all cases.
The associated rms wave aberration s(a) (including defo-
cus but not tilts) is plotted in Fig. 2 versus field angle a.

Individual Zernike aberration terms show a great vari-
ability across the visual field, even in the central region.
As an example, Fig. 3 shows the aberration coefficients
corresponding to i 5 4 (defocus), 5 (astigmatism at 0° or
90°), 8 (third-order coma along the x axis), and 12 (spheri-
cal aberration) for subject EM. The resulting lines are
often far from being constant and may even suffer
changes of sign. The general trend is that their absolute
value tends to increase toward higher values of eccentric-
ity.

3. WIDE-FIELD COMPENSATION OF EYE
ABERRATIONS
As mentioned above, several technologies can be used to
compensate for human eye aberrations beyond the con-
ventional spherocylindrical ametropies. These compen-
sation approaches rely on the use of a special purpose op-
tical element—either static or dynamic—designed to
imprint on the incoming wave fronts an aberration func-
tion of the same magnitude but reversed sign from that of
the eye. Customized LASIK surgery seeks to obtain
similar results, the main difference being that in the
LASIK approach no additional optical elements are in-
cluded in the optical path, but the cornea is reshaped to
compensate for the optical defects.

Many of these compensating elements can be consid-
ered optically thin so that their effects can be satisfacto-
rily described by a transmittance function exp@ikWc(r)#
that, for small enough visual fields, is independent of the
field angle a. In other words the effect of a thin compen-
sating element is essentially to introduce a local phase re-
tardation kWc(r) on the incoming waves whose value de-
pends on the pupil point being considered (r) but not on
the incidence angle, as long as this is kept reasonably
small (say, a < 10°). When the compensating element is
placed on a plane conjugated to the eye’s pupil (or at a
small axial distance from it: For typical human eye ab-
errations, small axial misalignments—up to a few
millimeters—have only a minor effect on the compensa-
tion quality),28 the resulting residual wave aberration of
the eye Wr(r, a) can be described as the sum of the origi-
nal eye aberration We and the wave-front distortion Wc
introduced by the correcting element in the form

Wr~r, a! 5 WC~r! 1 We~r, a!. (5)

From Eq. (5) it follows that for any single field position
a0 , the residual eye aberration may in principle be per-
fectly canceled using a correcting element with Wc(r)
5 2We(r, a0). However, such a perfect cancellation
cannot be simultaneously achieved for a set of points
across the visual field. This effect can be seen in Fig. 4,
whose second row shows the residual eye aberration of
subject EM for two other field positions once the on-axis
aberration (a 5 0°) has been completely cancelled
@Wr(r, a) 5 We(r, a) 2 We(r, 0°)#. The corresponding
PSFs, numerically evaluated from Wr(r, a), are dis-
played in the second row of Fig. 5. Note that for a
5 0° the residual aberration is zero (flat gray level), giv-
ing rise to a diffraction-limited PSF (an Airy disk). How-
ever, the optical quality for off-axis points along the tem-
poral field, nasal retina meridian (ax 5 5°, 10°; ay
5 0°), varies noticeably and is still far from its diffrac-
tion limit despite the overall improvement achieved with
respect to the fully uncompensated case.

To develop methods for optimizing the compensating el-
ement, it is useful to expand Wc(r) also in terms of nor-
malized Zernike polynomials as

Fig. 4. Maps of the EM wave aberration, with the gray-scale
levels spanning one wavelength of optical path (543 nm). Pupil
diameter 6.7 mm. Each column corresponds to a different posi-
tion within the foveal and parafoveal field: 0°, 5°, and 10°, as
noted. All terms in the aberration function have been included,
excepting for the tilt. Upper row, uncompensated eye; second
row, eye compensated with w 5 @100#; third row, same with
w 5 (1/2)@110#; fourth row, same with w 5 (1/3)@111#; fifth row,
same with an optimal element designed to achieve the smallest
uniform variance at these three positions of the field. Note the
smaller residual aberration at 10° and the slightly higher one at
0° and 5° in comparison with the fourth row.
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Wc~r! 5 (
i51

N

ciZi~r/R !, (6)

where the sum has a finite limit of terms (N) since any
practical aberrometer gives information only about a fi-
nite, although possibly large, number of individual aber-
rations, and the compensating elements are fabricated ac-
cording to these specifications. From Eqs. (1), (5), and (6)
we can rewrite the residual aberration resulting from
compensation in the convenient form

Wr~r, a! 5 (
i51

`

@ci 1 ai~a!#Zi~r/R !, (7)

where the sum extends formally to infinity, with the pro-
viso that ci 5 0 for i . N, since modes of order higher
than N will not be included in the compensating element.

Taking advantage of the properties of the normalized
Zernike polynomials, the residual aberration variance af-
ter compensation is then given by the simple expression

Fig. 5. PSFs for subject EM computed from the wave aberra-
tions shown in Fig. 4. The pupil diameter is 6.7 mm and the
wavelength 543 nm.
s 2~a! 5 (
i51

N

@ci 1 ai~a!#2 1 (
i5N11

`

@ai~a!#2, (8)

where the first summation represents the residual aber-
ration variance for the compensated terms while the sec-
ond term is the contribution of the high-order uncompen-
sated ones. This latter summation will always be
present, since N is finite; but taking into account that the
magnitude of the individual eye aberrations decreases for
high values of i,29 the contribution of this sum can be
made negligibly small (in principle) by taking N high
enough.

In Subsections 3.A and 3.B we will present analytical
approaches for computing the optimum value of the set of
coefficients $ci% necessary to achieve specific compensa-
tion goals. The first approach will seek to achieve the
minimum averaged residual rms aberration in a given
field of view with an arbitrary weighting of each field po-
sition. The second will look for solutions necessary to ob-
tain a uniform residual rms aberration in a given number
M of points across the field of view. The number of solu-
tions to this problem depends on the relative size of M
and N. For the most usual case (M , N) there is an in-
finity of solutions differing in the amount of residual ab-
erration left uncorrected. The uniform optical quality so-
lution providing at the same time the minimum residual
aberration compatible with it will also be derived.

A. Minimum Residual Variance
Computing the optimal values for the coefficients ci of a
wide-field correcting element requires us to minimize a
cost function according to the design goal. A common
and useful approach is to choose as cost function a
weighted average of the residual aberration variance
s 2(a) across the field of view; that is,

s 2 [ ^ s2~a!& 5 E
A

v~a!s 2~a!d2a, (9)

where v(a) is a weighting function accounting for the
relative importance assigned to each position over the
field, normalized such that

E
A

v~a!d2a 5 1. (10)

The bracketed term in (9) is simply a convenient short-
hand notation for the weighted average operation. The
residual wavefront variance at each field position is a use-
ful measure of the optical quality of the compensated eye
at that field point, and gives information about the ex-
pected loss of image quality particularly when the re-
sidual aberrations are small. Thus by minimizing s 2 we
get the best averaged optical quality in a given field re-
gion, taking into account the relative importance assigned
to each point through the arbitrary choice of the function
v(a).

Substituting Eq. (8) into Eq. (9) and setting to zero the
partial derivatives of s 2 with respect to the coefficients of
the correcting element it is straightforward to obtain the
set of ci giving the smallest value for s 2. They are
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ci 5 2E
A
v~a!ai~a!d2a, ~i 5 1,..., N !. (11)

Each Zernike coefficient of this compensating element is
simply the weighted field average of the corresponding co-
efficient of the aberrated eye, with reversed sign. In
shorthand notation this is equivalently written as

ci 5 2^ai~a!&, ~i 5 1,..., N !. (12)

Equations (9)–(11) are written on the assumption that
the eye aberration is known for the continuum of values
of a within the region of interest. However in most cases
the eye aberration will be measured at only a finite—and
usually small—set of M visual field positions (a1,..., aM)
at which the cost function will be evaluated. In this case
the computation of the optimum coefficients from these
available data is the same as before, except we replace the
continuous function v(a) by a weighted discrete sum of
Dirac delta distributions centered at the measurement
points in the form

v~a! 5 (
k51

M

vkd ~a 2 ak!, (13)

with the weights vector v 5 (v1,..., vM) normalized as

(
k51

M

vk 5 1, (14)

so that the cost function becomes

s 2 5 (
k51

M

vks 2~ak!. (15)

Consequently the optimal coefficients are given by

ci 5 2(
k51

M

vkai~ak!. (16)

Equation (16) is a discrete version of Eq. (11), and can be
rewritten as Eq. (12), the discrete character of the
weighted average operation being understood. Once the
optimal coefficients have been calculated, the residual ab-
erration variance of the compensated eye can be com-
puted at any field position by substituting either Eq. (11)
or Eq. (16) into Eq. (8).

B. Uniform Residual Variance
The solution given in the preceding paragraph allows us
to achieve the smallest averaged residual aberration vari-
ance across a given field region, but it is worth noting that
this does not guarantee that the residual variance of the
compensated eye will be uniform (or the most uniform
possible) at all points of the field. Some applications, es-
pecially those dealing with medium- to high-resolution
retinal imaging in extended fields and including those us-
ing deconvolution techniques, may benefit from a uniform
or nearly uniform optical quality, rather than from one
minimum averaged but variable across the field. The
price to pay for uniformity is that in this case the aver-
aged residual aberration will usually be greater than in
the minimum averaged approach. This does not neces-
sarily mean that the resulting optical quality will be
worse at all field points for the uniform approach than for
the minimum averaged one. In fact, it may be even bet-
ter in a significant region of the FOV.

The computation of the set of coefficients ci to achieve
the most uniform residual aberration variance after com-
pensation can be done in two equivalent ways. One of
them is to minimize the variance of the s 2(a) values, that
is, to minimize the average h of their squared differences
with respect to their mean value in the region of interest
of the visual field, or

h [ ^@ s2~a! 2 ^ s2~a!&#2&, (17)

where the brackets denote the weighted average opera-
tion on a. In this case the weighting function will be con-
stant and given by v(a) 5 1/Ap (Ap 5 pupil area) for all
a in the continuous case, and vk 5 1/M (M 5 number of
measurement points) for all ak in the discrete one. The
minimization is done by substituting for s 2(a) in Eq. (17)
its value from Eq. (8), setting to zero the partial deriva-
tives of h with respect to ci (i 5 1,..., N), and solving for
the coefficients ci . This approach is straightforward al-
though the notation is a bit cumbersome and will not be
explicitly developed in this paper.

Here we have adopted an equivalent way that allows us
to simplify somewhat the notation for the most practically
relevant discrete case. After substituting s 2(a) from Eq.
(8) for (a1,..., aM)—assuming that the contribution of the
uncorrected modes (i . N) is negligible and writing ex-
plicitly the averaging operation over the M field
positions—we get for h

h 5
4

M (
k51

M F(
i51

N

~Akici 2 dki!G 2

, (18)

where

Aki 5 ai~ak! 2 ^ai~ak!&, (19a)

dki 5 ~21/2!@ai
2~ak! 2 ^ai

2~ak!&#. (19b)

Now h can be realized as 4/M times the square of the Eu-
clidean norm of an M-dimensional vector n defined by

n 5 Ac 2 d, (20)

where A is an M 3 N matrix whose elements are Aki , c
is the column vector $ci% of size (N 3 1) of Zernike coef-
ficients of the correcting element, and d is a column vec-
tor of size M 3 1 whose elements dk (k 5 1,..., M) are
given by

dk 5 (
i51

N

dki . (21)

Minimizing h is thus equivalent to finding the vector c
minimizing iAc 2 di for a given pair A and d, which de-
pend only on the individual eye aberration data [Eq. (19)].

The solutions for this kind of linear minimization prob-
lem are well known. Note that usually M Þ N (i.e., the
number M of field points where the eye aberration is
known and the number N of modes included in the expan-
sion of the aberration function of the correcting element
do not have to be the same), so that iAc 2 di cannot be
directly minimized for c by inverting the matrix A to get
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c 5 A21d since A is nonsquare. Note also that even in
the case of having M 5 N, and thus a square A matrix, A
is singular. Indeed the rank of A equals, in the best case,
the minimum of (N, M21). Each column of A corre-
sponds to a single Zernike term and the elements of the
column are the deviations between a set of data (the cor-
responding Zernike coefficient evaluated at a set of field
points) and its average value, so that the sum along col-
umns is strictly zero.

For M . N (i.e., more data than unknowns) and rank
(A) 5 N, the (unique) c which minimizes the Euclidean
norm iAc 2 di can be easily computed by the standard
least-squares solution30 as

c 5 ~ATA!21ATd, (22)

where ATA (the superscript T stands for ‘‘transpose’’) is a
square and nonsingular matrix so that its inverse exists.

For all other cases, including the most usual one in eye
aberration compensation (M , N), whatever the rank of
A may be, the least-squares solution c minimizing
iAc 2 di is no longer unique but there is an infinite set of
solutions given by30

c 5 A1d 1 ~I 2 A1A!y, (23)

where I is the N 3 N identity matrix, y is any arbitrary
column vector of size N 3 1, and A1 stands for the gen-
eralized inverse of A, or pseudoinverse,30,31 a matrix
which can be defined through the Moore–Penrose condi-
tions as

AA1A 5 A, A1AA1 5 A1,

~AA1!T 5 AA1, ~A1A!T 5 A1A. (24)

Pseudoinverse computation through singular value de-
composition is included as a standard feature in many
available scientific computing software packages.

The matrix (I 2 A1A) corresponds to the orthogonal
projector on the null space of the operator A. This means
that for any arbitrary vector y, the vector (I 2 A1A)y be-
longs to the null space of A, so that A(I 2 A1A)y 5 0, a
result which follows directly from Eqs. (24). Note also
that Eq. (22) is a particular case of Eq. (23), with A1

5 (ATA)21AT.
Different choices of y lead to different values of c in Eq.

(23), and hence to different correcting elements. All of
them will give rise to the same minimum value for iAc
2 di , and thus all correspond to the same minimum
value for h. Among these infinite solutions, there are
two that are particularly interesting. One of them is ob-
tained setting y 5 0: In this case we obtain a minimum-
norm solution for c, which will be denoted henceforth by
c0 5 A1d. This solution corresponds to the correcting el-
ement of smaller volume, which is an advantageous con-
dition from the manufacturing viewpoint.

However, the minimum-norm solution for c will not
generally provide the best optical quality. Note that all
solutions of Eq. (23) are equivalent in terms of field uni-
formity, but they do not give the same variance. Stated
otherwise, s 2(a) will be uniform across the field but some
solutions for c will give smaller values for s 2(a) than oth-
ers. Since the vector y can be chosen freely we can look
for the one that minimizes the average variance:
^ s2~a!& 5
1

M (
k51

M

s 2~ak! 5
1

M (
k51

M

(
i51

N

@ai~ak! 1 ci#
2.

(25)

Rewriting Eq. (23) as c 5 c0 1 Py with P 5 (I
2 A1A) and substituting for the components of c in Eq.
(25) we get

^ s2~a!& 5
1

M (
k51

M

(
i51

N Fai~ak! 1 ci
0 1 (

j51

N

PijyjG 2

.

(26)

Setting to zero the partial derivatives of ^ s2(a)& with re-
spect to the yj ( j 5 1,..., N), and taking into account
that PT 5 P, PP 5 P, and Pc0 5 0, we finally get

c 5 c0 1 P^a& 5 A1d 1 ~I 2 A1A!^a&, (27)

where ^a& is an N 3 1 vector whose components are the
field averages of the eye aberration corresponding to each
Zernike mode ^ai(a)& given by

^ai~a!& 5
1

M (
k51

M

ai~ak!. (28)

The solution given by Eq. (27) corresponds to the vector c
of modal coefficients for the optimal compensating ele-
ment which gives the smallest uncompensated residual
aberration among all those providing the best level of uni-
formity (minimum h), and hence the best possible optical
quality compatible with uniformity.

4. EXPECTED IMAGE QUALITY FOR WIDE-
FIELD-COMPENSATED EYES
The results of Section 3 will here be applied to the design
and performance evaluation of wide-field compensating
elements by using the data of Fig. 1. Figure 4 shows
wrapped plots of the wave aberration for subject EM, with
the gray scale levels spanning one wavelength of optical
path (543 nm). Each column corresponds to a different
field angle as noted. All terms in the aberration function
We(r, a) have been included except for the tilt. The cor-
responding retinal PSFs are shown in Fig. 5. The upper
row in Fig. 4 corresponds to the uncompensated case.
Here the wave aberration shows variable amounts of de-
focus, astigmatism, and high-order aberrations. The un-
compensated retinal PSFs (upper row of Fig. 5) show the
noticeable contribution of astigmatic and comalike compo-
nents.

The second row of Figs. 4 and 5 corresponds to the re-
sidual wave aberration after compensation with a correct-
ing element designed to cancel perfectly the on-axis opti-
cal defects, that is, choosing the weights v 5 @1 0 0#. As
expected, the on-axis residual wave aberration is zero and
the corresponding PSF is a diffraction-limited Airy disk.
In this case, the residual aberration at 5° of eccentricity is
definitely small. At 10°, however, the PSF is rather
broad, although much smaller than the original uncom-
pensated one.

The third row of Figs. 4 and 5 shows the effects of using
a correcting element choosing v 5 (1/2)@1 1 0#. This op-
tion gives rise to a residual aberration of exactly the same
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magnitude but opposite sign at the two field positions 0°
and 5°. (The corresponding gray scale aberration patterns
have the same shape but reversed contrast.) Conse-

Fig. 6. Residual rms aberration for subjects (a) EM, (b) RN, and
(c) CD. d, before compensation; after compensation with an
element designed with j, w 5 @1 0 0#; m, w 5 (1/2)@1 1 0#; l,
w 5 (1/3)@1 1 1#; s, after compensation with optimum coeffi-
cients for maximum uniformity for three positions across the vi-
sual field. The pupil diameter is 6.7 mm and the wavelength
543 nm.
quently the retinal PSF will have the same size for both
locations, as can be appreciated in Fig. 5.

The fourth row of Figs. 4 and 5 corresponds to v
5 (1/3)@1 1 1#. In this case the residual wave aberra-
tion tends to behave more uniformly and the size of the
PSF is strongly reduced at 10°, at the cost of some spread-
ing at 0° and 5°.

Finally the fifth rows of Figs. 4 and 5 show the residual
aberration and the corresponding PSFs, respectively, us-
ing a correcting element designed according to the uni-
form residual variance approach. Note the smaller re-
sidual aberration at 10° and the slightly higher same at
0° and 5° in comparison with the fourth row.

Despite the expected intersubject variability, the com-
pensation trade-offs are qualitatively similar for all three
subjects here analyzed, as shown in Fig. 6. The residual
rms wave aberration is plotted against field position in
Figs. 6(a)–6(c) for EM, RN, and CD, respectively (only
tilts are excluded from We). In each plot we show the
original rms aberration (filled circles) and the residual
ones corresponding to v 5 @1 0 0# (squares), v 5 (1/2)
3 @1 1 0# (triangles) and v 5 (1/3)@1 1 1# (diamonds).
The uniform rms case, achieved with a correcting element
designed according to Eq. (27), is represented by open
circles. The trade-offs here are roughly expressed as a
balancing of the minimum rms value attainable for a
given position (e.g., the on-axis one) and the resulting rms
aberration range (maximum minus minimum values
across the field). Note that it is possible to design an op-
timal correcting element yielding a minimum constant
value for the residual aberration variance at the three vi-
sual field locations, although the practical relevance of
this result depends strongly on the subject. While the
particular aberration pattern of subject EM would allow
us to design a wide-field compensating element with both
small and uniform residual aberration, the aberration
pattern of subject CD means that the cost of obtaining a
uniform field is so high that the resulting residual aber-
ration is close to the uncompensated case. Thus for this
subject the uniform design will be almost useless. Sub-
ject RN represents an intermediate case for whom we
could get a uniform field but at the price of losing about
50% of the compensation which could be attainable at
each point with other compensation schemes.

5. DISCUSSION
This work addressed the problem of finding analytic solu-
tions for the wide-field compensation of monochromatic
eye aberrations. The main hypothesis used here is sum-
marized in Eq. (5), namely, the transmittance function of
the compensating element is not dependent on the angle
of incidence of light. This assumption is reasonable for
thin optical elements such as phase plates and deform-
able mirrors as long as the incidence angles are kept suf-
ficiently small (say, <10°). This can be checked by exact
ray-tracing through typical elements of this kind: The
variation of the corresponding Zernike coefficients of the
correcting elements across this field is negligibly small in
comparison with that of the typical eye aberra-
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tions. An improvement of this design procedure may
take into account the field dependence of the correcting el-
ement.

The work here developed uses the residual rms eye ab-
erration as an optical quality metric. This is by no
means the only possible choice, although it allows for
straightforward optimization procedures and provides
useful analytic results. It also provides a reasonable in-
dication of the expected image quality as long as the re-
sidual aberrations are small. For large aberrations the
relationship between rms aberration and image quality
becomes more complex. Throughout this work, we per-
formed linear minimizations of the cost functions without
introducing constraints. This is a direct approach, al-
though more elaborate ones could be useful in some situ-
ations (e.g., holding a determined aberration within some
established limits). Further, we have considered cost
functions which assign an equal weighting function to all
Zernike modes: This restriction could be easily removed
if advisable. Specific weighting of individual Zernike
modes can be achieved by replacing the overall function
v(a) in Eq. (9) by a set of functions v i(a) introduced as
factors multiplying the terms of the summation in Eq. (8).
In addition, we have restricted our approach to the use of
a single compensating element, which does not allow for
true field-variant aberration compensation. More so-
phisticated compensation schemes could eliminate this
constraint, too.

Optically thin correcting elements on flat or nearly flat
substrates, such as those considered in this paper, and lo-
cated in a plane conjugated to the eye’s pupil, are usual in
advanced systems for high-resolution retinal imaging.
One may ask to what extent these results are of applica-
tion for the design of other kinds of elements, e.g., contact
lenses on curved substrates. This question has to be ad-
dressed through numerical ray tracing and has not been
considered here. Nevertheless the modal coefficients
given by Eqs. (16) and (27) should provide a reasonable
set of initial conditions for the nonlinear optimization
routines necessary to solve this design.

As a final remark, the optimization procedures devel-
oped in this paper can be applied to different problems in
the design of eye aberration compensation. The param-
eter a, here a two-dimensional field position vector, may
in general represent any variable or set of variables on
which the eye aberration coefficients may depend (accom-
modation, wavelength, etc.). Within the range of validity
of Eq. (5), the results here developed can be directly ap-
plied to a wide range of situations, e.g., to find the opti-
mum coefficients for compensating elements giving the
best optical quality for a wide range of accomodative
states.
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