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Duality of Log-Polar Image Representations
in the Space and Spatial-Frequency Domains

Antonio Tabernero, Javier Portilla, and Rafael Navarro

Abstract— In this paper, we study the result of applying
a lowpass variant filtering using scaling-rotating kernels to
both the spatial and spatial-frequency representations of a
two-dimensional (2-D) signal (image). It is shown that if we
apply this transformation to a Fourier pair, the two resulting
signals can also form a Fourier pair when the filters used in
each domain maintain a dual relationship. For a large class
of “self-dual” filters, a perfect symmetry exists, so that the
lowpass scaling-rotating variant filtering (SRVF) is the same
in both domains, thus commuting with the Fourier transform
operator. The lowpass SRVF of an image is often referred to as
a “foveated” image, whereas its Fourier pair (the lowpass SRVF
of its spectrum) can be realized as a local spectrum estimation
around the point of attention. This lowpass SRVF is equivalent
to a log-polar warping of the image representation followed
by a lowpass invariant filtering and the corresponding inverse
warping. The use of the log-polar warped representation allows
us to extend the one-dimensional (1-D) scale transform to higher
dimensions, in particular to images, for which we have defined
a scale-rotation invariant representation. We also present an
efficient implementation using steerable filters to compute both
the foveated image and the local spectrum.

Index Terms—Foveated vision, local spectrum, log-polar map-
ping, scaling-rotating filters, scale transform, steerable filters,
variant filtering, wavelets.

I. INTRODUCTION

L OG-POLAR representations play an important role in
image processing and analysis. In the spatial domain,

log-polar schemes [1] have been used to model the strongly
inhomogeneous sampling of the retinal image by the human
visual system. The number of receptor units (either at the
retina [2] or in the later cortical stages [3]) drops rapidly with
eccentricity while their size increases, causing a fast decay in
visual acuity [4]. With this strategy, the visual system offers
a tradeoff combining the advantages of a wide field of view
with a high-resolution central area (fovea). Similar schemes
have been introduced in artificial vision [5]–[7], where the use
of “foveated” images helps reduce the amount of information
to be processed.
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In the spatial-frequency domain, methods such as short
time Fourier analysis using an adaptative window [8], mul-
tiresolution local-spectrum estimation, or wavelet analysis [9],
[10] usually involve a logarithmic sampling of the frequency
domain. For images, a log-polar sampling is the natural
extension, although separable log-log schemes are also used
[11]. Again, the human visual system seems to apply a similar
strategy for local spectrum estimation. Neurons with receptive
fields having bandpass responses [12] are grouped in visual
channels that have been modeled with banks of self-similar
filters distributed in a log-polar grid [13]. The fast
decay of the power spectrum of natural images [14] suggests
an additional reason for the use of filters whose bandwidth
scales with frequency, resulting in an octave-distributed (log)
scheme.

In practice, whether in the spatial or spatial-frequency
domain, log-polar representations must eventually be sampled.
The problem of preventing potential aliasing artifacts is then
critical since the sampling interval becomes increasingly larger
with eccentricity. Therefore, log-polar schemes demand a
lowpass variant filtering in the linear domain, specifically
using self-similar (scaled and rotated) variant kernels, to adapt
locally the signal bandwidth to the varying sampling interval.
From now on, we will be referring to this operation as a
scaling-rotating variant filtering (SRVF).

As we have mentioned, log-polar representations have been
extensively treated in the literature. However, little attention
has been paid to the connection between log-polar represen-
tations in both the space and frequency domain, and to our
knowledge, a direct mathematical analysis of this link has not
been made. In this paper, we study such connection relating
the signals resulting of applying a SRVF operator to an image
and to its corresponding spatial-frequency spectrum.

In Section II, we show that the application of a lowpass
variant filtering using scaled and rotated versions of a
prototype filter in one domain is maintained as a similar
SRVF (now scaling and rotating adual filter) in the conjugated
domain. We call this propertyduality of a SRVF operator in
both the space and spatial-frequency domains. Although the
actual filters applied need not be the same in both domains, a
simple relation exists between a pair of dual filters. Moreover,
there is a class ofself-dualfilters with the same expression in
both domains, making the SRVF operator commute with the
Fourier transform. While the result of lowpass SRVF in the
spatial domain is interpreted as a log-polar “foveated” image,
we show in Section III that a lowpass SRVF in the frequency
domain provides an estimate of the local spectrum around
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the point of fixation. In Section IV, we establish a straight-
forward connection with Cohen’s one-dimensional (1-D)
scale transform [15], proposing an extension of the scale
transform to dimensions, which could be useful to deal
with scale and rotational invariances in images [16], [17].
Finally, in Section V, we address the problem of moving the
attention point, presenting efficient implementations based on
steerable filters to compute either the local spectrum or the
foveated image at multiple fixation points.

II. DUALITY OF A SELF-SIMILAR

LOWPASS VARIANT FILTERING

In order to prevent aliasing when sampling in a log-polar
grid, we need to apply a lowpass variant filtering that is
locally adapted to the variant sampling interval. In the log-
polar case, this corresponds to using scaled and rotated (self-
similar) filters. In this section, we show that a straightforward
connection exists between such an SRVF when performed
in the space (Section II-A) and the spatial-frequency domain
(Section II-B). The following analysis is restricted to images
(2-D), although it can be immediately extended to higher
dimensions. A detailed analysis of the 1-D case can be found
in [18].

A. Lowpass SRVF in the Spatial Domain

We depart from an image expressed either in polar coordi-
nates or, in vector notation, In order to perform
an SRVF, we first build a variant kernel as a scaled and
rotated version of a “prototype” function , maintaining
a constant volume

(1)

Then, the SRVF can be expressed as the inner product between
the image and

(2)

where denotes the SRVF operator using as its
prototype filter. This filter should have lowpass charac-
teristics (its frequency response being centered around )
being located around In addition, the module
of should be integrable, that is

(3)

Although it is not necessary, for convenience, we will re-
strict ourselves to real prototype filters. Additional integral
conditions on will be discussed below.

Given the lowpass nature of the prototype filter , the
filtered image

(4)

consists of a weighted local average of the values of the
original image around Due to the scaling, the spatial

support of the variant kernel becomes larger when moving
away from the origin, thus adjusting its lowpass effect to the
increasing sampling interval of a log-polar grid.

An alternative approach to prevent aliasing in a log-polar
grid consists of first warping the image so that the sampling
grid becomes uniform and then applying an invariant lowpass
filter in the warped domain, where Both
approaches are equivalent if we define the following warping
(preserving the energy) to take the original image into the
log-warped domain:

(5)

By applying the above transformation to and
in (4), it follows that

(6)

Thus, the former SRVF is translated into a simple convolution
with the filter in the warped domain (note that the
integral in corresponds to a circular convolution). The filter
used ( ) corresponds to the warped version of the former
prototype function It is also a lowpass filter that is now
centered around the origin as peaked
at (1, 0).

B. Duality of a SRVF in the Spatial and
Spatial-Frequency Domains

In the previous section, we defined a lowpass SRVF operator
acting on an image. Let us now study the Fourier

transform of the filtered image If we
Fourier transform in (2) and express the original image

as a function of its spectrum , we obtain

(7)

By regrouping terms in the above equation, we find that the
relationship between the spectra and is similar to
that of the images and in (2)

(8)

Thus, a spatial-variant filtering using is maintained as
another variant filtering in the spatial-frequency domain, now
with a different kernel By comparing (7) and (8), we
see that both kernels are related through a double 2-D Fourier
transform, plus an axis reflection

(9)
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Although the above relationship holds for any variant fil-
tering, the case of a self-similar SRVF presents a particularly
interesting property. When the variant spatial kernel
comes from scaling and rotating a prototype filter (1) ,
the expression of the new variant kernel in the frequency
domain can be obtained through (9) as

(10)

where and are the polar coordinates of and
, respectively. Therefore, the variant kernel operating in

the frequency domain has the same expression as its spatial
counterpart, except for the role of the dummy radial variables
( in frequency and in space) that has been interchanged.
Furthermore, if we define adual filter as

(11)

the new spatial-frequency variant kernel is also a scaled and
rotated version of the dual filter

(12)

Consequently, an SRVF operator using a prototype filter
in one domain is maintained as a similar SRVF

in the conjugate domain but now using the dual filter

(13)

We call this propertyduality of a SRVF in both the spatial and
spectral domains, which is expressed as

(14)

where denotes a Fourier transform andthe SRVF operator
using either or

Finally, we will show how the resulting filtered spectrum
in (13) can also be obtained in the log-polar warped

domain. By applying the same log-polar warping (5) to the
spatial-frequency variables to each function in (13), we obtain

(15)
The only difference between the log-polar frequency (15)
and space (6) domains is that the convolving filter is now

instead of Therefore, in the log-polar
warped domain, the relationship between a pair of dual filters
is a simple one-axis mirror reflection.

C. Additional Integrability Conditions on

In the previous paragraphs, we have implicitly assumed
that the prototype filter and its dual counterpart are such that
both (4) and (13) are well defined. However, it might be
possible that for a given , the Fourier transform of the
resulting were not defined. Furthermore, even if
were defined, it could happen that its inverse Fourier transform
did not exist. We avoid these potential problems by imposing
some additional constraints on the prototype filter.

Let us suppose that both the original image and its
spectrum belong to the space of finite energy signals

Then, we have to find a condition on ,
ensuring that both and remain in to
guarantee that they also form a well-defined Fourier pair.

As the logarithmic warping in (5) preserves the energy
( metric), it suffices to prove that both warped signals

and have finite energy. These signals are the
result of a convolution between a finite energy signal [either

or ] and the lowpass filter Since the
convolution between and remains in [19],
a sufficient condition for both and being in

is that , that is

(16)

By dividing this integral into two parts corresponding to
and , we find that

(17)

Consequently, a sufficient condition for (16) to hold is to
impose that the dual filter also belongs to , that is

(18)

Conditions (3) and (18) indicate a sufficient fast decay of
at both the origin and infinity. Although less restrictive

conditions than having the dual filter belong to could
possibly be found to ensure that and form a Fourier
pair, (18) is especially appropriate here as it reinforces the
symmetry between the spatial and spatial-frequency domains.
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Fig. 1. Prototype filterP (r; �) (left) as defined in (19) and its dual (20)
counterpart ~P (right).

D. Examples and Interpretation

In order to illustrate the above concepts, let us consider a
prototype function defined by

(19)

corresponding to a real polar-separable lowpass integrating
kernel with a maximum around and belonging
to , as indicated. Parametersand determine its width
and aspect ratio. This function (for is shown
in the left panel of Fig. 1. Its corresponding dual filter, which
is given by

(20)

is shown in the right panel. Although different in general, the
dual filter preserves the energy of the original prototype
filter and maintains its lowpass nature. This dual filter also
belongs to , indicating that also verifies (18).

Fig. 2 illustrates the duality of a lowpass SRVF in both
domains. The left panels in Fig. 2 display a Fourier pair: the
image on top and its frequency spectrum at the
bottom. The upper right panel shows a lowpass SRVF of the
image using the filter defined above (19).
We can observe how the center of the original image (the
point of attention) is preserved by the SRVF, whereas due to
the scaling, the lowpass effect increases as we move away
from the origin. The lower right panel shows the Fourier
transform of the variant filtered image
It is clear that when compared with the original spectrum,
fine details have been preserved around the origin (DC) while
being progressively lost toward the periphery, showing that

is also a lowpass SRVF of the spectrum, now using the
dual filter, This is the main result of this
section. The Fourier transform of a lowpass SRVF is also a
lowpass SRVF of the original spectrum (14). In other words,
the upper and lower panels correspond to Fourier pairs that are
maintained when applying a lowpass SRVF (that is, moving
from left to right). In these examples, we have used narrower
filters than those depicted in Fig. 1, in order
to reduce the lowpass effect and obtain a larger fovea.

The progressive degradation of visual quality toward the
periphery shown in the upper right panel of Fig. 2 is similar

to what happens in the human visual system [2], [3], where
much of the resources are devoted to the central area of the
visual field (fovea). Therefore, we will be referring to images
such as the one shown in the upper right panel of Fig. 2 as
“foveated” images and use the term “foveation process” to
describe the lowpass SRVF of an image.

A desirable property of an ideal foveated image would be
the preservation of the value of the original image at the origin,
reflecting the intuitive idea that there should be no distortion
at the fixation point. If we relate the values at the origin of
both and , we find that

(21)

where is the volume integral of the prototype filter. Since
belongs to (3), it is always possible to normalize (as

long as , which is ensured since is a lowpass
filter) so that , and thus, the origin is maintained in the
foveated image

Another convenient property would be that the mean in-
tensity level across the image should be maintained after the
variant filtering, which is equivalent to imposing that the
origin of the spectrum (the DC component) be preserved in
the foveated spectrum. Considering the duality between both
domains, and similarly to (21), we find that

(22)

Then, if the dual filter is normalized in volume , the
DC component of the original image will be preserved
in the local spectrum. The volume integrability of the dual
filter is again ensured through (18), indicating that

However, since the normalization of brings an
additional condition on , we cannot ensure that
once has been normalized. That means that in general, it
is not possible for a given prototype filter to preserve both
the origin and the DC through a SRVF (unless ). For
instance, with the prototype defined in (19), we find (for

) that , whereas the volume of its
dual filter (20) is different, namely, Therefore,
it not possible to normalize both and simultaneously,
although the difference will usually be small, as in this case.
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Fig. 2. Upper panel: Original image (left) and “foveated” image (right) obtained through a lowpass SRVF using the prototype filterP (LP ): Lower panel:
Moduli of the corresponding Fourier transforms (log-intensity scale) also related through a lowpass SRVF now using~P (L

~P
):

E. Self-Dual Filters

We have shown how an SRVF is similar in both the spatial
(4) and frequency (13) domains as it relies on the same lowpass
function However, the differences between a filter and
its dual counterpart (Fig. 1) prevent a complete symmetry
between domains. Nevertheless, it is straightforward to obtain
self-dualkernels: a situation where both kernels of a dual pair
are identical. The condition for self-duality is immediate in
the log-polar domain. If (6) and (15) are to be equal, then the
log-warped prototype filter must be even in its radial variable

(23)

Consequently, given any 2-D function defined in
, we can obtain a prototype filter generating

self-dual kernels as

(24)

with the only condition (3) that Note that
since , the additional integrability condition (18) is
trivially verified, and by normalizing in volume, we
accomplish simultaneously. Therefore, another
important motivation behind the use of self-dual filters is the
preservation, after the lowpass SRVF, of both the signal at

Fig. 3. Left: Several self-dual kernels for various scales and orientations
generated using (25). Right: Inverse Fourier transform (real part) of one of
them showing bandpass characteristics.

the point of attention and the DC component in the foveated
image and spectrum, respectively.

Fig. 3 (left) shows several self-dual kernels (normalized in
amplitude, instead of volume to improve visualization) ob-
tained as scaled/rotated versions of a prototype filter generated
from

with (25)

The application of these kernels will also produce a progres-
sive image degradation toward the periphery, but now, being
self-dual, the “foveation” effect would be identical in the upper
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and lower panels of Fig. 2. In fact, a lowpass SRVF using self-
dual filters achieves perfect symmetry in both domains
so that (14) becomes

(26)

making the Fourier transform operator commute with the
lowpass SRVF operator.

As an interesting practical result, we present a simple
method to obtain a self-dual filtering through a double ap-
plication of any (non self-dual) filter [18]. The key idea
is to apply an SRVF using to both the image (to obtain

) and to its spectrum, obtaining another
filtered image Unless using self-
dual filters, this new foveated image will differ from
since corresponds (14) to the application of the dual
filter directly in the spatial domain:

(27)

However, if we average and , the result is equivalent
to applying the average of and as the
lowpass filter in the warped log-polar representation. This
averaged filter is obviously symmetric in its first variable and,
consequently, self-dual.

This procedure is of practical interest when the direct
use of a self-dual filter is inconvenient. For instance, an
implementation can be much more efficient using a prototype
function with circular symmetry, which will not be self-dual.
In that case, we can rely on the above procedure to obtain a
self-dual filtered image or spectrum (at the cost of applying
the filter twice).

III. FROM FOVEATED IMAGES TO

LOCAL SPECTRUM ESTIMATION

In the previous section, we described a lowpass SRVF of an
image as a stage of a foveation process (the other being the
consequent log-polar sampling). Now, we turn our attention
to the spatial-frequency domain. The Fourier transform of
a foveated image or “foveated” spectrum (see Fig. 2)
admits a direct interpretation as a local spectrum estimation
around the point of attention. This can be shown by applying
Parseval’s identity to the right side of (13)

(28)

where is the inverse Fourier transform of the dual filter
, whose existence is ensured since The right

panel of Fig. 3 shows the real part of, which is a bandpass-
oriented filter spatially centered at the origin. Under these
considerations, it becomes clear that in (28) is a local
spectrum, i.e., the result of applying a (continuous) bank of
analysis filters [rotated and scaled versions of ] to an
image to extract its frequency components (sub-bands) around
a given point of fixation (the origin).

Fig. 4. Left: Original image containing three pure frequencies. Center:
Foveated or SRVF image. Right: Fourier transform of the foveated image;
the “foveated” or local spectrum.

Using scaled filters to analyze a signal is closely related to
multiscale or wavelets methods [9], [10]. However, whereas
a continuous wavelet transform collects scale information at
every point simultaneously, with the subsequent redundancy,
the local spectrum gathers scale information only around
the attention point. In order to having information about other
positions, we must move the fixation point (see Section V).
A more detailed discussion on the relationship between this
“foveated” local spectrum and wavelets can be found in [18]
for the 1-D case.

Fig. 4 further illustrates the interpretation of a foveated
spectrum as a local spectrum estimate. The central panel shows
the result of applying a lowpass SRVF to an image containing
three pure frequencies (left). The highest frequency component
disappears rapidly as we move away from the center, whereas
the middle frequency is attenuated more gradually, and only
the lowest frequency remains visible in the periphery. The
Fourier transform of this foveated image is shown in the
right panel. The three pure frequencies (delta functions in the
original spectrum) have been progressively blurred, becoming
“blobs” whose support increases with spatial frequency. Fig. 4
also shows how the Fourier transform of a foveated image

is closely related to other methods for local
frequency estimation. For instance, sliding-window or short
time Fourier analysis (STFA) methods [20] first select the local
information by applying a spatial window and then compute
its Fourier transform to estimate its frequency contents. The
process here is essentially the same, except for the fact that
we rely on a foveation, instead of a windowing, to extract
the local information. As a result of foveation, the analysis
window (Fig. 4 center) is automatically adapted to the present
frequencies, as in other multiscale methods [9] or STFA
methods with an adaptative window [8].

Alternatively, a lowpass SRVF of a global spectrum
also makes sense as a local spectrum estimate. The

very low frequencies (which do not change much between a
global or local spectral analysis due to their larger support) are
relatively unaffected by the variant filtering. However, higher
frequencies that are more likely to be modified when shifting
from a global to a local perspective are progressively more
affected by the lowpass SRVF.

IV. SCALE AND ROTATION INVARIANT

REPRESENTATION OFIMAGES

In previous sections, we have shown that the lowpass SRVF
needed to obtain either a foveated image or a local spectrum
in the linear Cartesian space can be translated into a simple
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convolution through a log-polar warping. Going one step
further, that convolution becomes a simple product via the
convolution theorem. In the 1-D case, applying the Fourier
transform to the log-warped domain takes us to Cohen’s
scale transform [15]. We show next that it is immediate
to generalize Cohen’s transform to 2-D images and higher
dimension signals.

Given an image , we define as the Fourier
transform of its log-polar warping

with (29)

Note that the first variable is continuous, whereas the second
is discrete due to the periodicity in If we now express

as a function of the original image , we obtain

(30)

where constitutes a generalization of Cohen’s 1-D
scale-transform [15] to the bidimensional case. In the same
way that the modulus of the scale transform is invariant under
scaling, the modulus of the above 2-D transform is invariant
under both rotation and scaling of the image. Thisscale-
orientation transform can be realized as the projection of the
image onto a set of basis functions

with (31)

whose radial part has already been proposed in [21]. Since
the basis functions are orthonormal with respect to the defined
inner product, the corresponding inverse transform is simply

(32)

Contrary to another alternative proposal to extend the scale
transform to images [11], our transformation (30) separates
the radial and angular dependencies in the signal by applying
a 1-D scale transform only to the radial variable: the only one
affected by a global change of scale. The Fourier analysis of
the angular dependency is an additional feature through which
rotational invariance is accomplished. The separation between
the radial and angular variables allows us to extend the scale-
orientation transform to dimensions by incorporating into
(31) the generalization of the radial basis functions proposed
in [21].

Then, through the convolution theorem, the convolution in
the warped log-polar spatial domain (6) becomes a multipli-
cation in the new scale domain

(33)

where and are thescale-orientationtrans-

Fig. 5. Operations required to perform an SRVF when using a linear (upper),
log-polar (middle), or scale (lower) representation in either the space (left) or
spatial-frequency (right) domains.

forms of the foveated image and the prototype filter, re-
spectively. Therefore, the foveation process is equivalent to
filtering out the higher “scales” of the original image. The
negative signs in (33) are simply a consequence of our using

as the lowpass filter in the warped domain.
Fig. 5 summarizes the results presented so far in the dif-

ferent domains from the variant filtering using rotated/scaled
filters that takes place in the linear domain (upper level)
through the convolution in the log-polar warped domain (mid-
dle level) to end up with a simple multiplication in the scale
domain (lower level). At each stage, one of a pair ofdual
filters is used, depending on whether the process takes place
in the spatial (left) or spatial-frequency (right) domains.

V. MOVING THE ATTENTION POINT

In this section, we address the question of computing a
foveated image or local spectrum at a location other
than the origin and propose an efficient implementation based
on steerable filters, avoiding the computational burden of a
variant filtering.

A foveated image with attention point can be com-
puted by first displacing the image to position at the
origin and then applying the lowpass SRVF operator as
in (2):

(34)

where is the foveated image around the attention
point By defining

(35)

we can rewrite (34) as a convolution of with scaling
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and rotatinglowpassfilters

(36)

Equivalently, following (28), the local spectrum estimated
around can be expressed as

(37)

which again is a convolution between and a continuum
of scaling-rotatingbandpassfilters

(38)

A. Implementation

Equations (36) and (37) express a displaced fovea or its
associated local spectrum as convolutions of the image
with either lowpass or bandpass filters, respec-
tively. However, despite the formal simplification, a direct
implementation of those equations is still impractical since an
infinite (or, in practice, very large) number of 2-D convolutions
are needed to know either or at any position.

Nevertheless, the problem of an efficient implementation
can be addressed through the use of steerable or deformable
filters [22]–[24]. These techniques approximate, through a lin-
ear combination of a finite basis, a continuum of filters having
any desired value in their parameters (scale and orientation, in
our case). The coefficients in the linear combination (or inter-
polation functions) are obtained from the corresponding set of
normal equations arising from the problem of minimizing the
error (in a LSE sense) within the parameter range considered.
In our case, the effective range of scales is determined in
practice by the maximum resolution of the image and the
spatial support of the fovea (note that, as opposed to the
orientation case, a perfect scale interpolation is not possible
due to the lack of periodicity of this variable [24], [25]).

In order to estimate the local spectrum, we follow the
techniques described in [26] to obtain a basis of(scale)

(orientation) bandpass filters approximating
any intermediate as

(39)

Then, the local spectrum is also approximated as
a linear combination of values at from a set
of bandpass filtered images BP previously computed
as invariant convolutions with the basis filters

BP (40)

The upper branch in Fig. 6 shows a local spectrum (central
panel) around an attention point overlaid in the original image
(left). It has been interpolated from only 8 8 samples in a
log-polar grid (marked with ’s) that constitute a complete
(not exact but highly accurate) representation of the local
spectrum. The filters used in this example have radial
and angular bandwidths of 1 octave and 40, respectively,
covering a range of about four octaves with an average signal-
to-noise ratio of 30 dB (always above 25 dB). The foveated
image can be obtained through an inverse Fourier transform of
the local spectrum (Fig. 6 upper right). In practice, since the
interpolated local spectrum is a linear combination, we have
that

BP

BP (41)

Thus, the foveated image can be obtained directly as a linear
combination of the inverse Fourier transform of the interpo-
lation functions without explicitly computing the local
spectrum.

However, if we just want to obtain a foveated image, a
direct implementation in the spatial domain admits a further
simplification by choosing a prototype filter having circular
symmetry around its maximum Then, there
exists a one-variable function that verifies

(42)

Assuming circular symmetry (42), two filters having the same
scale but with different orientations are translated versions of
each other, that is, we can relate any to as

(43)

As a result, we do not have to compute the convolutions with
the whole filterbank in (36) but only with the subset
When the value of a foveated image for an angle
other than zero is needed, we look up , which is
the convolution with at the displaced position

(44)

Finally, we apply deformable-filter techniques but only to the
scale parameter [27], [26], finding filters that best
approximate, in a LSE sense, any in the considered scale
range

(45)

Therefore, the foveation algorithm in the spatial domain
(lower branch in Fig. 6) also consists of two stages. First,
we have the application of a filterbank to obtain
lowpass filtered images LP Since
the convolution with any can be approximated using
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Fig. 6. Foveated images obtained in the spatial domain using scaled lowpass filters (lower branch) or through the local spectrum (upper branch) using
scaled-rotated bandpass filters.

(45), then assuming circular symmetry, from (43) and (36),
the displaced fovea is computed as

LP (46)

In the example of Fig. 6 (lower branch), we used only six
Gaussian filters with circular symmetry, with a spatial support
(measured at half height) of one octave, covering a range of
five octaves with an average SNR of 25 dB. The resulting
foveated images are very similar, the differences being due
to the use of different kernels and to the wraparound effect
in the frequency-domain implementation (upper panel). In
terms of computational cost, the spatial implementation is
significantly faster since fewer filterings, and hence fewer
terms, are required in the linear combination (six versus 88
in the example of Fig. 6). With this spatial implementation, we
have been able to move a fovea through a small static image
in real time (several moves per second). This efficiency stems
from the fact that once the initial lowpass filterings have been
computed, moving the fovea only requires a linear combination
of six terms at each point.

Fig. 7 displays two multifoveated images with different
sets of attention points computed using the above algorithm.
The original image (with the corresponding fixation points
overlaid) is shown in the left panels. The right panels display
the multifoveated images obtained by patching information
from the different foveas. The original image is divided
into patches (see left panels), and each area is substituted

Fig. 7. Left: Original image showing the fixation points used (three in the
upper panel and 30 in the lower one). Right: Reconstructed images using
information from the nearest fovea.

by the foveated version obtained with the nearest fixation
point. In the upper panel, only three points were considered,
as opposed to the 30 foveas that were combined to show
the result below. Fig. 7 shows how a relatively low number
of attention points are enough for representing the most
significant information of the picture. Considering the few
samples required to represent each fovea (between 50 and 100,
depending on the sampling scheme), the potential use of this
method for dynamic compression [5] is promising, especially
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in those applications where only the preservation of a few key
features is necessary. Since each fovea is associated with a
local spectrum, the images in the right panels of Fig. 7 can be
seen as reconstructions from a set of local spectra estimated
at different spatial locations.

VI. SUMMARY AND CONCLUSIONS

We have shown how a scaling-rotating variant filtering
(SRVF) using a given prototype filter in one domain
is maintained as a similar SRVF in the conjugate domain but
now using the “dual” filter This result was not evident, as
it is very different to the well-known convolution theorem
associated with an invariant filtering. Although the above
discussion has been has been focused on images (2–D), the
results are also valid in 1-D [18] and higher dimensions.

When the prototype filter is lowpass, this duality admits
an interesting interpretation. A lowpass SRVF image can
be straightforwardly realized as a “foveated” image—an im-
portant concept in vision—which involves the progressive
degradation of the image as we move further away from the
point of attention. On the other hand, the corresponding low-
pass SRVF spectrum (or equivalently, the Fourier transform of
the foveated image) corresponds to a local spectrum estimation
around the point of fixation. Therefore, log-polar foveation and
multiscale local spectral analysis can be regarded as similar
processes, taking place in conjugated domains, and being
related through a Fourier transform.

The estimation of either the foveated image or local spec-
trum has a much simpler formulation under a log-polar warp-
ing of both domains. Under this representation, the SRVF
becomes an invariant filtering. Similarly, the visual system
seems to perform a log-polar cortical mapping of the Cartesian
object space while using log-distributed filters to sample
the spectrum. Under this duality framework, an octave-based
scheme to estimate the local spectrum naturally calls for a
log-polar representation in the spatial domain [28]. Without
intending it to be a model of the human visual system, we
think that the idea that a multiscale estimation of the local
spectrum mathematically implies a foveatization of the image,
and vice-versa, could have application in the fields of vision
research and artificial vision.

We also have presented a class of prototype filters generating
self-dual kernels. Using these kernels, the SRVF is exactly the
same in both domains. In other words, a SRVF operator using
self-dual kernels commutes with the Fourier transform. It can
be applied to any Fourier pair with the results being maintained
as a Fourier pair. These self-dual filters are compatible with
the requirements usually demanded of bandpass kernels for
local spectrum estimation, including those used to model
the receptive fields of simple neurons in the early stages of
the visual cortex [12]. Furthermore, self-dual filters have the
important feature of preserving simultaneously both the DC
component (in the local spectrum) and the origin of the signal
(in the foveated image). We have also presented a simple
procedure to obtain a self-dual filtered signal from any well-
behaved filter through a double application of the filter to both
the signal and its spectrum.

The use of a log-polar warping also serves as an inter-
mediate step to link our results with the scale transform.
Based on this connection, we have proposed a generalization
of Cohen’s 1-D scale transform to 2-D so that its modulus
is invariant under scaling or rotation of the image (scale-
orientation transform). Finally, we have presented an efficient
implementation in both domains, based on steerable filters, that
it is specially well suited for moving the attention point. With
this implementation, it is possible to move a fovea across an
image in real time.

There are still some aspects deserving further study, mainly
those related to a theoretical formulation of the discrete
case and the potential applications, especially those related
to the study of rotation and scale invariances. Following
our implementation, we obtain a discrete local representation
combining spatial and spectral information that can be useful
to define local feature descriptors, combining the invariances
associated with the scale-rotation transform with the transla-
tion invariance of the local power spectrum. These descriptors
could be used in tasks such as image segmentation, robust
pattern recognition, etc. [26].
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