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Duality of Log-Polar Image Representations
In the Space and Spatial-Frequency Domains

Antonio Tabernero, Javier Portilla, and Rafael Navarro

Abstract—In this paper, we study the result of applying In the spatial-frequency domain, methods such as short
a lowpass variant filtering using scaling-rotating kernels to time Fourier analysis using an adaptative window [8], mul-
both the spatial and spatial-frequency representations of a yirago|ytion local-spectrum estimation, or wavelet analysis [9],
two-dimensional (2-D) signal (image). It is shown that if we - . . .
apply this transformation to a Fourier pair, the two resulting [10] u§ually '“YO'Ve a logarithmic Samp"”g of tlhe frequency
signals can also form a Fourier pair when the filters used in domain. For images, a log-polar sampling is the natural
each domain maintain a dual relationship. For a large class extension, although separable log-log schemes are also used

of “self-dual’ filters, a perfect symmetry exists, so that the [11]. Again, the human visual system seems to apply a similar

lowpass scaling-rotating variant filtering (SRVF) is the same : : ; :
in both domains, thus commuting with the Fourier transform strategy for local spectrum estimation. Neurons with receptive

operator. The lowpass SRVF of an image is often referred to as [1€1dS having bandpass responses [12] are grouped in visual
a “foveated” image, whereas its Fourier pair (the lowpass SRVF channels that have been modeled with banks of self-similar

of its spectrum) can be realized as a local spectrum estimation filters distributed in a log-polar grid [13]. The fa$t/f?)
around the point of attention. This lowpass SRVF is equivalent decay of the power spectrum of natural images [14] suggests

to a log-polar warping of the image representation followed o . :
by a lowpass invariant filtering and the corresponding inverse an additional reason for the use of filters whose bandwidth

warping. The use of the log-polar warped representation allows Scales with frequency, resulting in an octave-distributed (log)
us to extend the one-dimensional (1-D) scale transform to higher sScheme.
dimensions, in particular to images, for which we have defined  In practice, whether in the spatial or spatial-frequency
a scale-rotation invariant representation. We also present an gomgin, log-polar representations must eventually be sampled.
efficient |mp|gmentat|on using steerable filters to compute both The problem of preventing potential aliasing artifacts is then
the foveated image and the local spectrum. o ) L ; ;
critical since the sampling interval becomes increasingly larger
_Index Terms—Foveated vision, local spectrum, log-polar map- ity eccentricity. Therefore, log-polar schemes demand a
ping, scallng-rotatlng filters, scale transform, steerable filters, lowpass variant filtering in the linear domain, specifically
variant filtering, wavelets. . ne A J
using self-similar (scaled and rotated) variant kernels, to adapt
locally the signal bandwidth to the varying sampling interval.
|. INTRODUCTION From now on, we will be referring to this operation as a
OG-POLAR representations play an important role icaling-rotating variant filtering (SRVF).
image processing and analysis. In the spatial domain,AS we have mentioned, log-polar representations have been
log-polar schemes [1] have been used to model the strongitensively treated in the literature. However, little attention
inhomogeneous sampling of the retinal image by the humhas been paid to the connection between log-polar represen-
visual system. The number of receptor units (either at tii@tions in both the space and frequency domain, and to our
retina [2] or in the later cortical stages [3]) drops rapidly withknowledge, a direct mathematical analysis of this link has not
eccentricity while their size increases, causing a fast decaybéen made. In this paper, we study such connection relating
visual acuity [4]. With this strategy, the visual system offerthe signals resulting of applying a SRVF operator to an image
a tradeoff combining the advantages of a wide field of vieand to its corresponding spatial-frequency spectrum.
with a high-resolution central area (fovea). Similar schemesIn Section Il, we show that the application of a lowpass
have been introduced in artificial vision [5]-[7], where the useariant filtering using scaled and rotated versions of a
of “foveated” images helps reduce the amount of informatigerototype filter in one domain is maintained as a similar
to be processed. SRVF (now scaling and rotatingdual filter) in the conjugated
domain. We call this propertguality of a SRVF operator in
both the space and spatial-frequency domains. Although the
Manuscript received October 13, 1997; revised February 26, 1999. T}"E}gtual fllter§ appllgd need not be th_e same 'n both domains, a
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the point of fixation. In Section IV, we establish a straightsupport of the variant kernel becomes larger when moving
forward connection with Cohen’s one-dimensional (1-Daway from the origin, thus adjusting its lowpass effect to the
scale transform [15], proposing an extension of the scdlereasing sampling interval of a log-polar grid.

transform to N dimensions, which could be useful to deal An alternative approach to prevent aliasing in a log-polar
with scale and rotational invariances in images [16], [17§rid consists of first warping the image so that the sampling
Finally, in Section V, we address the problem of moving thgrid becomes uniform and then applying an invariant lowpass
attention point, presenting efficient implementations based fitter in the warped(l,.,#) domain, wherel,, = logr. Both
steerable filters to compute either the local spectrum or thpproaches are equivalent if we define the following warping

foveated image at multiple fixation points. (preserving the energy) to take the original image into the
log-warped domain:
[I. DUALITY OF A SELF-SIMILAR F(r,0) reR*.0€[0,21)

LOWPASS VARIANT FILTERING

o o 1,0 =é"fle".0) 1, =logr e R,0€[0.2r). (5)
In order to prevent aliasing when sampling in a log-polar

grid, we need to apply a lowpass variant filtering that iBY applying the above transformation tor, ¢), f(r,6), and
locally adapted to the variant sampling interval. In the logf(7, ) in (4), it follows that
polar case, this corresponds to using scaled and rotated (self- 27 o R R
similar) filters. In this section, we show that a straightforward (¢ / d<P/ dls f(ls, ) P( L))
connection exists between such an SRVF when performed N .
in the space (Section II-A) and the spatial-frequency domain = f(r,0) x P(=lr, =9). (6)
(Section 1I-B). The following analysis is restricted to imageshys, the former SRVF is translated into a simple convolution
(2-D), although it can be immediately extended to highgith the filter P(—L,., —0) in the warped domain (note that the
dimensions. A detailed analysis of the 1-D case can be foufiflegral in corresponds to a circular convolution). The filter

in [18]. used ) corresponds to the warped version of the former
_ _ _ prototype functionP. It is also a lowpass filter that is now
A. Lowpass SRVF in the Spatial Domain centered around the origifi, = 0,6 = 0) as P(r,6) peaked

We depart from an image expressed either in polar coordit (1, 0).
natesf(r,#) or, in vector notationf (7). In order to perform
an SRVF, we first build a variant kernél as a scaled and B. Duality of a SRVF in the Spatial and
rotated version of a “prototype” functioR(r, #), maintaining Spatial-Frequency Domains

a constant volume In the previous section, we defined a lowpass SRVF operator
oy L (Lp) acting on an image. Let us now study the Fourier
H(5) = P( A 9) @) transform of the filtered image(7) = Lp{f(™)}. If we
Then, the SRVF can be expressed as the inner product betwEeHrier transforme(7) in (2) and express the original image
the imagef(7) and H(7,s) f(3) as a function of its spectrurfi(&), we obtain
ety =L 7)) ={(f(7),H" (7,3 _
(7) =Lp(f(7) = {f(7), H"(7,3)) @) :i//m_m //dgH(m)
- [ ssrones) @ 2 ) 2
R? 1 B
where £ denotes the SRVF operatdLl) using P as its : %// AAF(A)e™ | 5. (7
prototype filter. This filtet”(r, &) should have lowpass charac- 2

teristics (its frequency response being centered arausd0)

k - By regrouping terms in the above equation, we find that the
being located around = 1, ¢ = 0. In addition, the module

relationship between the spectfd)\) and C(w) is similar to

of P(r,8) should be integrable, that is that of the imagesf(?) and c(7) in (2)
P(r,0) e LN(R?) & ||P|L = // dr|P(T)| <oo.  (3) C(w) =(F(\), H*(w A))
: / dAF(A L A). (8)

Although it is not necessary, for convenience, we will re-
strict ourselves to real prototype filters. Additional integr
conditions onP(r, #) will be discussed below.

Given the lowpass nature of the prototype filtéfr, 6), the
filtered image

a','hus, a spatial-variant filtering usinid (7, s) is maintained as
another variant filtering in the spatial-frequency domain, now
with a different kerneld (@, \). By comparing (7) and (8), we
see that both kernels are related through a double 2-D Fourier

27 . .
transform, plus an axis reflection
o= [ do [ sdstoP(te-0) @ P

N\ —iwT Y
consists of a weighted local average of the values of the H(@,}) = <§) // dre / dse"™H(7,5).  (9)
original image aroundr, #). Due to the scaling, the spatial
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Although the above relationship holds for any variant filC. Additional Integrability Conditions o (r, 6)
tering, the case of a self-similar SRVF presents a particularly|, he previous paragraphs, we have implicitly assumed

interesting property. When the variant spatial kerflr,s) a¢ the prototype filter and its dual counterpart are such that
comes from scaling and rotating a prototype filter Xy, 6), poth (4) and (13) are well defined. However, it might be

the expression of the new variant kernel in the frequengyssiple that for a gived(r, §), the Fourier transform of the
domain can be obtained through (9) as resulting ¢(7) were not defined. Furthermore, evenG{w)
o 1 w were defined, it could happen that its inverse Fourier transform
H(w,\) = —QP(_7 P — Q) (10) did not exist. We avoid these potential problems by imposing
A A some additional constraints on the prototype filter.
Let us suppose that both the original imagier) and its

where (w, (1) and (), ) are the polar coordinates af and spectrumF (w) belong to the space of finite energy signals

A, respectively. Therefore, the variant kernel operating Q}EZ(IRQ). Then, we have to find a condition off(r8),

the frequency domain has the same expression as its spaial . _ _ o
counterpart, except for the role of the dummy radial variablgs o9 that bothe(v) and C(w) remain in LR to

(A in frequency ands in space) that has been interchangeé’.u":lrémtee that Fhey_ also f°fm a well-defined Fourier pair.
Furthermore. if we define dual filter 2 as As the logarithmic warping in (5) preserves the energy

(L? metric), it suffices to prove that both warped signals
R 1 1 &(1,.,8) andC(l,,, ) have finite energy. These signals are the
P@r,6) = —2P<—,9> (11) result of a convolution between a finite energy signal [either
oAt f(1,.,6) or I(1,,, Q)] and the lowpass filteP(l,., §). Since the
copvolution betweerf € L? andg € L' remains inL? [19],
A%ufficient condition for botti(i,., #) and C(l,,, ) being in

L? is that P(l,.,6) € L', that is

the new spatial-frequency variant kernel is also a scaled
rotated version of the dual filter

H@Y) = %P(i, o Q) (12) 25 oo )
o\ / / d6di,| P, 6)|
0 — 00
Consequently, an SRVF operat0f) using a prototype filter B I oo 40 drlP(r 6
P in one domain(£p) is maintained as a similar SRVEZ) A A r| P (r, )]
in the conjugate domain but now using the dual fille(L 3 ): 2 poo |P(r, 0)|
= / / rdrdf———=
— — 1 w 0 0 T
W) = FO)=P(—,2-Q T
R? /) 7]
://dXF(X)iQP@,@ - Q)
e w w By dividing this integral into two parts correspondingrtec 1
_ EF{F(G)}. (13) andr > 1, we find that
" P = P =
We call this propertyduality of a SRVF in both the spatial and // dF@ < // d7|7(—5)| + // dr|P(7)|
spectral domains, which is expressed as =2 -l o1
[P N
FLr{f (0} = Lp{F{f(r.0)}} (14) < / / a5+ [] Pl
R R2
whereF denotes a Fourier transform afidhe SRVF operator =||P||s +|P]):. a7

using eitherP (Lp) or P (Lp).
Finally, we will show how the resulting filtered spectrumconsequently, a sufficient condition for (16) to hold is to

C(w) in (13) can also be obtained in the log-polar warpeghpose that the dual filteP also belongs td.! (R?), that is
domain. By applying the same log-polar warping (5) to the

spatial-frequency variables to each function in (13), we obtain . . |P(7)|
[|P||1 ://dF|P(F)| ://d? E <oco. (18)
R2 R2

27 oo |7—
Clw) = [ do [ d)Fl P~ 1o - ).

’ = (15) Conditions (3) and (18) indicate a sufficient fast decay of
The only difference between the log-polar frequency (15)(r,#) at both the origin and infinity. Although less restrictive
and space (6) domains is that the convolving filter is nosonditions than having the dual filter belong & could
P(l,,—Q) instead of P(—I,., —8). Therefore, in the log-polar possibly be found to ensure tha) andC(w) form a Fourier
warped domain, the relationship between a pair of dual filtepsir, (18) is especially appropriate here as it reinforces the
is a simple one-axis mirror reflection. symmetry between the spatial and spatial-frequency domains.




2472 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 1999

to what happens in the human visual system [2], [3], where
much of the resources are devoted to the central area of the
visual field (fovea). Therefore, we will be referring to images
such as the one shown in the upper right panel of Fig. 2 as
“foveated” images and use the term “foveation process” to
describe the lowpass SRVF of an image.

A desirable property of an ideal foveated image would be
the preservation of the value of the original image at the origin,
reflecting the intuitive idea that there should be no distortion
at the fixation point. If we relate the values at the origin of
both ¢(7) and f(7), we find that

/ dwC(w

Fig. 1. Prototype filterP(r,6) (left) as defined in (19) and its dual (20)
counterpartP (right).

D. Examples and Interpretation

In order to illustrate the above concepts, let us consider a // (X // doH (@
prototype function defined by
P(r,0)=r —A(r —1)? —Bo? 19 _
(r,6) = rexp(=A(r — 1)%) exp(-B6")  (19) ://CMF(A)//CEP(E)
corresponding to a real polar-separable lowpass integrating s s

kernel with a maximum aroun@- = 1,6 = 0) and belonging
to L!, as indicated. Parameters and B determine its width

and aspect ratio. This function (fot = B = 10) is shown where Ip is the volume integral of the prototype filter. Since
in the left panel of Fig. 1. Its corresponding dual filter, WhICf}D belongs toL® (3), it is always possible to normalizé (as
is given by long as||P]||1 # 0, which is ensured sinc#’ is a lowpass
Plr,6) = < ) filter) so thatZ,» = 1, and thus, the origin is maintained in the
r6) = 2P 6 . -
r r foveated image:(0,0) = £(0,0).
1 1 2 Another convenient property would be that the mean in-
=S exp <—A<—) - 1) ) exp (—B#?) (20) tensity level across the image should be maintained after the
! ! variant filtering, which is equivalent to imposing that the
is shown in the right panel. Although different in general, therigin of the spectrum (the DC component) be preserved in
dual filter P preserves the energy of the original prototypthe foveated spectrum. Considering the duality between both
filter P and maintains its lowpass nature. This dual filter alsgomains, and similarly to (21), we find that
belongs toL!, indicating thatP also verifies (18).

—Ipf@) (21)

Fig. 2 illustrates the duality of a lowpass SRVF in both / drc(7
domains. The left panels in Fig. 2 display a Fourier pair: the
image f(7) on top and its frequency spectrufi{w) at the
bottom. The upper right panel shows a lowpass SRVF of the // dsf(s // drH(7,s)

image c(7) = Lp{f(7)} using the filter defined above (19).

We can observe how the center of the original image (the _ .

point of attention) is preserved by the SRVF, whereas due to / / dsf / dzP

the scaling, the lowpass effect increases as we move away

from the origin. The lower right panel shows the Fourier =IF(0). (22)

transform of the variant filtered image”(@) = F{c(7)}).

It is clear that when compared with the original spectrunfhen, if the dual filter is normalized in volum@; = 1), the

fine details have been preserved around the origin (DC) whil&C component of the original imagg(0) will be preserved

being progressively lost toward the periphery, showing that the local spectrum. The volume integrability of the dual

C(w) is also a lowpass SRVF of the spectrum, now using tfi¢ter is again ensured through (18), indicating thBt €

dual filter, C(@) = £L3{F(©)}. This is the main result of this L*. However, since the normalization df(r,6) brings an

section. The Fourier transform of a lowpass SRVF is alsoagditional condition orP(r, ¢), we cannot ensure théj = 1

lowpass SRVF of the original spectrum (14). In other wordence I has been normalized. That means that in general, it

the upper and lower panels correspond to Fourier pairs that &renot possible for a given prototype filter to preserve both

maintained when applying a lowpass SRVF (that is, movirtge origin and the DC through a SRVF (unldss= I3). For

from left to right). In these examples, we have used narrowistance, with the prototypé’ defined in (19), we find (for

filters (A = B = 100) than those depicted in Fig. 1, in orderA = B = 10) that Ip = 0.165, whereas the volume of its

to reduce the lowpass effect and obtain a larger fovea.  dual filter (20) is different, namely/s = 0.157. Therefore,
The progressive degradation of visual quality toward the not possible to normalize bot# and P simultaneously,

periphery shown in the upper right panel of Fig. 2 is similaalthough the difference will usually be small, as in this case.
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SPACE

FREQUENCY

Fig. 2. Upper panel: Original image (left) and “foveated” image (right) obtained through a lowpass SRVF using the prototyPe(filie). Lower panel:
Moduli of the corresponding Fourier transforms (log-intensity scale) also related through a lowpass SRVF now (£ipg.

E. Self-Dual Filters

We have shown how an SRVF is similar in both the spati
(4) and frequency (13) domains as it relies on the same lowp
function P(r, #). However, the differences between a filter an
its dual counterparP (Fig. 1) prevent a complete symmetry
between domains. Nevertheless, it is straightforward to obt
self-dualkernels: a situation where both kernels of a dual pai
are identical. The condition for self-duality is immediate in
the log-polar domain. If (6) and (15) are to be equal, then th
log-warped prototype filter must be even in its radial variabl

S S Fig. 3. Left: Several self-dual kernels for various scales and orientations
P(l“ 9) = P(_lﬁ 9)' (23) generated using (25). Right: Inverse Fourier transform (real part) of one of
. . . . them showing bandpass characteristics.
Consequently, given any 2-D functio®(xz,8) defined in

Rt x [0,27), we can obtain a prototype filter generating

self-dual kernels as the point of attention and the DC component in the foveated
. image and spectrum, respectively.
P(l.,0) =Q(|l:|,0) Fig. 3 (left) shows several self-dual kernels (normalized in
1 5 amplitude, instead of volume to improve visualization) ob-
P(r,0) ==-Q(|logr|,8) = P(r,6 24 '
(r.6) rQ(' og7l,9) (r,) (24) tained as scaled/rotated versions of a prototype filter generated

with the only condition (3) thatP(r,§) € L'. Note that [OM

si.n(.:eI:’ = P the additional injce.grability c_ondition (18) is Q(l,0) = exp {—(A2 + B#?)}with A= B=12. (25)
trivially verified, and by normalizingP(r,8) in volume, we

accompliship = I = 1 simultaneously. Therefore, anotheiThe application of these kernels will also produce a progres-
important motivation behind the use of self-dual filters is theive image degradation toward the periphery, but now, being
preservation, after the lowpass SRVF, of both the signal self-dual, the “foveation” effect would be identical in the upper



2474 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 1999

and lower panels of Fig. 2. In fact, a lowpass SRVF using se:h,"' ' ‘i,“‘
dual filters(L£,) achieves perfect symmetry in both domainw
so that (14) becomes

FLLAS(r, O} = LAF{S(r,0)}} (26)

'!
making the Fourier transform operator commute with thM! ‘
lowpass SRVF operator. Fig. 4. Left: Original image containing three pure frequencies. Center:

As an interesting practical result, we present a simpieveated or SRVF image. Right: Fourier transform of the foveated image;
method to obtain a self-dual filtering through a double aj¢ ‘foveated” or local spectrum.
plication of any (non self-dual) filte” [18]. The key idea
is to apply an SRVF using® to both the image (to obtain Using scaled filters to analyze a signal is closely related to
oF) = Lp{f(7)}) and to its spectrum, obtaining anothermultiscale or wavelets methods [9], [10]. However, whereas
filtered imagecd (7) = F~Y{Lp{F(w)}}. Unless using self- @ continuous wavelet transform collects scale information at
dual filters, this new foveated image will differ from(7) €very point simultaneously, with the subsequent redundancy,
since ¢(7) corresponds (14) to the application of the dudhe local spectrun®’(w) gathers scale information only around

filter directly in the spatial domain: the attention point. In order to having information about other
positions, we must move the fixation point (see Section V).

A7) = FHLp{F(w)} = FHL{F{f(F)}}} A more detailed discussion on the relationship between this
:F_I{F{Elg{f(F)}}} = LS. 27) “foveated” local spectrum and wavelets can be found in [18]

for the 1-D case.
Fig. 4 further illustrates the interpretation of a foveated
spectrum as a local spectrum estimate. The central panel shows

lowpass filter in the warped log-polar representation. Th‘Ee result of applymg a lowpass SRVF to an image containing
averaged filter is obviously symmetric in its first variable ané iree pure frquenmes (left). The highest frequency component
consequently, self-dual. dlsappears rapidly as we move away from the center, whereas
This procedure is of practical interest when the dire ?e middle frequency is attgnuatgq more gradual_ly, and only
use of a self-dual filter is inconvenient. For instance, N Ipwest frequency remains V'S'blg n thg perlphery. The
implementation can be much more efficient using a prototyp: urier transform of this foveated Image 15 ShOV.V” n the
function with circular symmetry, which will not be self—dual.”g_m panel. The three pure frequenmes_ (delta functions in t_he
In that case, we can rely on the above procedure to obtairfj)r inal spectrum) have been progressively blurred, becoming

self-dual filtered image or spectrum (at the cost of applyin obs” whose support Increases with spatial frequency. .F'g' 4
the filter twice). so shows how the Fourier transform of a foveated image

C(w) = F{c(7¥)}) is closely related to other methods for local
frequency estimation. For instance, sliding-window or short
lll. FROM FOVEATED IMAGES TO time Fourier analysis (STFA) methods [20] first select the local
LOCAL SPECTRUM ESTIMATION information by applying a spatial window and then compute
Eﬁ Fourier transform to estimate its frequency contents. The
pLgcess here is essentially the same, except for the fact that
e rely on a foveation, instead of a windowing, to extract
e local information. As a result of foveation, the analysis
window (Fig. 4 center) is automatically adapted to the present
gﬁquencies, as in other multiscale methods [9] or STFA
ethods with an adaptative window [8].
Alternatively, a lowpass SRVF of a global spectrdific) =
L{F(w)} also makes sense as a local spectrum estimate. The
2% poo very low frequencies (which do not change much between a
Clw, Q) :/ / rdrdff(r,)plwr,d — Q) (28) global or local spectral analysis due to their larger support) are
oo relatively unaffected by the variant filtering. However, higher

wherep(r, 8) is the inverse Fourier transform of the dual filtefrequencies that are more likely to be modified when shifting
P(w,Q), whose existence is ensured sinées L'. The right from a global to a local perspective are progressively more
panel of Fig. 3 shows the real part gf which is a bandpass- &ffécted by the lowpass SRVF.

oriented filter spatially centered at the origin. Under these
considerations, it becomes clear tidgto, §2) in (28) is a local
spectrum, i.e., the result of applying a (continuous) bank of
analysis filters [rotated(2) and scaledw) versions ofp] to an In previous sections, we have shown that the lowpass SRVF
image to extract its frequency components (sub-bands) arourebded to obtain either a foveated image or a local spectrum
a given point of fixation (the origin). in the linear Cartesian space can be translated into a simple

However, if we average(7) andc/(7), the result is equivalent
to applying the average dP(—I.,—#) and P(l,., —6) as the

In the previous section, we described a lowpass SRVF of
image as a stage of a foveation process (the other being
consequent log-polar sampling). Now, we turn our attenti
to the spatial-frequency domain. The Fourier transform
a foveated image or “foveated” spectrum (see FigCZ¥)
admits a direct interpretation as a local spectrum estimati
around the point of attention. This can be shown by applyir{H
Parseval’s identity to the right side of (13)

IV. SCALE AND ROTATION INVARIANT
REPRESENTATION OFIMAGES
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convolution through a log-polar warping. Going one step SPACE FREQUENCY
further, that convolution becomes a simple product via the

convolution theorem. In the 1-D case, applying the Fourier P(r6) )] OR(IS%I;F\I)AL — %p(l,g)
transform to the log-warped domain takes us to Cohen’s T

scale transform [15]. We show next that it is immediate
to generalize Cohen’s transform to 2-D images and higher
dimension signals. - LOG/POLAR -

Given an imagef, we define Ds(a,k) as the Fourier P(=logr =0} 0 orvmow (87 ~0)
transform of its log-polar warpingf(l,,,e):

LOG/POLAR WARPING

FOURIER TRANSFORM

1 2 [ o
Dy(ak) = — / dfeke / dl.e=" 5 f(1,.,6)
2r Jo —o0 Dp(—a,—k)|— SCALE b (" prfe,—k)

withk € Z,a € R. (29) (PRODUCT)

. . . . Fig. 5. Operations required to perform an SRVF when using a linear (upper),
Note that the first variable is continuous, whereas the secongg_nolar (middle), or scale (lower) representation in either the space (left) or

k is discrete due to the periodicity ifL If we now express spatial-frequency (right) domains.
Dy(a, k) as a function of the original imag#(r, #), we obtain

1y ‘ o0 ‘ forms of the foveated image and the prototype filter, re-

Dyla,k) = o dee_me/ dre™**" f(r,0)  (30) spectively. Therefore, the foveation process is equivalent to
/o 0 filtering out the higher “scales” of the original image. The

where D¢(a, k) constitutes a generalization of Cohen’s 1-Megative signs in (33) are simply a consequence of our using
scale-transform [15] to the bidimensional case. In the sanf¥—I,., —8) as the lowpass filter in the warped domain.
way that the modulus of the scale transform is invariant underFig. 5 summarizes the results presented so far in the dif-
scaling, the modulus of the above 2-D transform is invariaférent domains from the variant filtering using rotated/scaled
under both rotation and scaling of the image. Thimle- filters that takes place in the linear domain (upper level)

orientationtransform can be realized as the projection of thiarough the convolution in the log-polar warped domain (mid-

image f(r,#) onto a set of basis functions, : dle level) to end up with a simple multiplication in the scale
domain (lower level). At each stage, one of a pairdofal
Dyi(a, k) = {f(7), (7)) = // A7 f(F)yyE . (7) filters is used, depending on whether the process takes place
e ’ in the spatial (left) or spatial-frequency (right) domains.
With v (7, 8) = —— i@tk (31
’ 27r
whose radial part has already been proposed in [21]. Since V. MOVING THE ATTENTION POINT

the basis functions are orthonormal with respect to the definedn this section, we address the question of computing a
inner product, the corresponding inverse transform is simplfoveated image or local spectrum at a locat{og, o) other
than the origin and propose an efficient implementation based
f(r,8) = (Dga, k), vg 1 (7, 6)) on steerable filters, avoiding the computational burden of a
1 e [ | ialogr variant filtering.
" 2 - ¢ /_Oo daDy(a, k)e™ 75" (32) A foveated image with attention pointy, 3, can be com-
puted by first displacing the image to positiéry, o) at the
Contrary to another alternative proposal to extend the sc@lggin and then applying the lowpass SRVF operafor as
transform to images [11], our transformation (30) separatgs (2):

the radial and angular dependencies in the signal by applying
a 1-D scale transform only to the radial variable: the only one‘=o.vo (r,0) =Lp{f(z+z0,y +v0)}
affected by a global change of scale. The Fourier analysis of :// dx dyf( + 0.y + o)
the angular dependency is an additional feature through which
rotational invariance is accomplished. The separation between R
the radial and angular variables allows us to extend the scale-
orientation transform taV dimensions by incorporating into
(31) the generalization of the radial basis functions proposed (34)
in [21]. ) . Wherec,, 4, (r,0) is the foveated image around the attention

Then, through the convolution theorem, the convolution Tgoim (z0,70). By defining
the warped log-polar spatial domain (6) becomes a multipli- ] ]
cation in the new scale domain Poo(a.y) = %P<—x cosf —ysinf xsind — ycos&)

”

1 P<a:c059+ysin9 ycosH—a:sin@)

) )
r 2 r r

’
T T

De(a, k) = Dy(a,k)Dp(—a, —k) (33) (35)

where D.(a, k) and Dp(a, k) are thescale-orientatiortrans- we can rewrite (34) as a convolution ¢fz,y) with scaling
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and rotatinglowpassfilters P, 4(x,y): The upper branch in Fig. 6 shows a local spectrum (central
panel) around an attention point overlaid in the original image

Ca,yo (1, 6) =/ dz dyf(z,y)Pre(x0 — T,9 — Y) (left). It has been interpolated from only 8 8 samples in a

R2 log-polar grid (marked withx’s) that constitute a complete
=[f * Pr6](x0,%0)- (36) (not exact but highly accurate) representation of the local

. . i spectrum. The filterg., . used in this example have radial
Equivalently, following (28), the local spectrum estimated,q angular bandwidths of 1 octave and®4€espectively,
around (o, yo) can be expressed as covering a range of about four octaves with an average signal-

Cro o (@, Q) = [f * Pu.0) (w0, Y0) (37) Fo—noise ratio of SQ dB (always ab_ove 25 dB)._The foveated
) o ) ) image can be obtained through an inverse Fourier transform of
which again is a convolution betwegifz, y) and a continuum ¢ 104 spectrum (Fig. 6 upper right). In practice, since the

of scaling-rotatingbandpassfilters interpolated local spectrum is a linear combination, we have

Po.olz,y) =p(—w(xcos @+ ysin Q) that
w(zsin — ycos)). (38) Con g (1,0) = FHCl oo (w0, )}
A. Implementation = zj\:i BPi; (0, y0) 7~ {Aij(w, )}
quations (36) and (37) express a displaceq fovea or its ]: ;4
i cither lowpaad Fye) of bandpasép. ) fters, 164pec- =33 BPGro (). (@D
i

tively. However, despite the formal simplification, a direct

implementation of those equations is still impractical since afhys, the foveated image can be obtained directly as a linear
infinite (or, in practice, very large) number of 2-D convolutiongompination of the inverse Fourier transform of the interpo-

are needed to know either,, ,, or Cy, ,, atany position.  |ation functionsa;; without explicitly computing the local
Nevertheless, the problem of an efficient |mplementatl%ectrum_

can be addressed through the use of steerable or deformablgowever, if we just want to obtain a foveated image, a

filters [22]-[24]. These techniques approximate, through a ligirect implementation in the spatial domain admits a further

any desired value in their parameters (scale and orientationg{finmetry around its maximurfi: = 1,y = 0). Then, there
our case). The coefficients in the linear combination (or integyists a one-variable functioR(p) that verifies

polation functions) are obtained from the corresponding set of

normal equations arising from the problem of minimizing the ~ P(z,y) = P o(—z,—y) = R((z — 1)* + ¢?). (42)
error (in a LSE sense) within the parameter range considered. . _ _

In our case, the effective range of scales is determined A§SUMINg circular symmetry (42), two filters having the same

practice by the maximum resolution of the image and tregale but with different orientations are translated versions of
spatial support of the fovea (note that, as opposed to ffach other, that is, we can relate afys t0 F.—o as
orientation case, a perfect scale interpolation is not possible P, o(z,y) = Pro(x +7(1 — cos6),y — rsin6). (43)
due to the lack of periodicity of this variable [24], [25]). ' i ' i

In order to estimate the local spectrum, we follow thés a result, we do not have to compute the convolutions with
techniques described in [26] to obtain a basisNof(scale) the whole filterbankP, 4 in (36) but only with the subse®, ,.
x M (orientation) bandpass filtefg., o, (x,y) approximating When the value of a foveated imagg, ,, (r.6) for an angle
any intermediate,, o, as other than zero is needed, we look 4g ,,(r,0), which is

N the convolution with?,. ,, at the displaced position

M

Poa(z,y) ~ Z Z Aij(w, V)Pu: 0, (7, y). (39) xg = x9 + (1 —cosb), yg=yo—rsinf. (44)

i
Finally, we apply deformable-filter techniques but only to the

Then, the local spectrui;,, ,,, (w, £2) is also approximated asscale parameter [27], [26], finding/ filters P.. , that best

a linear combination ofV x M values at(zo, o) from a set approximate, in a LSE sense, afy,, in the considered scale

of bandpass filtered images BPr,y) previously computed range

as invariant convolutions with the basis filters

N
Coro o (@, Q) = [f * Po.2) (0, ) Pro(m,y) = Y bi(r)Pr, o, ). (45)
N M =1
2 303 AW, QLS * B, 0,] (w0, v0) Therefore, the foveation algorithm in the spatial domain
ig (lower branch in Fig. 6) also consists of two stages. First,
N M we have the application of a filterbanle,, ,} to obtain vV
=3 ) Aij(w, Q)BP;; (0, vo)- (40) lowpass filtered images LR:,y) = [f * P, o](z,y). Since

Y the convolution with anyF,., can be approximated using
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BAND-PASS
= BP”(:I?,y) T

]

> LP% , i >
LOW-PASS (2,9)

Fig. 6. Foveated images obtained in the spatial domain using scaled lowpass filters (lower branch) or through the local spectrum (upper branch) using
scaled-rotated bandpass filters.

(45), then assuming circular symmetry, from (43) and (36),
the displaced fovea is computed as

Cag o (1, 0) = [f * Prol(z0,%0) = [ * Prol(xe,ys)

N
~ Z bz(7) [f * -Prg,o](xev y&)

N
= Z bi(r) LPi(we,ye). (46)

In the example of Fig. 6 (lower branch), we used only six
Gaussian filters with circular symmetry, with a spatial support
(measured at half height) of one octave, covering a range o
five octaves with an average SNR of 25 dB. The resulting
foveated images are very similar, the differences being du 7
to the use of different kernels and to the wraparound effec E
in the frequency-domain implementation (upper panel). In
terms of computational cost, the spatial implementation is
significantly faster since fewer filterings, and hence fewer
terms, are required in the linear combination (six versus®
in the example of Fig. 6). With this spatial implementation, WEig. 7. Left: Original image showing the fixation points used (three in the
have been able to move a fovea through a small static imageeer panel and 30 in the lower one). Right: Reconstructed images using
in real time (several moves per second). This efficiency steffigrmation from the nearest fovea.
from the fact that once the initial lowpass filterings have been
computed, moving the fovea only requires a linear combinatitny the foveated version obtained with the nearest fixation
of six terms at each point. point. In the upper panel, only three points were considered,
Fig. 7 displays two multifoveated images with differenis opposed to the 30 foveas that were combined to show
sets of attention points computed using the above algoriththe result below. Fig. 7 shows how a relatively low number
The original image (with the corresponding fixation pointsf attention points are enough for representing the most
overlaid) is shown in the left panels. The right panels displagnificant information of the picture. Considering the few
the multifoveated images obtained by patching informaticsamples required to represent each fovea (between 50 and 100,
from the different foveas. The original image is dividedlepending on the sampling scheme), the potential use of this
into patches (see left panels), and each area is substituteethod for dynamic compression [5] is promising, especially
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in those applications where only the preservation of a few keyThe use of a log-polar warping also serves as an inter-
features is necessary. Since each fovea is associated wittneadiate step to link our results with the scale transform.
local spectrum, the images in the right panels of Fig. 7 can Based on this connection, we have proposed a generalization
seen as reconstructions from a set of local spectra estimabédCohen’s 1-D scale transform to 2-D so that its modulus
at different spatial locations. is invariant under scaling or rotation of the image (scale-
orientation transform). Finally, we have presented an efficient
implementation in both domains, based on steerable filters, that
VI. SUMMARY AND CONCLUSIONS it is specially well suited for moving the attention point. With

We have shown how a scaling-rotating variant filteringis implementation, it is possible to move a fovea across an
(SRVF) using a given prototype filteP(r,§) in one domain image in real time.
is maintained as a similar SRVF in the conjugate domain butThere are still some aspects deserving further study, mainly
now using the “dual” ﬁ|terp_ This result was not evident, asthose related to a theoretical formulation of the discrete
it is very different to the well-known convolution theorencase and the potential applications, especially those related
associated with an invariant filtering. Although the abov#® the study of rotation and scale invariances. Following
discussion has been has been focused on images (2-D),a@Heimplementation, we obtain a discrete local representation
results are also valid in 1-D [18] and higher dimensions. combining spatial and spectral information that can be useful
When the prototype filter is lowpass, this duality admitt® define local feature descriptors, combining the invariances
an interesting interpretation. A lowpass SRVF image ca$sociated with the scale-rotation transform with the transla-
be straightforwardly realized as a “foveated” image—an inilon invariance of the local power spectrum. These descriptors
portant concept in vision—which involves the progressiveould be used in tasks such as image segmentation, robust
degradation of the image as we move further away from tiR@ttern recognition, etc. [26].
point of attention. On the other hand, the corresponding low-
pass SRVF spectrum (or equivalently, the Fourier transform of ACKNOWLEDGMENT

the foveated image) corresponds to a local spectrum estimatiomhe authors would like to thank the editor and the anony-
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multiscale local spectral analysis can be regarded as simiganuscript.

processes, taking place in conjugated domains, and being

related through a Fourier transform. REFERENCES

The estimation o.f either the foyeated image or local spe _1] C. Braccini, G. Gambardella, and G. Sandini, “A signal theory approach
trum has a much simpler formulation under a log-polar warp=" {5 the space and frequency variant filtering performed by the human

ing of both domains. Under this representation, the SRVF visual system,"Signal Process.vol. 3, pp. 231-240, 1981.

; ; ; ; i ; 2] C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrikson, “Human
becomes an invariant filtering. $|m|IarIy, 'the visual syste'n{ photoreceptor topography, Comput. Neurol.vol. 292, pp. 497523,
seems to perform a log-polar cortical mapping of the Cartesian 1990,
object space while using log-distributed filters to sampld3] D. C. van Essen, W. T. Newsome, and J. H. R. Maunsell, “The visual

: : _ field representation in striate cortex of the macaque monKeigion
the spectrum. Under this duality framework, an octave-based Res, vol. 24, pp. 429-448, 1984.

scheme to estimate the local spectrum naturally calls for g D. G. Green, “Regional variations in the visual acuity for interference
log-polar representation in the spatial domain [28]. Withoui fringes on the retina,J. Physiol, vol. 207, pp. 351-356, 1970.

intendi it to b del of the h . | t 5] P. Kortum and W. Geisler, “Implementation of a foveated image coding
Intending 1t 1o be a moael o € human visual system, w system for image bandwidth reductionProc. SPIE vol. 2657, pp.

think that the idea that a multiscale estimation of the local 350-360, 1996. ' '
spectrum mathematically implies a foveatization of the imagelf! H- Yamamoto, Y. Yeshurun, and M. D. Levine, "An active foveated

. L. . . L vision system: attention mechanisms and scan path convergence mea-
and vice-versa, could have application in the fields of vision  gres "Comput. Vision Image Understandingl. 63, pp. 50—65, 1996.

research and artificial vision. [71 W. Geisler and J. S. Perry, “A real-time foveated multiresolution system

We also have presented a class of prototype filters generating f2°9r 4'33‘:{)'?"3‘?‘;‘%"‘“ video communicationproc. SPIE vol. 3299, pp.

self-dual kernels. Using these kernels, the SRVF is exactly thg] D. L. Jones and T. W. Parks, “A high-resolution data-adaptative
same in both domains. In other words, a SRVF operator using time-frequency representation|EEE Trans. Acoust., Speech, Signal

3 . - Processing vol. 38, pp. 2127-2135, 1990.
self-dual kernels commutes with the Fourier transform. It ca ] S. G. Mallat, “A theory for multiresolution signal decomposition: The

be applied to any Fourier pair with the results being maintained  wavelet transform,|EEE Trans. Pattern Anal. Machine Intel\ol. 11,
as a Fourier pair. These self-dual filters are compatible Wi&‘o; pp. 674693, 1989.
0

. |. Daubechies,Ten Lectures on WaveletsPhiladelphia, PA: SIAM,
the requirements usually demanded of bandpass kernels 1992 P

local spectrum estimation, including those used to modpl] G. Cristobal and L. Cohen, “Scale in image§PIE Proc. Adv. Signal

i ; i i Process. vol. 2846, pp. 251-261, 1996.
the receptive fields of S|mple neurons in the early stages [95] D. A. Pollen and S. F. Ronner, “Visual cortical neurons as localized

the visual cortex [12]. Furthermore, self-dual filters have the ~ spatial filters,"IEEE Trans. Syst., Man, Cybernol. 13, pp. 907916,
important feature of preserving simultaneously both the DC = 1983.

; P : ] J. G. Daugman, “Spatial visual channels in the Fourier plaksibn
component (in the local spectrum) and the origin of the S|gnHF' Res, vol. 24, pp. 891-910, 1984.

(in the foveated image). We have also presented a simpie] D. J. Field, “Relation between the statistics of natural images and the
procedure to obtain a self-dual filtered signal from any well- r2e9,s7p9°nzs§92r°f§ét7'es of cortical cells)” Opt. Soc. Amer. Avol. 4, pp.
beha\_/ed filter th_rOUQh a double application of the filter to bOtﬂ15] L. Cohen, “The scale representationZEE Trans. Signal Processing
the signal and its spectrum. vol. 41, pp. 3275-3293, 1993.



TABERNERO et al. DUALITY OF LOG-POLAR IMAGE REPRESENTATIONS

[16]

[17]

(18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

W. Beil, “Steerable filters and invariance theorypatt. Recogn. Lett.
15, pp. 453-460, 1994.

H. Greenspan, S. Belongie, R. Gooodman, P. Perona, S. Rakshit,
C. H. Anderson, “Overcomplete steerable pyramid filters and rotatic
invariance,” inProc. IEEE Conf. Comput. Vis. Patt. RecagBeattle,

WA, 1994, pp. 222-228.
A. Tabernero, J. Portilla, and R. Navarro. “Duality between the loci
spectrum of a signal and its inverse Fourier transform, the local signa
Instituto deOptica (CSIC), Tech. Rep. 53.

C. Gasquet and P. Witomsldnalyze de Fourier et Applications Paris,
France: Masson, 1990.

2479

Javier Portilla received the B.S. degree in
electrical engineering and computer science
from Escuela Tecnica Superior de Ingenieros
de Telecomunicaoii, Universidad Polétnica de
Madrid (UPM), Madrid, Spain, in 1994. He received
the Ph.D. degree. in 1999.

From 1995 to 1998, he was a Research Assistant
with the Instituto deOptica, UPM. His research
interests include statistical models for visual texture,
steerable filtering, and space-variant representations
of images, which have always been inspired by the

J. B. Allen and L. R. Rabiner, “A unified approach to short-time Fouriegayly stages of human vision.
analysis and synthesisProc. IEEE vol. 65, pp. 1558-1564, 1977.

M. Michaelis and G. Sommer, “A Lie group-approach to steerable
filters,” Pattern Recognit. Lettvol. 16, pp. 1165-1174, 1995.

W. T. Freeman and E. H. Adelson, “The design and use of steerable
filters,” IEEE Trans. Pattern Anal. Machine Intelizol. 13, pp. 891-906,

1991.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. Heege
“Shiftable multiscale transformsJEEE Trans. Inform. Theoryol. 38,
pp. 587-607, 1992.

P. Perona, “Deformable kernels for early visioffEE Trans. Pattern

Anal. Machine. Intell. vol. 17, pp. 488—-499, 1995.

P. C. Teo and Y. Hel-Or, “A computational group theory approach
steerable functions,” Stanford Univ., Stanford, CA, Tech. Rep. STA
CS-TN-96-33, Apr. 1996.

J. Portilla, R. Navarro, and A. Tabernero, “Optimizing parametri

Rafael Navarro received the M.S. and Ph.D. de-
grees in physics from the University of Zaragoza,
Zaragoza, Spain, in 1979 and 1984, respectively.
From 1985 to 1986, he was an Optical and
Image Processing Engineer at the Instituto de As-
trofisica de Canarias. He joined the Instituto de
Optica (CSIC), Universidad Podithica de Madrid,
in 1987, where he is currently a Senior Scientific
Researcher. Since 1988, he has headed the Imaging
and Vision Group, and since 1994, he has been
Associate Director of the Instituto d®ptica. He

deformable kernels,” irProc. IEEE Int. Symp. Time-Scale Time-Freds interested in human vision, optics, and image processing.
Anal, Pittsburgh, PA, Oct. 1998.

J. Portilla and R. Navarro, “Efficient method for space-variant lowpass
filtering,” in Proc. SNRFAI Barcelona, Spain, 1997, pp. 287-292.

A. B. Watson, “Detection and recognition of simple spatial forms,”
in Physical and Biological Processing of Images. C. Sleight, Ed.
Berlin, Germany: Springer-Verlag, 1982, pp. 100-114.

Antonio Tabernero received the B.S. degree in
physics in 1998 from the Universidad Complutense
de Madrid, Madrid, Spain. He was a Research
Assistant at the Instituto d©ptica, Universidad
Politécnica de Madrid, from 1988 to 1992, when
he received the Ph.D. degree from the Universidad
Complutense de Madrid.

During 1993, he was a Postdoctoral Student at the
Vision Group, Human Interface Research Branch,
NASA Ames Research Center, Moffett Field, CA.
He is currently a Member of the Faculty at the

Computer School, UPM. His research interests include computational vision,
image processing, joint representations, and data compression.



